Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Diferentsiaalvõrrandite 1 Kollokviumi spikker - sarnased materjalid

lahend, muutuja, teoreem, lahendiks, homogeenne, parajasti, diferentseeruv, tuletis, integraalkõver, pidevad, lahendame, üldkuju, isokliin, geomeetrilineutuja, ilmutamata, homogeenseks, lõpmatus, lagrange, kirjutatakse, täisdiferentsiaal, näidatud, piisavus, samasus, normaalkuju, sümmeetriline, same, osatuletis, lahendid, graafiline, joonistame
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon

Matemaatiline analüüs 2
38 allalaadimist
thumbnail
1
docx

Diferntsiaalvõrrandidte teooria nr. 2

1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. Kõrgemat jär harilikud dvid: Üldkuju: F(x, y, y', y'', ..., y (n)) = 0 (1), kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y (n-1))(2) (( F(x,y, y')=0 (1) ja y' =f(x;y) (2))) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. ***{y(x0) = y0 {y'(x0) = y0(1) {... {y(n-1)(x0) = y0(n-1) ***Lahendi olemasolu : kõrgemat järku DV lahend ­ funktsioon, mille asendamisel võrrandisse saame samasuse F(x, y(x), y'(x), y''(x), ..., y(n)) 0 x. Peano teoreem e. olemasolu teoreem: olgu funktsioon f pidev muutujate x, y, y', y'', ..., y(n-1) piirkonnas D, siis iga punkt (x0, y0, y0(n-1) ) D korral on

Dif.võrrandid
8 allalaadimist
thumbnail
1
doc

DV võrrandid 1 kontrolltöö Spikker

Hariliku Dv Def. ­ Olgu F-n F(x,y,z) määratud xyz ruumi piirkonnas G. Vahemikus (a,b) määratud funktsioon y=y(x) nim. Võrrandi F(x,y,y`)=0 lahendiks, selles vahemikus, kui ta on pidevalt dif-uv ning (x,y(x),y`(x)) kuulub hulka G ja F(x,y(x),Y`(x))=0 x (a , b) Cauchy ülesanne 1-järku võrrandi jaoks seisneb sellise lahendi y(x) leidmises, mis rahuldab algtingimust y( x0 ) = y0 Peano teoreem ­ Olgu f(x,y) pidev kahemuutuja f-n piirkonnas D. Siis läbi iga punkti (x0,y0) D kulgev vähemalt 1 DV integraalkõver. On tuntud ka Dv lahendi olemasomu teoreemina. Cauchy teoreem - Olgu f(x,y) pidev piirkonnas D ning olgu tal selles piirkonnas f ( x, y ) olemas pidev osatuletis y . Siis läbib igat punkti (x0,y0) kuulub hulka D kulgeb parajasti üks DV integraalkõver. On tuntud DV lahendi ühesuse teoreemina.

Dif.võrrandid
220 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

MP={x R;f(x)=y Y on lõplik arv (f(x)<) *Funkts., kui kujutis on reegel, mille abil vastavus määratakse->kui reegel teada-> võime öelda et funkts esitatud. Funktsioon esit reegli kirj kaudu *Kuidas esitada funktsioone ?=> * joon määrab funkts, +graafikul nähtavad paljud funkts om., -funkts´i väärtust saame määrata ligikaudu 3.Eriomadustega funktsioone 1.ühesed ja mitmesed f-d: *Def. y= f(x), mille MP=X, ühene sel korral, kui igale x väärtusele vastab parajasti üks f-ni y=f(x) väärtus NT:y=x 2 (lineaarliige määrab telje sihi) *Def. y=f(x), MP=X, mitmene kui tekib rohkem kui 1 f-n. leiduvad niisugused x väärtused, mille korral y=f(x) NT: y=± x , y2=x (x telje sihiline) *lõpmata mitmene on y=arcsinx 2.Paaridf-n *Def. Y=f(x) on paarisf-n juhul kui f(-x)=f(x) x MP graafik sum y telje suhtes, Nt y=x 2 =(-x)2 3. Paaritu f- n- sel korral paaritu kui f(-x)= -f(x), x MP, graafik sümm 0-punkti suhtes 4

