Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Määratud integraali ligikaudne arvutamine trapetsi valemiga. - sarnased materjalid

integraal, trapets, trapetsvalem, piirväärtus, veahinnang, newton, ristkülik, leibniz, integraalsumma, summaga, dawkins, kraav, algfunktsioon, tuletis, tükeldus, integraalide, esialgse, janno, arutamine, lähenevad, selliselt, peenem, rajaks, suurimat, keskväärtus, vaatleme, pindalad, keskpunkti, seekord, ivar, ligikaudne, tatjana, kõverjooneline
thumbnail
40
docx

Määratud integraali ligikaudne arvutamine trapetsvalemiga

Tallinna Tehnikaülikool Määratud integraali ligikaudne arvutamine trapetsvalemiga Referaat Koostas: Denis Rästas 155552IAPB Õpperühm: IAPB15 Juhendaja: Gert Tamberg Tallinn 2016 1. MÄÄRATUD INTEGRAAL........................................................................................... 3 1.1. Pindfunktsioon ja tema tuletis..........................................................................3 1.2. Kõverjoonse trapetsi pindala............................................................................4 1.3. Määratud integraali mõiste.............................................................................. 6 1.4. Määratud integraali omadused..........................

Matemaatika
7 allalaadimist
thumbnail
12
docx

Matemaatiline analüüs I 3. kollokviumi spikker

lim n→∞ S Πn= lim n→∞ ∑ f ( ξi ) xi ∈ ∈ ∈ Kui eksisteerib piirväärtus i=1 , mis ei L(g) kui f, g V (aditiivsus) b) L(cf) = cL(f) kui f V ja c R (homogeensus). max ∆ xi → 0 max ∆ xi →0 i i

Matemaatiline analüüs 1
24 allalaadimist
thumbnail
11
pdf

Määratud integraal

osalõigud xi , seda lähedasem on ligikaudne väärtus tegelikule pindalale. Pindala täpse väärtuse saame piirväärtusena n kõigi osalõikude pikkuste lähenemisel nullile: xi 0 2 n SabBA = lim f ( i ) xi (4) n xi 0 i = 1 Kui valemi (4) paremal pool olev piirväärtus eksisteerib ning ei sõltu osalõikudeks jaotamise viisist ja punktide i valikust, siis nimetatakse teda määratud integraaliks funktsioonist f(x) rajades a-st b-ni ning b n tähistatakse f ( x) dx = lim f ( ) x n i i a xi 0 i = 1 Arvu a nimetatakse integraali alumiseks rajaks

Matemaatika
66 allalaadimist
thumbnail
11
doc

Määratud integraal

osalõigud xi , seda lähedasem on ligikaudne väärtus tegelikule pindalale. Pindala täpse väärtuse saame piirväärtusena n kõigist osalõikude pikkuste lähenemisel nullile: xi 0 2 n SabBA = lim f ( i ) xi (4) n xi 0 i = 1 Kui valemi (4) paremal pool olev piirväärtus eksisteerib ning ei sõltu osalõikudeks jaotamise viisist ja punktide i valikust, siis nimetatakse teda määratud integraaliks funktsioonist f(x) rajades a-st b-ni ning b n tähistatakse f ( x) dx = lim f ( ) x n i i a xi 0 i = 1 Arvu a nimetatakse integraali alumiseks rajaks

Kõrgem matemaatika
181 allalaadimist
thumbnail
2
pdf

Matemaailine analüüs I kollokvium III spikker

a)L(f+g)= L(f) + L(g) kui f, g V (aditiivsus) b) L(cf) = cL(f) kui f V ja c R tõestust. (homogeensus). Määramata integraal on lineaarne operaator, st () + ()= () + () ja/või () = c () ( c ). 13). (Määratud integraali lineaarsuse omadus tõestusega). Lause: Määratud integraali 2).(Näidata, et määramata integraal on lineaarne operaator)

Matemaatika analüüs I
139 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

teoreemis g(x) = x saame g(b) = b, g(a) = a, g’(c) = 1 ja järeldubki (3.26). Lagrange’i teoreemi geomeetriline sisu. Lagrange’i teoreem väidab, et sileda joone lõikaja saab paralleellükkega viia selle joone puutujaks. 26. Sõnastada ja tõestada l’Hospitali reegel 0/ 0 tüüpi määramatuse korral. Olgu funktsioonid f ja g diferentseeruvad punkti a mingis ümbruses, kusjuures g’(x)  0 iga x korral sellest ümbrusest. Peale selle, olgu f(a) = g(a) = 0. Kui eksisteerib piirväärtus lim x→a f’(x) /g’(x), siis eksisteerib ka piirväärtus lim x→a f(x)/ g(x) ja kehtib valem lim x→a f(x)/ g(x)= lim x→a f’(x)/ g’(x) Tõestus. Valime suvalise punkti x  a teoreemi sõnastuses mainitud arvu a ümbrusest. Tekib kaks võimalust: 1. x > a. Siis Cauchy teoreemi põhjal leidub vahemikus (a,x) punkt c nii, et f(x) − f(a) /g(x) − g(a)=f’(c) /g’(c) 2. x < a. Jällegi, Cauchy teoreemi põhjal leidub vahemikus (x,a) punkt c nii, et f(a) − f(x) /g(a) −

Matemaatiline analüüs 1
13 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

diferentsiaali avaldise (vt. Diferentsiaali omadus 3 §3.3) d(uv) = vdu + udv Integreerime seda avaldist. Saame: Kuna d(uv) = uv + C integraalide tabeli valemi 1 põhjal, siis Konstandi C võib sellest valemist välja jätta, sest mõlemad määramata integraalidudv javdu sisaldavad juba määramata konstante. Viiesvdu võrduseteisele poolele saame Saadud avaldis kannab ositi integreerimise valemi nime 36. Funktsiooni integraalsumma ja määratud integraali mõisted. Integraalsumma mõiste. Olgu antud funktsioon f, mis on pidev lõigul [a, b]. Jaotame lõigu [a, b] n osalõiguks punktidega x0, x1, x2, . . . , xn, kusjuures a = x0 < x1 < x2 < . . . < xn = b. Tähistame järjekorras i-nda osalõigu pikkuse sümboliga xi , st Valime igal osalõigul [xi-1, xi] ühe punkti pi. Moodustame summa: Seda summat nimetatakse funktsiooni f integraalsummaks lõigul [a, b]. Määratud integraali mõiste.

Matemaatiline analüüs I
120 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

|MN| = f(x) - kx - b. on ab F(x)dx. Seega,kui materiaalne objekt liigub punktist a punkti b ja sealt tagasi punkti a,on kogu tehtud töö võrdne Seega võrduse (4.3) põhjal summaga Lim[f(x) - kx - b] = 0 (4.4) ba F(x)dx + ab F(x)dx. Kuid kunasel juhul on kogu läbitud teepikkus võrdne nulliga, kehtib võrdus baF(x)dx + x. abF(x)dx = 0.

Matemaatiline analüüs 1
66 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

. . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.4 Cantori teoreem üksteisesse sisestatud lõikudest . . . . . . . . . . . . 38 2.2.5 Reaalarvu kümnendesitus . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.6 Arv e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3 Osajadad. Ülemine ja alumine piirväärtus . . . . . . . . . . . . . . . . . . . 43 2.3.1 Jada osapiirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3.2 Ülemine ja alumine piirväärtus . . . . . . . . . . . . . . . . . . . . . 43 2.3.3 Ülemise ja alumise piirväärtuse omadused . . . . . . . . . . . . . . . 47 2.4 Aritmeetilised ja kaalutud keskmised. Stolzi teoreem

Algebra I
8 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

b-a Korrutades b-a-ga saame valemi f(b)-f(a)=f'(c)(b-a) Lagrange'i teoreem väidab, et sileda joone lõikaja saab paralleellükkega viia selle joone puutujaks. 26. Sõnastada ja tõestada l'Hospitali reegel 0 0 tüüpi määramatuse korral. Sõnastus: Olgu funktsioonid f ja g diferentseeruvad punkti a mingis ümbruses, kusjuures g'(x)0 iga x korral sellest ümbrusest. Peale selle olgu f '( a) f ( a )=f ( a )=0 Kui eksisteerib piirväärtus lim , siis eksisteerib ka piirväärtus x a g ' (a) f ( a) lim ja kehtib valem x a g(a) f (x) f ' (x ) lim =lim x a g( x ) x a g ' (x) Tõestus: Valime suvalise punkti xa teoreemi sõnastuses mainitud arvu a ümbrusest. Tekib kaks võimalus: 1.x>a Siis Cauchy teoreemi põhjal leidub vahemikus (a,x) punkt c nii, et f ' (c ) f ( b )-f ( a ) = g ' (c) g ( b )-g ( a ) 2

Matemaatika
9 allalaadimist
thumbnail
14
doc

Kollokvium III

1. Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata integraal kui tuletise ja diferentsiaali pöördoperaator. Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja tähistatakse st .

Matemaatiline analüüs
107 allalaadimist
thumbnail
25
doc

Määratud integraal ja selle rakendused

avaldubki külgede korrutisega... Ametlikult öeldes: Kui f(x) 0 , siis integraalne alamsumma võrdub arvuliselt kõvera all oleva murdjoonega piiratud seesmise treppkujundi AC0N1C1N2Cn-1NnB pindalaga. MIDA TÄHELDAME, KUI VAATAME INTEGRAALSET ÜLEMSUMMAT? Kui f(x) 0, siis integraalne ÜLEMsumma võrdub arvuliselt kõvera peal oleva murdjoonega piiratud ,,välimise treppkujundi" (viirutatud kujundi) pindalaga. Nii hakkabki väljenduma vaikselt integraal kui pindala , kkdw jms arvutamise vahend b) Integraalse alam ­ja ülemsumma omadusi Olgu funktsioon f(x) pidev lõigul [a, b] ja x n vastava lõigu alamlõigu pikkust iseloomustavad argumendi muudud 1) Kuna igal alamlõigul on funktsiooni vähim väärtus alati kas väiksem funktsiooni suurimast väärtusest või sellega võrdne, siis ka integraalne alamsumma on alati kas väiksem ülemsummast või siis sellega võrdne: ehk:

Matemaatiline analüüs
221 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

f(x)-f(x1) 0 Vaatleme juhtu, kus funktsioonil on lokaalne maksimum, mistõttu peab kehtima võrratus järelikult On võimalik võtta -i -st paremalt või vasakult. Võtame ta vasakult. Jagame võrratuse selle negatiivse arvuga. Negatiivse arvuga jagamine muudab võrratust, Võrratus jääb ka siis kehtima, kui võtta temast piirväärtus piirprotsessis . Seega tuletise definitsiooni põhjal: Võtame -i -st paremalt Ja piirväärtuse Järeldub, et ja Mis tähendab, et see on võimalik ainult siis, kui 3. Sõnastada ja tõestada Rolle'i teoreem. Rolle'i teoreemi geomeetriline sisu. Sõnastada ja tõestada Cauchy teoreem. Sõnastada ja tõestada Lagrange'i teoreem. Lagrange'i teoreemi geomeetriline sisu. a

Matemaatiline analüüs 2
99 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs KT2

Kaldasümptoodid. Need on sirged, mis ei ole paralleelsed y-teljega. Asümptoodi võrrand on y=kx + b, kus k on asümptoodi tõus. Kaldasümptoodi erijuht on horisontaalasümptoot, mis on paralleelne x-teljega. Tõus k on sellisel juhul võrdne nulliga, st asümptoodi võrrand on y = b. 29. ALGFUNKTSIOONI DEFINITSIOON. Sõnastada teoreem algfunktsioonide uldavaldise kohta (tõestust ei kusi). FUNKTSIOONI MÄÄRAMATA INTEGRAAL ja selle geomeetriline sisu. Funktsiooni F nimetatakse funktsiooni f algfunktsiooniks hulgas D, kui iga x kuulub D korral kehtib võrdus F (x) = f(x). Teoreem Kui F on funktsiooni f algfunktsioon hulgas D, siis kõik funktsiooni f algfunktsioonid hulgas D avalduvad kujul F + C, kus C on suvaline konstant. Määramata integraali mõiste. Funktsiooni f algfunktsioonide üldavaldist F(x)+C, kus C on konstant, nimetatakse funktsiooni f määramata integraaliks ja tähistatakse f(x)dx

Matemaatiline analüüs
231 allalaadimist
thumbnail
18
pdf

Määratud integraal

5 M¨ a¨ aratud integraal 5.1 M¨ a¨ aratud integraali mo ~iste Olgu funktsioon y = f (x) m¨a¨aratud l~oigul [a; b]. Jaotame l~oigu [a; b] suvalisel viisil punktidega x1 , x2 , ... xn-1 n osal~oiguks, kusjuures a = x0 < x1 < x2 < . . . < xk-1 < xk < . . . < xn = b. Tekkinud osal~oigud on [xk-1 ; xk ], kus k = 1, 2, . . . , n. T¨ahistagu xk = xk - xk-1 k-nda osal~oigu pikkust.

Matemaatiline analüüs 2
176 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

(f(x)-kx-b)=0, millest saame, et k=lim x+ f(x)/x ^ b= lim x+(f(x)-kx). Kui uuritaval juhul vaadeldavad piirväärtused suuruste k ja b leidmiseks eksisteerivad, siis eksisteerib kaldas., kui ei, siis mitte. 35. Määramata integraali omadused Selles punktis tõestame kolm määramata integraali omadust ja kasutame neid omadusi integreerimisel. Omadus 1. [ f ( x ) + g ( x )]dx = f ( x )dx + g ( x )dx , s.t. kahe funktsiooni summa määramata integraal on võrdne nende funktsioonide määramata integraalide summaga. Kaks määramata integraali on võrdsed, kui nad erinevad teineteisest ülimalt konstandi võrra ehk nende tuletised on võrdsed. Näitame seda. Võttes vasakult poolt tuletise, saame punkti 4.1.1 järelduse 1 abil, et ( [ f ( x ) +g ( x )]dx ) = f ( x ) +g ( x ) . Paremalt poolt tuletist võttes kasutame sama järeldust ja tuletise vastavat omadust:

Matemaatiline analüüs
350 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

Asümptoodi võrrand on y = kx + b, kus k on asümptoodi tõus. Kaldasümptoodi erijuht on horisontaalasümptoot, mis on paralleelne x-teljega. Tõus k on sellisel juhul võrdne nulliga, st asümptoodi võrrand on y = b. f (x )  k= xlim →∞ x lim [f ( x )−kx ] b= x→∞ 26. Algfunktsiooni definitsioon. Sõnastada teoreem algfunktsioonide üldavaldise kohta (tõestust ei küsi). Funktsiooni määramata integraal ja selle geomeetriline sisu. Funktsiooni F nimetatakse funktsiooni f algfunktsiooniks hulgas D, kui iga x ∈ D korral kehtib võrdus F’(x) = f(x).  Kui F on funktsiooni f algfunktsioon hulgas D, siis kõik funktsiooni f algfunktsioonid hulgas D avalduvad kujul F + C, kus C on suvaline konstant. Funktsiooni f algfunktsioonide üldavaldist F(x)+C, kus C on konstant,

Matemaatika
14 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs referaat - Määratud integraali ligikaudne arvutamine Simpsoni valemiga. Veahinnangud. Näited

i 1 90 i 1 90 90  2n  180(2n) 4 . Seega on saadud hinnang. Näited 1 dx  0 1  x3 1. Leida integraal Simpsoni valemiga jaotades lõigu [0,1] kümneks osaks: 5 1 3   f ' ' ( x)   (1  x 3 ) 4 x (4  5 x 3 ), f ( x)  (1  x 3 ) 2

Matemaatiline analüüs 1
22 allalaadimist
thumbnail
2
doc

Mat analüüs 1

1. Määratud integraali mõiste. Olgu antud f(x) [a;b] ja geom. tõlgenduse jaoks f(x)>=0. a=x0 piirväärtus 0 Sn'ist ja see ei sõltu kuidas on lõik [a;b] jaotatud osalõikudeks ega sellest kuidas on valitud (k) osalõikudel, siis seda piirväärtust nim. f(x) määratud b integraaliks rajades a'st b'ni ja tähistatakse f ( x)dx a 2. Määratud integraali põhiomadused. b n f ( x)dx = lim f (k )xk

Matemaatiline analüüs
318 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

Liitfunktsioon koosneb mitmest funktsioonist. Pöördfunktsioon Olgu y=f(x) mingi funktsioon, kus x on argument ja y funktsioon.Kui lahendada see võrrand x suhtes, samme x=p(y). Nende graafikud on samad. Tuleb vahetada argumendi ja funktsiooni tähistused saame funktsiooni y=p(x) Pöördfunktsiooni graafik on sümmeetriline algfunktsiooni graafikuga esimese ja kolmanda veeerandi nurgapoolitaja suhtes.(y=x2 y= -+ x ) Piirväärtus Lõpmata väike suurus, selle omadused. Muutuvat suurust, mille piirväärtus on null, nimetakse lõpmata väikseks. Omadused: Lõpliku arvu lõpmata väikeste suuruste summa on lõpmata väike suurus Tõkestatud muutuva suuruse ja lõpmata väikese suuruse korrutis on lõpmata väike suurus Lõpliku arvu lõpmata väikeste suuruste korrutis on lõpmata väike suurus. Arv e Arv e=2,71828... on irratsionaalarv, selle väärtust ei saa täpselt esitada. Logaritm alusel e, st logaritmi logex nim naturaallogaritmiks ja tähistatakse lnx. Piirväärtuse arvutamine

Matemaatiline analüüs
258 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 29 3.5 Põhilised elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SISUKORD 3.6 Elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Jadad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Funktsiooni piirväärtus ja pidevus 37 4.1 Jada piirväärtus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Funktsiooni piirväärtuse mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Ühepoolsed piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Funktsiooni piirväärtuse omadused . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

järgnev. Muutuva suuruse piirväärtuse üldine definitsioon on järgmine: Olgu x järjestatud muutuv suurus. Arvu a nimetatakse muutuva suuruse x piirväärtuseks, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad arvu a ümbrusesse (a - , a + ), st rahuldavad võrratust |x - a| < . Kui arv a on suuruse x piirväärtus, siis öeldakse, et suurus x läheneb arvule a ehk koondub arvuks a ja kirjutatakse x a või lim x = a . Muutuv suurus x läheneb vasakult arvule a, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad poollõiku (a - , a]. Sellisel juhul kirjutatakse x a- Muutuv suurus x läheneb paremalt arvule a, kui iga kuitahes väikese positiivse arvu korral saab

Matemaatiline analüüs
484 allalaadimist
thumbnail
82
docx

Matemaatiline analüüs I kordamine eksamiks

Kui h (x) := x2 + 1 ja f (x) :=(x – 1)1/2, siis h ◦ f (x) = h (f (x)) = (f (x)) 2 + 1 = (x − 1) + 1 = x iga x ∈ [1,∞) korral. Seega h ◦ f : [1,∞) → [1,∞) on identsusfunktsioon intervallis [1,∞)  Kui h (x) := x2 + 1 ja f (x) :=(x – 1)1/2, siis h ◦ f (x) = h (f (x)) = (f (x))2 + 1 = (x − 1) + 1 = x iga x ∈ [1,∞) korral. Seega h ◦ f : [1,∞) → [1,∞) on identsusfunktsioon intervallis [1,∞) . 7. Jada piirväärtus, selle ühesus Arvjada mõiste - Arvjadaks nimetatakse funktsiooni, mille määramispiirkonnaks x  x (n), n  1,2,.... on kõigi naturaalarvude hulk N. Defineerida jada piirväärtus ning koonduvad ja hajuvad jadad, tuua näiteid koonduvatest ja hajuvatest jadadest. Arvu a nimetatakse jada (xn) piirväärtuseks (kirjutame kas või xn → a), kui ∀ε > 0 ∃N ∈ IN : n ≥ N ⇒ |xn − a| < ε.

Matemaatiline analüüs
54 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

monotoonsed funktsioonid, tõkestatud funktsioonid). Tuua näiteid. .............................................. 7 6. Elementaarsed põhifunktsioonid, nende määramispiirkonnad, põhiomadused ja graafikud. .....7 7. Liitfunktsiooni mõiste, liitfunktsiooni määramispiirkond. Tuua näiteid. ....................................7 8. Pöördfunktsiooni mõiste; pöördfunktsiooni määramis- ja muutumispiirkond. Tuua näiteid. .....7 9. Muutuva suuruse piirväärtus, tõkestamatult kasvav ja tõkestamatult kahanev suurus. ...............8 10. Funktsiooni piirväärtus. Funktsiooni vasak- ja parempoolne piirväärtus. .................................9 11. Tõkestamatult kasvav funktsioon, tõkestamatult vähenev funktsioon. ................................... 10 12. Funktsiooni piirväärtuse aritmeetiliste tehetega seotud omadused. ........................................ 10 13

Matemaatika
118 allalaadimist
thumbnail
3
docx

Kollokvium integraal

1. Määramispiirkond; 2. Graafiku sümmeetria; 3. Perioodilisus ( paaris või paaritu); 4. Katkevuspunktid ja pidevuspiirkonnad; 5. Nullkohad ja negatiivsus- ja positiivsuspiirkonnas; 6. Lokaalsed ekstreemumid ja range monotoonsuse piirkond; 7. Graafiku käänupunktid ja kumerus- ning nõgususpiirkonnad; 8. Graafiku püstasümptoodid; 9. Graafiku kaldasümptoodid; 10. Skitseerime graafiku. Integraal Def1 Öeldakse, et funktsiooni F ( x ) on funktsiooni f ( x ) algfunktsioon hulgal X, kui iga x X korral . Lause1 Kui funktsioon F1 ( x ) ja F2 ( x ) on funktsiooni f ( x ) algfunktsioonid, siis leidub selline reaalarv c, nii et F1 ( x ) = F2 ( x ) + c. Def2 Avaldist kujul F ( x ) + C, kus F ( x on funktsiooni f ( x ) mingi algfunktsioon ja C on

Matemaatiline analüüs
92 allalaadimist
thumbnail
7
pdf

Määramata integraalid

Õppekirjandus: [1] Abel, E., Kokk, K. Kõrgem matemaatika (Harjutusülesanded). EMS, Tartu, 2003. [2] Lõhmus, A., Petersen, I., Roos, H. Kõrgema matemaatika ülesannete kogu. "Valgus", Tallinn, 1982. [3] Loone, L., Soomer, V. Matemaatilise analüüsi algkursus. "TÜ Kirjastus", Tartu, 2006. [4] Tõnso, T., Veelmaa, A. Matemaatika XII klassile. "Mathema", Tallinn, 1995. [5] Piskunov, N. Diferentsiaal- ja integraalarvutus. "Valgus", Tallinn, 1981. 3.1 Algfunktsioon ja määramata integraal Kursuse eelnevas osas käsitlesime ühe muutuja funktsiooni y = f (x) tuletise y = f (x) leid- misega seotud küsimusi. Teame, et funktsiooni f (x) = 2x tuletis on f (x) = 2 ja funktsiooni f (x) = sin x tuletis on f (x) = cos x. Vaatleme nüüd vastupidist ülesannet. Olgu antud funktsioon y = f (x). Kuidas leida sellist funktsiooni y = F (x), mille tuletiseks oleks antud funktsioon y = f (x), st kuidas leida funktsiooni y = F (x), kui on teada, et F (x) = f (x)?

Kõrgem matemaatika
172 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
179 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
11 allalaadimist
thumbnail
28
pdf

Kolmas kollokvium

Teooria 3 1.Riemanni summa. Määratud integraali (Riemanni mõttes) definitsioon. Riemanni summa lõigul [a,b] (f) = ∑ . Kui eksisteerib piirväärtus = ∑ , mis ei sõltu [a,b] osalõikudeks jaotamise viisist ega punktide valikust, siis öeldakse, et funktsioon f(x) on integreeruv (Riemanni mõttes) lõigul [a,b] ning seda piirväärtust nimetatakse funktsiooni f(x) määratud integraaliks ehk Riemanni integraaliks lõigul [a,b] ja seda tähistatakse ∫ . 2. Darboux ülem-ja alamsummad. Riemanni summa ja Darboux’ summade seos. Olgu funktsioon f tõkestatud lõigul [a,b]

Matemaatika
24 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

   Y   ;  .  2 2 Joon. 19 29  x , kui x  0 18. Funktsioon y  x ehk y   (joon. 20), paarisfunktsioon.   x , kui x  0 Joon. 20 30 4.3 Arvjada piirväärtus Olgu arvjada üldliige an . Arvu a nimetatakse arvjada piirväärtuseks, kui iga selle arvu

Algebra I
60 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahuldab tingimust PA, funktsiooni väärtus f(P) läheneb arvule b Mitmemuutuja funktsiooni pidevus Olgu antud mitmemuutuja funktsioon z=f(P) määramispiirkonnaga D. Funktsiooni f nimetatakse pidevaks punktis A kui AD; eksisteerib piirväärtus lim f ( P ) ; lim f ( P ) = f ( A) PA PA

Matemaatiline analüüs 2
511 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

x a või f(x) A, kui x a. Näide . Tõestame,et lim x1 (2x + 1) = 3. Olgu > 0 suvaline.Siis f(x) - A=(2x+1)-3 = 2x-1< , kui x-1< . Seega võttes = , näeme, et definitsiooni 1nõuded on täidetud. 2 2 Definitsioon 2. Öeldakse, et funktsioonil f on lõpmatu piirväärtus piirprotsessis . x a, kui iga arvu N > 0 korral leidub arv > 0, nii et f(x) > N ( f(x) < -N ), alati kui 0 < | x - a | < . Kirjutame lim xa f(x) = ( vastavalt lim xa f(x) = - ). 2. Funktsiooni piirväärtuse omadused Teoreem 2. Kui eksisteerivad lõplikud piirväärtused lim xa f(x) = A ja lim xa g(x) = B, siis 1) lim xa [ f(x) ± g(x)] = A ± B, 2) lim xa [ c f(x)] = c A, 3) lim xa [ f(x) g(x)] = A B,

Matemaatiline analüüs i
687 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun