KT 2, MAT. ANALÜÜS 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? Tõestada ei ole vaja. ∆y = f’(a)∆x + β Diferentsiaal ja jääkliige on lõpmatult kahanevad protsessis ∆x → 0. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat’ lemma (tõestust ei küsi). Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ) korral kehtib võrratus f(x) ≤ f(x1).
Mat teooria II 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Loetleda diferentsiaali omadused. 2. Olgu antud funktsioon, mis diferentseerub punktis a ja eeldame, et Teades, et Nii me näitasime, et Tähistades ja vahe järgmiselt Kehtib võrratus: Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: Korrutades saadud avaldist saame: kus Nüüd näemegi, et koosneb kahest liidetavast, mis kahanevad piirprotsessis
20. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f (a)0. Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui x ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus x suhtes. Järelikult väikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seetõttu võime lugeda diferentsiaali dy funktsiooni muudu peaosaks. Jääkliikme võib väikese x korral funktsiooni muudu avaldises ära jätta
LIISI KINK 10 MATEMAATILINE ANALÜÜS I Teooria töö 2 18) Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. = + , kus = Mõlemad liidetavad on lõpmatult kahanevad protsessis 0. Diferentsiaal on sama järku lõpmatult kahanev suurus kui ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus suhtes. Kehtib ligikaudne valem kui 0. 19) Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat' lemma
Matemaatilise analüüsi II Kontrolltöö 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. a. Teades, et argumendi muut kohal a -funktsiooni muut kohal a a.i. Nii me näitasime, et a.ii. Tähistades ja vahe järgmiselt a.iii. Kehtib võrratus: a.iv. Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: a.v. Korrutades saadud avaldist saame:
Matemaatiline analüüs II kontrolltöö Punktid 23-45 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) Loetleda diferentsiaali omadused. a. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana b. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) c. Loetleda diferentsiaali omadused c.1. c.2. c.3. c.4. c.5. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid.Sõnastada ja tõestada Fermat' lemma. a. Funktsiooni lokaalsete ekstreemumite definitsioonid a.1
Matemaatiline analüüs I (Vähendatud programmi teooria vastused) Lokaalse ekstreemumi mõiste. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ¨umbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib v~orratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks. Fermat' lemma. Kui funktsioonil f on punktis x1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f(x1) = 0. Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b)
23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks
23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y ' =f ( a ) +r ( x ) x Korrutame saadud avaldise x-ga ja saame y=f ' ( a ) x+ , kus =r ( x ) x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (Tõestada) ' lim f ( a ) x dy lim r ( x ) x =¿ x o = lim f ' ( a )=f ' ( a ) 0 x x x o lim = x o = lim r ( x ) =0 lim ¿ x o x x x o x o
Matemaatiline analüüs 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus: ∆y = f’(a)∆x + β , kus β = r(∆x)∆x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆ x suhtes, kui ∆ x läheneb nullile? (tõestada!). funktsiooni muut ∆y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f’(a)∆x ja teine on β. Mõlemad liidetavad on lõpmatult kahanevad protsessis ∆x → 0. Võrdleme neid suurusi ∆x suhtes. Esiteks, eelduse f’(a) 0 põhjal saame lim dy ∆x= lim f’(a)/∆x* ∆x= lim f’(a) = f(a) 0. ∆x→0 ∆x→0 ∆x→0 Teiseks kehtib
Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et 27Olgu funktsioon y = f(x) diferentseeruv hulgas D. Siis on tema tuletis f hulgas D määratud funktsioon. Oletame, et f on samuti diferentseeruv hulgas D. Siis saame me arvutada funktsiooni f tuletise ehk funktsiooni f teise tuletise, mida tähistatakse f. Seda protseduuri võib jätkata
TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui
Üksühese funktsiooni mõiste. Olgu antud funktsioon y = f(x). Vastavalt funktsiooni definitsioonile on tegemist kujutisega, mis seab igale argumendi x väärtusele oma määramispiirkonnast vastavusse ühe kindla y väärtuse. Uksühese funktsiooni pöördfunktsioon. Üksühese funktsiooni y = f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsiooni avaldise saame, kui lahendame võrrandi y = f(x) muutuja x suhtes. Vahetavad pöördfunktsioonis kohad esialgse funktsiooni määramispiirkond ja väärtuste hulk. Olgu x = g(y) üksühese funktsiooni y = f(x) pöördfunktsioon. Siis funktsioonid f ja g kompenseerivad teineteist järgmises mõttes. g[f(x)] = x , f[g(y)] = y . Funktsiooni y = f(x) ja tema pöördfunktsiooni x = g(y) graafikud kattuvad xy-teljestikus. Kui aga pöördfunktsiooni x = g(y) avaldises muutujate x ja y kohad vahetada, st esitada ta kujul y = g(x), siis
paremal pool avaldis, mis võib sisaldada muutujat x ,kuid mitte y. · Ilmutamata funktsioon Funktsiooni ilmutamata kujuks on võrrad, mis sisaldab x ja y läbisegi · Parameetrilisel kujul antud joon Olgu antud lõigul kaks funktsiooni ja . Kirjutame nad üles süsteemina: Süsteem saab iga korral ühe kindla arvupaari, ehk tasandil punkti ristkordinaatidega . Üldiselt vastavad muutujale t ka erinevad tasandi punktid, kui muutuja t jookseb läbi kogu lõigu, siis t-le vastav punkt kujundab tasandile vastava joone. Muutujat t nimetame joone parameetriks. · Parameetrilisel kujul antud funktsioon Vaateleme funktsiooni ja lisaks muutujale x ja y toome ka sisse kolmanda muutuja t (parameetri). Olgu muutuja x parameetri t funktsioon ehk , siis saab muutujat y avaldada parameetri t kaudu. tähistades saame . Võtame need kaks võrrandit kokku ühte süsteemi
diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat' lemma (tõestust ei küsi). Funktsioon peab olema määratud punkti ümbruses. Absoluutseid ekstreemume ei tohi segi ajada lokaalsete ekstreemumitega (aboluutse ekstreemumi puhul ei pea olema funktsioon punkti ümbruses määratud). Funktsiooni graafiku puutuja selles punktis on paralleelne x-teljega (ehk tuletis on null). 20. Kõrgemat järku tuletiste definitsioonid. 21. Funktsiooni Taylori polünoomi valem (tuletada pole vaja). Millal nimetatakse Taylori polünoomi McLaurini polünoomiks? 22. Funktsiooni kasvamise ja kahanemise seos tuletise märgiga (sõnastada vastav teoreem, tõestust ei küsi). 23. Funktsiooni kriitilise punkti definitsioon. Panna kirja lokaalse ekstreemumi tarvilik tingimus (põhjendust ei küsi). Panna kirja funktsiooni lokaalsete ekstreemumite piisavad
Normaalsirge. Joone y = f(x) normaalsirgeks punktis A nimetatakse sirget, mis läbib punkti A ja ristub funktsiooni y = f(x) graafiku puutujaga selles punktis. Punkti A = (x0 ,y0) läbiva normaalsirge võrrand: y y0 = - Võrrandi tuletamine: Normaalsirge võrrandi tuletamiseks peame arvutama tema tõusu p = tan . Kuna = + ja tan = f (a), siis p = tan = tan( +) = - = - Punkti A = (a, f(a)) läbiva normaalsirge võrrand on järgmine: y - f(a) = - · (x - a) 5. Diferentsiaal kui funktsiooni muudu peaosa. Näidata, et kehtib ligikaudne valem y dy, kui x Peaosa. Diferentsiaal dy on sama järku lõpmatult kahanev suurus kui x, on kõrgemat järku lõpmatult kahanev suurus x suhtes. Järelikult väikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seetõttu võime lugeda diferentsiaali dy funktsiooni muudu peaosaks. Jääkliikme võib väikese x korral funktsiooni muudu avaldises ära jätta. Kehtib ligikaudne valem. y = dy, kui x
KT2 Pöördfunktsiooni tuletis on antud funktiooni tuletise pöördväärtus. Kui l~oigul [a; b] pideval ja rangelt monotoonsel funktsioonil y =f(x) leidub kohal a nullist erinev tuletis, siis pöördfunktsioonil x = g(y) leidub tuletis kohal b = f(a), kusjuures g '(b)=1/f ' (a) Param kujul f tuletis: kui f y=f(x) on antud parameetrilisel kujul x(t)=(t); y(t)=(t) , t=[a,b], kusjuures f-id (t) ja (t) on diferentseeruvad vahemikus (a,b) ja (t) on rangelt monotoonne lõigul[a,b] ning (t)0 (t=(a,b), siis y '=(t)/(t) F f(x) n-järku tuletiseks nim f-i f(x) (n-1)-järku tuletise tuletits, st fn(x)=(fn-1(x)) ' F-i y=f(x) n-järku diferentsiaaliks nim diferentsiaali selle f-i n-1 järku diferentsiaalist dny=d(dn-1y)
32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II
Kordamisküsimusi 3. teema kohta 1. Defineerida funktsiooni tuletis. Mis on diferentseeruv funktsioon ja diferentseerimine? Funktsiooni f tuletiseks punktis a nimetatakse järgmist suurust: f ( x )−f (a) f ' ( a )=lim x→ a x−a Kui funktsioon f omab punktis a lõplikku tuletist, siis öeldakse et ta on selles punktis diferentseeruv. Tuletise arvutamist nimetatakse diferentseerimiseks. 2. Esitada tuletise valem funktsiooni muudu ja argumendi muudu kaudu.
ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..
x4 Näide. Funktsiooni y= x 3 algfunktsiooniks on funktsioon y = , üldiselt iga 4 x4 funktsioon kujul y = + C , kus C on suvaline konstant. 4 Üldavaldus. Funktsiooni f kõik algfunktsioonid F avalduvad kujul F(x) +C, kus F on funktsiooni f mingi algfunktsioon, C suvaline konstant. Definitsioon 17. Funktsiooni f kõikide algfunktsioonide üldavaldist F(x) +C, kus F on funktsiooni f mingi algfunktsioon, C suvaline konstant, nimetatakse funktsiooni f määramata integraaliks. Funktsiooni f määramata integraal tähistatakse sümboliga f ( x ) dx. Seega f ( x)dx = F ( x) + C F ( x) = f ( x). Integraal on funktsiooni piirväärtuste summa. 2. Esitada ja tõestada määramata integraali f ( x ) dx
27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste
Funktsiooni y = f ( x ) , x X võib alati esitada parameetrilised kujul, näiteks: t T = X y = f (t) Vastupidine esitus, s.o. üleminek parameetriliselt kujult ilmutatud kujule ei ole alati teostatav. 5. Esitus ilmutamata kujul, s.o. võrrandi F ( x, y ) = 0 abil. Liitfunktsioon - kui y=f(u), kus u=g(x), siis öeldakse, et y on muutuja x suhtes liitfunktsioon ja kirjutatakse y=f[g(x)] Pöördfunktsioon Paaris- ja paaritudfunktsioonid : *paaris kui iga x X korral on f(-x)=f(x), siis nimetatakse funktsiooni f paarisfunktsiooniks piirkonnas X *paaritu kui iga x X korral on f(-x)=-f(x), siis nimetatakse funktsiooni f paarituks funktsiooniks piirkonnas X Perioodiline funktsioon funktsiooni f nimetatakse perioodiliseks piirkonnas X ja arvu 0 tema perioodiks, kui f ( x + ) = f ( x ) iga x X korral.
19.Arvu absoluutväärtus 20.Muutuvad ja jäävad suurused = 3.14 e = 2,71 x,y,z 06.01 21.Lõik, vahemik, poollõik Vahemik on sirge paiknevate punktide hulk, mis asub kahe punkti vahel Lõik on sirge, mis ühendab kaht punkti A ja B (punktid A ja B kaasa arvatud) Seda lõiku tähistatakse AB Poollõik on reaalarvude hulga alamhulk (), mis koosneb kõigist reaalarvudest 22.Funktsiooni mõiste Seost, mis määrab viisi ( ), kuidas sõltuv muutuja ( ) on seotud sõltumatu muutujaga ( ) selliselt, et igale sõltumatu muutuja väärtusele () vastaks ainult üks sõltuva muutuja väärtus, nimetatakse funktsiooniks. 23.Funktsiooni argument Sõltumatut muutujat nimetatakse funktsiooni argumendiks ja seda tähistatakse tähega x 24.Funktsiooni määramis- ja muutumispiirkond ( ) Funktsiooni määramispiirkonnaks on kõikide selliste muutuja x väärtuste hulk,
TEOORIAKÜSIMUSED nr 1 1. Mis on funktsioon? Mis on sõltumatu muutuja? Mis on sõltuv muutuja? Funktsioon on eeskiri, mis määrab seose, kus igale elemendile hulgast X on vastavusse seatud üks elemented hulgast Y. Sõltumatu muutuja on x ehk argument. Sõltuv muutuja on y. 2. Mis on funktsiooni määramispiirkond, muutumispiirkond? Mis on funktsiooni loomulik määramispiirkond? Hulka X nimetatakse funktsiooni määramispiirkonnaks. Hulka f(X)={ y e Y: leidub x e X, nii et f(x)=y} nimetatakse funktsiooni muutumispiirkonnaks. Hulk Y. Funktsiooni loomulik määramispiirkond on argumendi väärtuste hulk, mille korral funktsiooni määrav eeskiri on rakendatav. 3. Millised on funktsiooni põhilised esitusviisid?