Kõrgem matemaatika
147 allalaadimist
thumbnail
20
pdf

Matemaatilise analüüsi kollokvium nr.3

. 2.Regulaarsed ja normaalsed piirkonnad. Kaksikintegraal. Kahekordse integraali arvutamine kaksikintegraali abi. Piirkonda D xy-tasandil nimetatakse regulaarseks, kui tema raja ┌ koosneb lõpilkust arvust pidevatest joontest tüüpi y=φ(x) või x=ψ(y). Regulaarset piirkonda D = {(x; y) | (a ≤ x ≤ b) ᴧ (φ(x) ≤ y ≤ ψ(x))} kus funktsioonid φ(x) ja ψ(x) on mingid pidevad funktsioonid lõigul [a;b] nimetatakse normaalseks piirkonnaks xy-tasandil (x-telje suhtes) Olgu funktsioon f(x,y) pidev piirkonnas D. Vaatleme avaldist , mida nimetame funktsiooni f(x,y) kaksikintegraaliks üle piirkonna D. Selles avaldises arvutatakse esmalt sulgudes olev integraal, kusjuures y on integreerimismuutujaks, x aga loetakse konstantseks. Integreerides saadakse argumendi x pidev funktsioon: .

Matemaatiline analüüs 2
100 allalaadimist
thumbnail
8
doc

Matemaatiline analüüs 2, kollokvium 3

6. Kui eksisteerib integraal ja piirkonnas D kehtib võrratus m<=f(P)<=M, siis . 2.Regulaarsed ja normaalsed piirkonnad. Kaksikintegraal. Kahekordse integraali arvutamine kaksikintegraali abi. Piirkonda D xy-tasandil nimetatakse regulaarseks, kui tema raja koosneb lõpilkust arvust pidevatest joontest tüüpi y=(x) või x=(y). Regulaarset piirkonda D = {(x; y) | (a x b) ((x) y (x))} kus funktsioonid (x) ja (x) on mingid pidevad funktsioonid lõigul [a;b] nimetatakse normaalseks piirkonnaks xy-tasandil (x-telje suhtes) Olgu funktsioon f(x,y) pidev piirkonnas D. Vaatleme avaldist , mida nimetame funktsiooni f(x,y) kaksikintegraaliks üle piirkonna D. Selles avaldises arvutatakse esmalt sulgudes olev integraal, kusjuures y on integreerimismuutujaks, x aga loetakse konstantseks. Integreerides saadakse argumendi x pidev funktsioon: . Seda funktsiooni integreerime x järgi rajast a kuni rajani b:

Matemaatiline analüüs 2
536 allalaadimist
thumbnail
14
odt

DV II KT vastused

DV II teooriatöö kordamisküsimused 1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. V: Kõrgemat järku harilikud diferentsiaalvõrrandid: Üldkuju: F(x, y, y', y'', ..., y(n)) = 0, kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y(n-1)) (1) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. {y(x0) = y0 {y'(x0) = y0(1)

Dif.võrrandid
75 allalaadimist
thumbnail
8
docx

Dif 2. kollokvium

n Kõrgemat järku harilik DV-Üldkuju(F,x,y,y’,y’’,.., y ),kus x-sõltumatu muutuja,y=y(x) otsitav funkt ja y’.. ' n x , y , y , .. y on otsitava fun tuletised.Lahendiks y=y(x)>y=y(x,C1,C2,..,Cn). Normkuju: y =f ¿ ,

Dif.võrrandid
89 allalaadimist
thumbnail
20
docx

Kõrgem matemaatika II eksamimaterjal

.. , a>0 n=0 Geomeetrilise rea koonduvus Geomeetriline rida qn=1+q+ q 2+... koondub, kui |q|<1 n=0 Harmoonilise rea koonduvus Harmooniline rida n1a =1+ 21a + 31a +... koondub parajasti siis, kui a>1 n=0 Arvrea absoluutne ¿ u(n)¿ koonduvus u (n) Rida nimetatakse absoluutselt koonduvaks, kui rida ¿ n=0

Kõrgem matemaatika ii
96 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
122 allalaadimist
thumbnail
8
doc

Konspekt eksamiks

On eeldused ja järeldused. Teoreetiline analüüs (statistilised probleemid jäetakse kõrvale) *Mat majteaduse mudeli puhul ei arvestata kõiki aspekte, sest see on võimatu, valitakse põhifaktorid (mida asendavad muutujad) ja antakse ette seosed (võrranditena). Matemaatiline mudel koosneb võrranditest, mis kirjeldavad faktorite käitumist ja seovad muutujaid omavahel -> analüütilised eeldused -> loogilised järeldused. 3. Funktsiooni mõiste: Kui muutuja x igale väärtusele hulgas X on vastavusse seotud muutuja y väärtus, siis öeldakse, et hulgal X on määratud funktsioon. y=f(x) eeskiri; üksühene vastavus. Liigid: a) konstantne f. N. y=f(x)=7 b) polünoomid y=a0+a1x+a2x2+...+anxn n=0 konstantne f., n=1 linearne f., n=2 ruutf. (0;a0) a1-tõus c) ratsionaalf. N murrud d) mittealgebralised f. n juured, astmed, exp, log, trig. 4. Tasakaalu mõiste, turu tasakaalu mudelid (1.ja 2. ning n hüvisega)

Kõrgem matemaatika
216 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

..,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahuldab tingimust PA, funktsiooni väärtus f(P) läheneb arvule b Mitmemuutuja funktsiooni pidevus Olgu antud mitmemuutuja funktsioon z=f(P) määramispiirkonnaga D. Funktsiooni f nimetatakse pidevaks punktis A kui AD; eksisteerib piirväärtus lim f ( P ) ; lim f ( P ) = f ( A) PA PA

Matemaatiline analüüs 2
513 allalaadimist
thumbnail
19
doc

Nimetu

1 ÜHE MUUTUJA FUNKTSIOON. TEMA MÄÄRAMISPIIRKOND DEFINITSIOON 1. Kui muutuja x igale väärtusele hulgast X on mingi eeskirja f abil vastavusse seatud lõplik reaalarv y, siis öeldakse, et hulgal X on määratud FUNKTSIOON ja seda tähistatakse y = f(x). DEFINITSIOON 2. Muutuja x väärtuste hulka, mille puhul f(x) väärtus on lõplik, nimetatakse funktsiooni y = f(x) MÄÄRAMISPIIRKONNAKS. X = { x R; f(x) väärtus on lõplik}. PÕHILISED ELEMENTAARFUNKTSIOONID: 1. Astmefunktsioonid: y = x , Q; 2. Eksponentfunktsioonid: y = ax, a > 0, a 1; 3. Logaritmfunktsioonid: y = loga x, a > 0, a 1; 4. Trigonomeetrilised funktsioonid: y = sin x, y = cos x, y = tan x, y = cot x; 5. Arkusfunktsioonid: y = arcsin x, y = arccos x,

177 allalaadimist
thumbnail
8
pdf

Matemaatiline analüüs II 2. kollokviumi spikker

ruumala, mis pealt on piiratud funktsiooni z=f(x,y) graafikuga, alt funktsiooni z=g(x,y) graafikuga ja küljelt Definitsioon 2. Öeldakse, et kahe muutuja funktsioonil on punktis P2(x2, y2) lokaalne miinimum, kui sellel ∭∆ 𝑓(𝜌 𝑐𝑜𝑠𝜑, 𝜌 𝑠𝑖𝑛𝜑, 𝑧)𝜌 𝑑𝜑 𝑑𝜌𝑑𝑧 .Vaatleme üleminekut sfäärkoordinaatidele, kus teisendus on kujul

Matemaatiline analüüs 2
70 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

MITME MUUTUJA FUNKTSIOON 1. Punkti ümbrus. Kinnine ja lahtine piirkond. Mitme muutuja funktsioon ja selle määramispiirkond. Def. 1.1. ( 0 0 )0 Punkti P x1 , x 2 ,..., x n ümbruseks n-mõõtmelises ruumis R n nimetatakse punktide hulka { U ( P ) , mis rahuldavad tingimust U ( P ) = Q( x1 , x 2 ,..., x3 ) R n ( P, Q ) < , kus } ( P, Q ) = PQ = (x1 - x10 ) + (x 2

Matemaatiline analüüs 2
240 allalaadimist
thumbnail
3
doc

Mat analüüs 2

4) - . . . . -.: 2, N . 4) . (x,y)S - .1: D . . - Rn . . . - . . . r ×r f(x,y)g(x,y), - . . . . . . . - yR 1)D - N= 1 2 . f ( x, y )dxdy g ( x, y r1 × r2 . . . - D=D(f) n2) y . . - 3) -

Matemaatiline analüüs 2
137 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs II

n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarväli. Def: funktsiooni w=f(P), P Rn MP-ks nim nende punktide hulka, mille puhul funktsiooni väärtus on lõplik. MP={P(x1,...,xn) Rn | w=f(P) f(x1,...,xn) < } Rn

Matemaatiline analüüs 2
336 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2

Matemaatiline analüüs II
69 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

Funktsioon on pidev vasakult punktis x0, kui (9.2)` lim f ( x) = f ( x 0 ) x x0 - 0 Definitsioon 2 Funktsioon y =f(x) on pidev antud vahemikus (lahtine hulk), kui ta on pidev selle vahemiku igas punktis Funktsioon y =f(x) on pidev antud lõigul [a, b] , kui ta on pidev vahemikus ]a, b[ , on pidev paremalt punktis a ja on pidev vasakult punktis b Elementaarfunktsioonid on pidevad kogu oma määramispiirkonnas Definitsioon 3 Funktsiooni y=f(x) piirväärtus vasakult xx0 märgitakse lim f ( x) = b x x0 - 0 seejuures xx0 nii, et xx0 Neid piirväärtusi nimetatakse ühepoolseteks

Matemaatiline analüüs
181 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

Funktsioon on pidev vasakult punktis x0, kui (9.2)` lim f ( x) = f ( x 0 ) x x0 - 0 Definitsioon 2 Funktsioon y =f(x) on pidev antud vahemikus (lahtine hulk), kui ta on pidev selle vahemiku igas punktis Funktsioon y =f(x) on pidev antud lõigul [a, b] , kui ta on pidev vahemikus ]a, b[ , on pidev paremalt punktis a ja on pidev vasakult punktis b Elementaarfunktsioonid on pidevad kogu oma määramispiirkonnas Definitsioon 3 Funktsiooni y=f(x) piirväärtus vasakult xx0 märgitakse lim f ( x) = b x x0 - 0 seejuures xx0 nii, et xx0 Neid piirväärtusi nimetatakse ühepoolseteks

Matemaatiline analüüs
11 allalaadimist
thumbnail
2
docx

Matemaatiline analüüs I abivalemid

ln y=x → y =e x Kirjut . kujul f ( x , y )=f 1, ( ) x Diferentsiaalvõrrandid: DV järk on DV-s esinevate tuletiste kõrgeim järk. y dy du Harilikud DV-d: otsitav funktsioon y on ühe muutuja Asendus u= ehk y =ux → =u+ ∙ x 1 1 x dx dx =x−α funktsioon. α x α Osatuletisega DV-d: √x=x otsitav α f-n on mitme muutuja funktsioon.

