Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon
1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. Kõrgemat jär harilikud dvid: Üldkuju: F(x, y, y', y'', ..., y (n)) = 0 (1), kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y (n-1))(2) (( F(x,y, y')=0 (1) ja y' =f(x;y) (2))) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. ***{y(x0) = y0 {y'(x0) = y0(1) {... {y(n-1)(x0) = y0(n-1) ***Lahendi olemasolu : kõrgemat järku DV lahend funktsioon, mille asendamisel võrrandisse saame samasuse F(x, y(x), y'(x), y''(x), ..., y(n)) 0 x. Peano teoreem e. olemasolu teoreem: olgu funktsioon f pidev muutujate x, y, y', y'', ..., y(n-1) piirkonnas D, siis iga punkt (x0, y0, y0(n-1) ) D korral on
Hariliku Dv Def. Olgu F-n F(x,y,z) määratud xyz ruumi piirkonnas G. Vahemikus (a,b) määratud funktsioon y=y(x) nim. Võrrandi F(x,y,y`)=0 lahendiks, selles vahemikus, kui ta on pidevalt dif-uv ning (x,y(x),y`(x)) kuulub hulka G ja F(x,y(x),Y`(x))=0 x (a , b) Cauchy ülesanne 1-järku võrrandi jaoks seisneb sellise lahendi y(x) leidmises, mis rahuldab algtingimust y( x0 ) = y0 Peano teoreem Olgu f(x,y) pidev kahemuutuja f-n piirkonnas D. Siis läbi iga punkti (x0,y0) D kulgev vähemalt 1 DV integraalkõver. On tuntud ka Dv lahendi olemasomu teoreemina. Cauchy teoreem - Olgu f(x,y) pidev piirkonnas D ning olgu tal selles piirkonnas f ( x, y ) olemas pidev osatuletis y . Siis läbib igat punkti (x0,y0) kuulub hulka D kulgeb parajasti üks DV integraalkõver. On tuntud DV lahendi ühesuse teoreemina.
MP={x R;f(x)=y Y on lõplik arv (f(x)<) *Funkts., kui kujutis on reegel, mille abil vastavus määratakse->kui reegel teada-> võime öelda et funkts esitatud. Funktsioon esit reegli kirj kaudu *Kuidas esitada funktsioone ?=> * joon määrab funkts, +graafikul nähtavad paljud funkts om., -funkts´i väärtust saame määrata ligikaudu 3.Eriomadustega funktsioone 1.ühesed ja mitmesed f-d: *Def. y= f(x), mille MP=X, ühene sel korral, kui igale x väärtusele vastab parajasti üks f-ni y=f(x) väärtus NT:y=x 2 (lineaarliige määrab telje sihi) *Def. y=f(x), MP=X, mitmene kui tekib rohkem kui 1 f-n. leiduvad niisugused x väärtused, mille korral y=f(x) NT: y=± x , y2=x (x telje sihiline) *lõpmata mitmene on y=arcsinx 2.Paaridf-n *Def. Y=f(x) on paarisf-n juhul kui f(-x)=f(x) x MP graafik sum y telje suhtes, Nt y=x 2 =(-x)2 3. Paaritu f- n- sel korral paaritu kui f(-x)= -f(x), x MP, graafik sümm 0-punkti suhtes 4
. 2.Regulaarsed ja normaalsed piirkonnad. Kaksikintegraal. Kahekordse integraali arvutamine kaksikintegraali abi. Piirkonda D xy-tasandil nimetatakse regulaarseks, kui tema raja ┌ koosneb lõpilkust arvust pidevatest joontest tüüpi y=φ(x) või x=ψ(y). Regulaarset piirkonda D = {(x; y) | (a ≤ x ≤ b) ᴧ (φ(x) ≤ y ≤ ψ(x))} kus funktsioonid φ(x) ja ψ(x) on mingid pidevad funktsioonid lõigul [a;b] nimetatakse normaalseks piirkonnaks xy-tasandil (x-telje suhtes) Olgu funktsioon f(x,y) pidev piirkonnas D. Vaatleme avaldist , mida nimetame funktsiooni f(x,y) kaksikintegraaliks üle piirkonna D. Selles avaldises arvutatakse esmalt sulgudes olev integraal, kusjuures y on integreerimismuutujaks, x aga loetakse konstantseks. Integreerides saadakse argumendi x pidev funktsioon: .
6. Kui eksisteerib integraal ja piirkonnas D kehtib võrratus m<=f(P)<=M, siis . 2.Regulaarsed ja normaalsed piirkonnad. Kaksikintegraal. Kahekordse integraali arvutamine kaksikintegraali abi. Piirkonda D xy-tasandil nimetatakse regulaarseks, kui tema raja koosneb lõpilkust arvust pidevatest joontest tüüpi y=(x) või x=(y). Regulaarset piirkonda D = {(x; y) | (a x b) ((x) y (x))} kus funktsioonid (x) ja (x) on mingid pidevad funktsioonid lõigul [a;b] nimetatakse normaalseks piirkonnaks xy-tasandil (x-telje suhtes) Olgu funktsioon f(x,y) pidev piirkonnas D. Vaatleme avaldist , mida nimetame funktsiooni f(x,y) kaksikintegraaliks üle piirkonna D. Selles avaldises arvutatakse esmalt sulgudes olev integraal, kusjuures y on integreerimismuutujaks, x aga loetakse konstantseks. Integreerides saadakse argumendi x pidev funktsioon: . Seda funktsiooni integreerime x järgi rajast a kuni rajani b:
DV II teooriatöö kordamisküsimused 1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. V: Kõrgemat järku harilikud diferentsiaalvõrrandid: Üldkuju: F(x, y, y', y'', ..., y(n)) = 0, kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y(n-1)) (1) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. {y(x0) = y0 {y'(x0) = y0(1)
n Kõrgemat järku harilik DV-Üldkuju(F,x,y,y’,y’’,.., y ),kus x-sõltumatu muutuja,y=y(x) otsitav funkt ja y’.. ' n x , y , y , .. y on otsitava fun tuletised.Lahendiks y=y(x)>y=y(x,C1,C2,..,Cn). Normkuju: y =f ¿ ,
.. , a>0 n=0 Geomeetrilise rea koonduvus Geomeetriline rida qn=1+q+ q 2+... koondub, kui |q|<1 n=0 Harmoonilise rea koonduvus Harmooniline rida n1a =1+ 21a + 31a +... koondub parajasti siis, kui a>1 n=0 Arvrea absoluutne ¿ u(n)¿ koonduvus u (n) Rida nimetatakse absoluutselt koonduvaks, kui rida ¿ n=0
ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..
On eeldused ja järeldused. Teoreetiline analüüs (statistilised probleemid jäetakse kõrvale) *Mat majteaduse mudeli puhul ei arvestata kõiki aspekte, sest see on võimatu, valitakse põhifaktorid (mida asendavad muutujad) ja antakse ette seosed (võrranditena). Matemaatiline mudel koosneb võrranditest, mis kirjeldavad faktorite käitumist ja seovad muutujaid omavahel -> analüütilised eeldused -> loogilised järeldused. 3. Funktsiooni mõiste: Kui muutuja x igale väärtusele hulgas X on vastavusse seotud muutuja y väärtus, siis öeldakse, et hulgal X on määratud funktsioon. y=f(x) eeskiri; üksühene vastavus. Liigid: a) konstantne f. N. y=f(x)=7 b) polünoomid y=a0+a1x+a2x2+...+anxn n=0 konstantne f., n=1 linearne f., n=2 ruutf. (0;a0) a1-tõus c) ratsionaalf. N murrud d) mittealgebralised f. n juured, astmed, exp, log, trig. 4. Tasakaalu mõiste, turu tasakaalu mudelid (1.ja 2. ning n hüvisega)
..,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahuldab tingimust PA, funktsiooni väärtus f(P) läheneb arvule b Mitmemuutuja funktsiooni pidevus Olgu antud mitmemuutuja funktsioon z=f(P) määramispiirkonnaga D. Funktsiooni f nimetatakse pidevaks punktis A kui AD; eksisteerib piirväärtus lim f ( P ) ; lim f ( P ) = f ( A) PA PA
1 ÜHE MUUTUJA FUNKTSIOON. TEMA MÄÄRAMISPIIRKOND DEFINITSIOON 1. Kui muutuja x igale väärtusele hulgast X on mingi eeskirja f abil vastavusse seatud lõplik reaalarv y, siis öeldakse, et hulgal X on määratud FUNKTSIOON ja seda tähistatakse y = f(x). DEFINITSIOON 2. Muutuja x väärtuste hulka, mille puhul f(x) väärtus on lõplik, nimetatakse funktsiooni y = f(x) MÄÄRAMISPIIRKONNAKS. X = { x R; f(x) väärtus on lõplik}. PÕHILISED ELEMENTAARFUNKTSIOONID: 1. Astmefunktsioonid: y = x , Q; 2. Eksponentfunktsioonid: y = ax, a > 0, a 1; 3. Logaritmfunktsioonid: y = loga x, a > 0, a 1; 4. Trigonomeetrilised funktsioonid: y = sin x, y = cos x, y = tan x, y = cot x; 5. Arkusfunktsioonid: y = arcsin x, y = arccos x,
ruumala, mis pealt on piiratud funktsiooni z=f(x,y) graafikuga, alt funktsiooni z=g(x,y) graafikuga ja küljelt Definitsioon 2. Öeldakse, et kahe muutuja funktsioonil on punktis P2(x2, y2) lokaalne miinimum, kui sellel ∭∆ 𝑓(𝜌 𝑐𝑜𝑠𝜑, 𝜌 𝑠𝑖𝑛𝜑, 𝑧)𝜌 𝑑𝜑 𝑑𝜌𝑑𝑧 .Vaatleme üleminekut sfäärkoordinaatidele, kus teisendus on kujul
MITME MUUTUJA FUNKTSIOON 1. Punkti ümbrus. Kinnine ja lahtine piirkond. Mitme muutuja funktsioon ja selle määramispiirkond. Def. 1.1. ( 0 0 )0 Punkti P x1 , x 2 ,..., x n ümbruseks n-mõõtmelises ruumis R n nimetatakse punktide hulka { U ( P ) , mis rahuldavad tingimust U ( P ) = Q( x1 , x 2 ,..., x3 ) R n ( P, Q ) < , kus } ( P, Q ) = PQ = (x1 - x10 ) + (x 2
4) - . . . . -.: 2, N . 4) . (x,y)S - .1: D . . - Rn . . . - . . . r ×r f(x,y)g(x,y), - . . . . . . . - yR 1)D - N= 1 2 . f ( x, y )dxdy g ( x, y r1 × r2 . . . - D=D(f) n2) y . . - 3) -
n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarväli. Def: funktsiooni w=f(P), P Rn MP-ks nim nende punktide hulka, mille puhul funktsiooni väärtus on lõplik. MP={P(x1,...,xn) Rn | w=f(P) f(x1,...,xn) < } Rn
MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2
Funktsioon on pidev vasakult punktis x0, kui (9.2)` lim f ( x) = f ( x 0 )
x x0 - 0
Definitsioon 2 Funktsioon y =f(x) on pidev antud vahemikus (lahtine hulk), kui ta on pidev selle
vahemiku igas punktis
Funktsioon y =f(x) on pidev antud lõigul [a, b] , kui ta on pidev vahemikus ]a, b[ , on pidev
paremalt punktis a ja on pidev vasakult punktis b
Elementaarfunktsioonid on pidevad kogu oma määramispiirkonnas
Definitsioon 3 Funktsiooni y=f(x) piirväärtus vasakult xx0 märgitakse lim f ( x) = b
x x0 - 0
seejuures xx0 nii, et x
Funktsioon on pidev vasakult punktis x0, kui (9.2)` lim f ( x) = f ( x 0 )
x x0 - 0
Definitsioon 2 Funktsioon y =f(x) on pidev antud vahemikus (lahtine hulk), kui ta on pidev selle
vahemiku igas punktis
Funktsioon y =f(x) on pidev antud lõigul [a, b] , kui ta on pidev vahemikus ]a, b[ , on pidev
paremalt punktis a ja on pidev vasakult punktis b
Elementaarfunktsioonid on pidevad kogu oma määramispiirkonnas
Definitsioon 3 Funktsiooni y=f(x) piirväärtus vasakult xx0 märgitakse lim f ( x) = b
x x0 - 0
seejuures xx0 nii, et x
ln y=x → y =e x Kirjut . kujul f ( x , y )=f 1, ( ) x Diferentsiaalvõrrandid: DV järk on DV-s esinevate tuletiste kõrgeim järk. y dy du Harilikud DV-d: otsitav funktsioon y on ühe muutuja Asendus u= ehk y =ux → =u+ ∙ x 1 1 x dx dx =x−α funktsioon. α x α Osatuletisega DV-d: √x=x otsitav α f-n on mitme muutuja funktsioon.
"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4
11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33
. . . . . . . . . . . . . . . . . . . . 18 2.5 Lineaarvõrrandisüsteemid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 Cramer'i peajuht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 Gauss'i elimineerimise meetod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.8 Süsteemi üldlahend ja erilahend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.9 Homogeenne lineaarvõrrandisüsteem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Funktsioonid ja jadad 25 3.1 Funktsiooni mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Üksühesus ja pealekujutus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Liitfunktsioon . . . . . . . . . . . . . . . . . . . . . .
Lubatavad elementaarteisendused lineaarse võrrandisüsteemi laiendatud maatriksiga. Võimalike lahendite arv. Lineaarse võrrandisüsteemi üld- ja erilahend. Lineaarne vôrrandisüsteem Olgu antud n muutujat, x1, x2, x3,...,xn ja arvud a1, a2, a3, ..., an, saame muutujate suhtes lineaarse vôrrandi a1x1 + a2x2 + ... + anxn = b, kui meil on m lineaarset vôrrandit samade muutujate suhtes, saame lineaarse vôrrandisüsteemi. Lineaarse vôrrandsüsteemi normaalkuju (a kordaja, x muutuja, b vabaliige): a11 x1 + a12 x 2 +... + a1n x n = b1 a x + a x +... + a x = b 21 1 22 2 2n n 2 .............................................. a m1 x1 + a m 2 x 2 +... + a mn x n = bm Lineaarse vôrrandsüsteemi laiendatud maatriks moodustatakse normaalkujul vôrrandisüsteemi elementidest ja vabaliikmeid on eraldatud püstkriipsuga. Lubatavad elementaarteisendused: 1) Rea korrutamine nullist erineva arvuga 2) Ridade vahetamine
x f X= 2 , F= 2 . ... ... x f n n Kui m < n , siis on alamääratud süsteem, osa tundmatuid jääb määramata, kui m > n , siis on ülemääratud süsteem, lahend võib üldse puududa, kui m = n , siis on üks lahend kui det A 0 . Homogeense võrrandsüsteemi vabaliige on null ehk AX = 0 . Homogeensel võrrandsüsteemil esineb alati triviaalne lahend X = 0 . Homogeensel võrrandsüsteemil on m = n korral mittetriviaalsed lahendid ainult juhul, kui det A = 0 . Kui homogeensel võrrandsüsteemil on üheks mittetriviaalseks lahendiks x1 bx1
Kordamisküsimused 1. Funktsioon - Olgu X mingi reaalarvude hulk. Kui muutuja x igale väärtusele hulgas X vastab muutuja y üks kindel väärtus, siis öeldakse, et y on muutuja x funktsioon. Funktsiooni esitusviis: tabelina, graafikuna. Funktsiooni analüütiline esitusviis on ilmutatud, ilmutamata, parameerilisel kujul. 2. Funktsioonide liigitus (paaris- ja paaritud funktsioonid, perioodilised funktsioonid, monotoonsed funktsioonid, tõkestatud funktsioonid). Tuua näiteid. paarisfunktsioon - Funktsiooni y = f (x) nimetatakse paarisfunktsiooniks, kui f (-x) = f (x) Paarisfunktsiooni graafik on sümmeetriline y-telje suhtes
Funktsiooni y = f ( x ) , x X võib alati esitada parameetrilised kujul, näiteks: t T = X y = f (t) Vastupidine esitus, s.o. üleminek parameetriliselt kujult ilmutatud kujule ei ole alati teostatav. 5. Esitus ilmutamata kujul, s.o. võrrandi F ( x, y ) = 0 abil. Liitfunktsioon - kui y=f(u), kus u=g(x), siis öeldakse, et y on muutuja x suhtes liitfunktsioon ja kirjutatakse y=f[g(x)] Pöördfunktsioon Paaris- ja paaritudfunktsioonid : *paaris kui iga x X korral on f(-x)=f(x), siis nimetatakse funktsiooni f paarisfunktsiooniks piirkonnas X *paaritu kui iga x X korral on f(-x)=-f(x), siis nimetatakse funktsiooni f paarituks funktsiooniks piirkonnas X Perioodiline funktsioon funktsiooni f nimetatakse perioodiliseks piirkonnas X ja arvu 0 tema perioodiks, kui f ( x + ) = f ( x ) iga x X korral.
u v v u u = v v2 = v x v2 f ( x) dx = ln f ( x) + c Parameetrilisel kujul antud funktsiooni tuletis, kus x = (t) ja y = (t) yt ( y x ) t y txt y t xt y x = ja y x = y x = xt xt ( xt ) 3 Nr Diferentseerimise valemid Diferentseerimise valemid Integreerimise valemid Lihtfunktsioon Liitfunktsioon 1 (C)'=0 0 dx = c
u v v u u = v v2 = v x v2 f ( x) dx = ln f ( x) + c Parameetrilisel kujul antud funktsiooni tuletis, kus x = (t) ja y = (t) yt ( y x ) t y txt y t xt y x = ja y x = y x = xt xt ( xt ) 3 Nr Diferentseerimise valemid Diferentseerimise valemid Integreerimise valemid Lihtfunktsioon Liitfunktsioon 1 (C)'=0 0 dx = c
2. iga x (x1 - ²,x1 + ²) korral kehtib v~orratus f(x) f(x1). ¨ Oeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on m¨a¨aratud punkti x1 mingis u¨mbruses (x1 - ²,x1 + ²); 2. iga x (x1 - ²,x1 + ²) korral kehtib v~orratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funkt- siooni lokaalseteks ekstreemumiteks. Sõnastada ja tõestada Fermat' lemma. Kui funktsioonil f on punktis x1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f'(x1) = 0. T~oestus. Vaatleme juhtu, kui funktsioonil f on punktis x1 lokaalne maksimum. Siis, vastavalt lokaalse maksimumi definitsioonile, leidub punkti x1 u¨mbrus nii, et iga x korral sellest u¨mbrusest kehtib v~orratus f(x) - f(x1) 0 Selles u¨mbruses asuva arvu x me saame v~otta punktist x1 nii vasakult kui ka paremalt. Asugu x punktist x1 vasakul. Siis x - x1 < 0. Jagame v~orratuse negatiivse arvuga x - x1.
Moodustame integraalsumma katkevuspunktid. Teoreemid lõigul pideva funktsiooni Definitsioon Funktsiooni y=f(x) määratud integraaliks lõigul kohta. [a,b] nimetatakse piirväärtust 6. Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. x/2=arctan t ; x=2arctan t ; dx=2/1+t 2dt 7. Teoreem diferentseeruva funktsiooni pidevusest 2
Teises etapis tehakse kindlaks kas süsteem on lahenduv või mitte. Kui astmelisele kujule
viidud laiendatud maatriksis leidub rida, kus ainsaks nullist erinevaks elemendiks on vabaliige,
siis on süsteem vastuoluline. Kui sellist rida ei ole, on süsteem lahenduv. Kui lahenduvas
süsteemis on n tundmatut ja astmelisele kujule viidud maatriksis on k juhtelementi siis juhul
n=k on süsteemil ainult üks lahend, juhul k