"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4
Küsimus Vastus Mis on funktsioon? Kui hulga X igale elemendile x on seatud Mis on sõltumatu muutuja, vastavusse kindel element y hulgast Y, siis sõltuv muutuja? öeldakse, et hulgal X on defineeritud funktsioon, mida tähistatakse kujul y=f(x) või y=y(x) Sõltumatu – element x (argument) Sõltuv – element y Mis on funktsiooni Argumendi x väärtuste hulka, mille puhul määramispiirkond, saab määrata funktsiooni y väärtusi vastavalt
MATA TEOORIA Teooriaküsimused nr. 1 1) Mis on funktsioon? Mis on sõltumatu muutuja, sõltuv muutuja? Eeskirja, mis seab sõltumatu muutuja igale väärtusele vastavusse sõltuva muutuja mingi ühe kindla väärtuse, nimetatakse funktsiooniks. Sõltuv muutuja - Valemis muutuja, mille väärtus sõltub ühest või enamast teisest muutujast. Sõltumatu muutuja - Valemis iga muutuja, mille väärtus ei sõltu ühestki teisest muutujast. 2. Mis on funktsiooni määramispiirkond muutumispiirkond? Mis on funktsiooni loomulik määramispiirkond? Funktsiooni määramispiirkond - valemina antud funktsiooni argumendi x selliste väärtuste hulk, mille korral on võimalik funktsiooni f(x) väärtust välja arvutada. Funktsiooni muutumispiirkond - muutuja y kõigi väärtuste hulk.
1. Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning summa tuletis on tuletiste summa. Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Tõestus:Korrutise tuletisest y'=f'(x)g(x)+f(x)g'(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on y'=f(x)*c'+f '(x)*c=0*f(x)+c*f '(x)=c*f '(x) Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon y=f(x)+g(x) Tõestus: y=f(x)+g(x) esmalt, toimides sammhaaval, tehes eraldi tehetena komponendid, saame kolmandana saame aga, et 2).*Korrutise tuletise valemi tuletus: f(x) f'(x);
1. Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning summa tuletis on tuletiste summa. Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Tõestus:Korrutise tuletisest y’=f’(x)g(x)+f(x)g’(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on Tõepoolest, valem kehtib juhul n=1. y’=f(x)*c’+f ’(x)*c=0*f(x)+c*f ’(x)=c*f ’(x) Nüüd tuleb näidata induktsioonisamm: eeldame, et valem kehtib juhul n-1 ja näitame, et sel juhul kehtib ta Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on ka n korral. Seega kehtib: diferentseeruv ka funktsioon y=f(x)+g(x)
x 1 Samas |sin | 1 ja lim x0 x2 = 0, seega A = 0. x Teoreem 4. (piirväärtuse monotoonsus) Kui punkti a teatavas ümbruses U(a) kehtib g(x) < f(x), () siis ka lim xa g(x) lim xa f(x). () Teoreem 5. (keskmise muutuja omadus) Kui punkti a mingis ümbruses g(x) f(x) h(x) ja lim xa g(x) = lim xa h(x) = A , siis eksisteerib ka piirväärtus lim xa f(x) = A. Teoreem 6. Kui f on elementaarfunktsioon ja a X, siis lim xa f(x) = f(a). 3. Ühepoolsed piirväärtused Vaatleme piirprotsesse: 1. x a, x > a lähenemine paremalt, s.o. parempoolne piirväärtus.
1. Funktsiooni diferentseeruvuse geomeetriline tõlgendus. 11. Kumerus, nõgusus, käänupunktid. Seos teist järku tuletisega. Funktsiooni diferentsiaal on kõverjoonele y = f(x) tõmmatud puutuja ordinaadi muut, mis vastab Oeldakse, et funktsiooni f(x) graafik on kumer punktis a (tapsemini punktis (a, f(a))), kui leidub punkti a argumendi numbrile x=dx. selline -umbrus, et funktsiooni f(x) graafik on argumendi x väärtustel ümbrusest (a - , a + ) allpool 2. Funktsiooni kõrgemat järku tuletised. (tapsemini, mitte ulalpool) puutujat, mis on tõmmatud punktis (a, f(a)) funktsiooni graafikule. Oeldakse,
Matemaatilise analüüsi (I) II osaeksami teooriaküsimused (Tallinnas õppivatele kaugõppijatele) 1. Funktsiooni muudu peaosa ja funktsiooni diferentsiaal. Sõltumatu muutuja diferentsiaal. Funktsiooni diferentsiaali valem. Ligikaudse arvutamise valem. Funktsiooni muut y koosneb kahest liidetavast, millest esimene [kui f ( x ) 0 ] on muudu niinimetatud peaosa, mis on võrdeline argumendi muuduga x . Korrutist f ( x ) x nimetatakse funktsiooni diferentsiaaliks ja tähistatakse sümboliga dy või df ( x ) . Sõltumatu muutuja x diferentsiaal dx ühtib tema muuduga x . dy