Matemaatiline analüüs 1
9 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4

Matemaatiline analüüs
260 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33

Matemaatiline analüüs
810 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . . . . . 18 2.5 Lineaarvõrrandisüsteemid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 Cramer'i peajuht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 Gauss'i elimineerimise meetod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.8 Süsteemi üldlahend ja erilahend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.9 Homogeenne lineaarvõrrandisüsteem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Funktsioonid ja jadad 25 3.1 Funktsiooni mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Üksühesus ja pealekujutus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Liitfunktsioon . . . . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
100 allalaadimist
thumbnail
8
doc

Kõrgema matemaatika kordamisküsimused ja vastused

Lubatavad elementaarteisendused lineaarse võrrandisüsteemi laiendatud maatriksiga. Võimalike lahendite arv. Lineaarse võrrandisüsteemi üld- ja erilahend. Lineaarne vôrrandisüsteem ­ Olgu antud n muutujat, x1, x2, x3,...,xn ja arvud a1, a2, a3, ..., an, saame muutujate suhtes lineaarse vôrrandi a1x1 + a2x2 + ... + anxn = b, kui meil on m lineaarset vôrrandit samade muutujate suhtes, saame lineaarse vôrrandisüsteemi. Lineaarse vôrrandsüsteemi normaalkuju (a ­ kordaja, x ­ muutuja, b ­ vabaliige): a11 x1 + a12 x 2 +... + a1n x n = b1 a x + a x +... + a x = b 21 1 22 2 2n n 2 .............................................. a m1 x1 + a m 2 x 2 +... + a mn x n = bm Lineaarse vôrrandsüsteemi laiendatud maatriks ­ moodustatakse normaalkujul vôrrandisüsteemi elementidest ja vabaliikmeid on eraldatud püstkriipsuga. Lubatavad elementaarteisendused: 1) Rea korrutamine nullist erineva arvuga 2) Ridade vahetamine

Matemaatika
246 allalaadimist
thumbnail
9
doc

Lineaarsete algebraliste võrrandite süsteem

x f X= 2 , F= 2 . ... ... x f n n Kui m < n , siis on alamääratud süsteem, osa tundmatuid jääb määramata, kui m > n , siis on ülemääratud süsteem, lahend võib üldse puududa, kui m = n , siis on üks lahend kui det A 0 . Homogeense võrrandsüsteemi vabaliige on null ehk AX = 0 . Homogeensel võrrandsüsteemil esineb alati triviaalne lahend X = 0 . Homogeensel võrrandsüsteemil on m = n korral mittetriviaalsed lahendid ainult juhul, kui det A = 0 . Kui homogeensel võrrandsüsteemil on üheks mittetriviaalseks lahendiks x1 bx1

Matemaatika
74 allalaadimist
thumbnail
6
docx

Matemaatilise analüüsi eksamiks valmistumine

Kordamisküsimused 1. Funktsioon - Olgu X mingi reaalarvude hulk. Kui muutuja x igale väärtusele hulgas X vastab muutuja y üks kindel väärtus, siis öeldakse, et y on muutuja x funktsioon. Funktsiooni esitusviis: tabelina, graafikuna. Funktsiooni analüütiline esitusviis on ilmutatud, ilmutamata, parameerilisel kujul. 2. Funktsioonide liigitus (paaris- ja paaritud funktsioonid, perioodilised funktsioonid, monotoonsed funktsioonid, tõkestatud funktsioonid). Tuua näiteid. paarisfunktsioon - Funktsiooni y = f (x) nimetatakse paarisfunktsiooniks, kui f (-x) = f (x) Paarisfunktsiooni graafik on sümmeetriline y-telje suhtes

Matemaatiline analüüs
137 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

Funktsiooni y = f ( x ) , x X võib alati esitada parameetrilised kujul, näiteks: t T = X y = f (t) Vastupidine esitus, s.o. üleminek parameetriliselt kujult ilmutatud kujule ei ole alati teostatav. 5. Esitus ilmutamata kujul, s.o. võrrandi F ( x, y ) = 0 abil. Liitfunktsioon - kui y=f(u), kus u=g(x), siis öeldakse, et y on muutuja x suhtes liitfunktsioon ja kirjutatakse y=f[g(x)] Pöördfunktsioon ­ Paaris- ja paaritudfunktsioonid : *paaris ­ kui iga x X korral on f(-x)=f(x), siis nimetatakse funktsiooni f paarisfunktsiooniks piirkonnas X *paaritu ­ kui iga x X korral on f(-x)=-f(x), siis nimetatakse funktsiooni f paarituks funktsiooniks piirkonnas X Perioodiline funktsioon ­ funktsiooni f nimetatakse perioodiliseks piirkonnas X ja arvu 0 tema perioodiks, kui f ( x + ) = f ( x ) iga x X korral.

Matemaatiline analüüs i
777 allalaadimist
thumbnail
9
doc

Diferentseerimise ja integreerimise valemid

u v ­ v u u = v v2 = v x v2 f ( x) dx = ln f ( x) + c Parameetrilisel kujul antud funktsiooni tuletis, kus x = (t) ja y = (t) yt ( y x ) t y txt ­ y t xt y x = ja y x = y x = xt xt ( xt ) 3 Nr Diferentseerimise valemid Diferentseerimise valemid Integreerimise valemid Lihtfunktsioon Liitfunktsioon 1 (C)'=0 0 dx = c

Diferentsiaal-ja...
88 allalaadimist
thumbnail
9
doc

INTEGREERIMISE VALEMID

u v ­ v u u = v v2 = v x v2 f ( x) dx = ln f ( x) + c Parameetrilisel kujul antud funktsiooni tuletis, kus x = (t) ja y = (t) yt ( y x ) t y txt ­ y t xt y x = ja y x = y x = xt xt ( xt ) 3 Nr Diferentseerimise valemid Diferentseerimise valemid Integreerimise valemid Lihtfunktsioon Liitfunktsioon 1 (C)'=0 0 dx = c

Matemaatiline analüüs
110 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

2. iga x (x1 - ²,x1 + ²) korral kehtib v~orratus f(x) f(x1). ¨ Oeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on m¨a¨aratud punkti x1 mingis u¨mbruses (x1 - ²,x1 + ²); 2. iga x (x1 - ²,x1 + ²) korral kehtib v~orratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funkt- siooni lokaalseteks ekstreemumiteks. Sõnastada ja tõestada Fermat' lemma. Kui funktsioonil f on punktis x1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f'(x1) = 0. T~oestus. Vaatleme juhtu, kui funktsioonil f on punktis x1 lokaalne maksimum. Siis, vastavalt lokaalse maksimumi definitsioonile, leidub punkti x1 u¨mbrus nii, et iga x korral sellest u¨mbrusest kehtib v~orratus f(x) - f(x1) 0 Selles u¨mbruses asuva arvu x me saame v~otta punktist x1 nii vasakult kui ka paremalt. Asugu x punktist x1 vasakul. Siis x - x1 < 0. Jagame v~orratuse negatiivse arvuga x - x1.

Matemaatika
47 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

Moodustame integraalsumma katkevuspunktid. Teoreemid lõigul pideva funktsiooni Definitsioon Funktsiooni y=f(x) määratud integraaliks lõigul kohta. [a,b] nimetatakse piirväärtust 6. Funktsiooni tuletis ja selle geomeetriline tähendus. Puutuja ja normaali võrrand. x/2=arctan t ; x=2arctan t ; dx=2/1+t 2dt 7. Teoreem diferentseeruva funktsiooni pidevusest 2

Matemaatiline analüüs
974 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

Teises etapis tehakse kindlaks kas süsteem on lahenduv või mitte. Kui astmelisele kujule viidud laiendatud maatriksis leidub rida, kus ainsaks nullist erinevaks elemendiks on vabaliige, siis on süsteem vastuoluline. Kui sellist rida ei ole, on süsteem lahenduv. Kui lahenduvas süsteemis on n tundmatut ja astmelisele kujule viidud maatriksis on k juhtelementi siis juhul n=k on süsteemil ainult üks lahend, juhul k

Kõrgem matemaatika
359 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun