Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Arvu logaritm ning selle definitsioon ning lahendamine. - sarnased materjalid

loga, logaritmi, graafik, saadake, arvudel, jagatis, ühelt, aluselt
thumbnail
2
doc

Logaritm

LOGARITM Arvu N logaritmiks alusel a nimetatakse arvu r, millega alust a astendades saadakse arv N logaN=r ar = N N ­ logaritmitav (negatiivsetel arvudel ja arvul 0 puudub logaritm) a - logaritmi alus ( a>0 ja a 1 ) r - arvu N logaritm alusel a Logaritmi omadused: logaa = 1 loga1 = 0 alog a N = N a2log a N = ( alog a N)2=N2 a2+log a N =a2alog a N =a2N a2-log a N= a2 : (alog a N)= a2 : N a-log a N= N-1 Kümnendlogaritm Logaritmi aluseks on arv 10, mida ei kirjutata logN (log10N) Naturaallogaritm Logaritmi aluseks on arv e, mida ei kirjutata lnN (lneN)

Matemaatika
71 allalaadimist
thumbnail
6
doc

11. klassi materjal matemaatikas

Funktsiooni vahemikuks f(x) argumendi väärtuste hulka, mille korral funktsioon kahaneb kahanemisvahemikuks. Kahanemispiirkond X Funktsiooni ekstreemumiteks nimetatakse funktsiooni lokaalseid(kohalikke) max. ja min. väärtusi. Mmax(xmax;ymax) - maksimum punkt Mmin(xmin;ymin) ­ miinimum punkt Paaris- ja paaritufunktsioon Funktsiooni nimetatakse paarisfunktsiooniks, kui argumendi märgi muutumisega ei kaasne argumendi märgi muutust. Paaris funktsiooni graafik on sümmeetriline y-telje suhtes. f(-x) = f(x) Funktsiooni nimetatakse paarituksfunktsiooniks, kui argumendi märgi muutusega kaasneb funktsiooni märgi muutus. Sümmeetriline alguspunkti suhtes. f(-x) = -f(x) Et teha kindlaks, kas funktsioon on paaris või paaritu või ei ole kumbki, asendatakse funktsiooni avaldises x -x ja teisendatakse avaldist, kui tulemuseks tekib esialgne funktsioon siis on tegemist paarisfunktsiooniga, kui tulemusele saab miinusmärgi ette võtta ja

Matemaatika
501 allalaadimist
thumbnail
12
docx

Matemaatika 11.klass valemid

 a m 33) esita juure abil a n  n a m 34)a n  a m  a n  m 35)a n : a m  a n  m 36) a n  m  a nm 37) ab   a n  b n n n  a an 38)    b bn  c 39) Kirjuta logaritmi def : a =b Arvu b logaritmiks alusel a nimetatakse arvu c, millega alust a astendades saadakse arv b c=lo g a b 40) a) Naturaallogarimi mõiste selgitus : on logaritm alusel, kus e on irratsionaalarv. b) Kuidas arvutatakse e väärtus ja milline on e ligikaudne väärtus? n 1 e=lim 1+ n→∞

Matemaatika
18 allalaadimist
thumbnail
1
doc

logaritm-ja eksponentfunktsioonid ja -võrratused

Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 6. Logaritm- ja eksponentfunktsioonid. Logaritm- ja eksponentvõrrandid ning võrratused Põhiteadmised · Arvu logaritmi mõiste ja omadused; · naturaallogaritm; · eksponent- ja logaritmfunktsioonid, nende graafikud ja omadused. Põhioskused · Avaldiste logaritmimine ja potentseerimine; · üleminek logaritmi ühelt aluselt teisele; · eksponent- ja logaritmfunktsiooni omaduste kasutamine vastavate võrrandite ja võrratuste lahendamisel; · eksponent- ja logaritmfunktsioonide graafikute skitseerimine ja lugemine; · eksponent- ja logaritmfunktsioonide pöördfunktsioonide, nende määramis- ja muutumispiirkondade leidmine ning graafikute skitseerimine. Valemid · Arvu logaritm ja selle omadused ac = b c = loga b, kus a > 0, b > 0, a 1

Matemaatika
891 allalaadimist
thumbnail
19
doc

Matemaatika valemid.

( 6) lim x a [ f ( x ) g( x ) ] = A B f ( x) A ( 7 ) lim x a g ( x ) = , kus B 0 B ( 8) lim f [ g ( x ) ] = lim f ( y ) , kui lim f ( y ) on olemas. ( Siin y = g( x ) ) x a x B x B 6. Logaritm- ja eksponentfunktsioonid. Logaritm- ja eksponentvõrrandid ning võrratused · Arvu logaritm ja selle omadused ac = b c = loga b, kus a > 0, b > 0, a 1 alog b = b loga1 = 0 logaa = 1 log a = b 10b = a loga bc = loga b + loga c, kui b > 0 ja c > 0 loga = loga b ­ loga c, kui b > 0 ja c > 0 loga bn = nloga b, kui b > 0 log a c log b c =

Matemaatika
807 allalaadimist
thumbnail
11
ppt

Logaritmid

Logaritmid järgmine slaid esitluse lõpp Logaritmi definitsioon Definitsioon Arvu x logaritmiks alusel a ( a > 0, a 1 ) nimetatakse arvu c, mille korral ac = x. Näited Arvu 25 logaritm alusel 5 on 2, kuna 52 = 25 Arvu 0,125 logaritm alusel 2 on -3, kuna 2-3 = 1/8 = 0,125 Logaritmi leidmist nimetatakse logaritmimiseks. Arvu x (logaritmitava) logaritmi alusel a märgitakse sümboliga loga x . Näited logaritm log 3 81 = 4 log1/ 2 1024 = -10 alus logaritmitav algusesse eelmine slaid järgmine slaid esitluse lõpp Kümnend- ja naturaalogaritmid Logaritmi aluseks võib olla suvaline positiivne arv a 1. Kui alus a = 10, siis nimetatakse vastavat logaritmi kümnendlogaritmiks ja tähistatakse sümboliga log x (venekeelses kirjanduses lg x) . Näited

Matemaatika
87 allalaadimist
thumbnail
8
docx

Logaritmid

Näiteid: 1) log 10=1 , sest 101 = 10. 2) log 100=2 , sest 102 = 100. -1 1 3) log 0,1=-1 , sest 10 = =0,1. 10 Logaritme alusel e nimetatakse naturaallogaritmideks ja tähistatakse sümboliga ln (alust märkimata): log e x =ln x . Näiteid: 1) ln e=1 , sest e1 = e. 1 1 2) ln 2 =-2 , sest e-2= 2 . e e Kirjutada võrdus logaritmi sümboli abil: 2 1 1 1) 32 = 9 2) 53 = 125 3) () 3 = 9 4)

Matemaatika
23 allalaadimist
thumbnail
1
doc

Logaritm

Ande Andekas-Lammutaja Matemaatika ­ Logaritm Arvu N logaritmiks alusel a nimetatakse arvu r, millega alust a astendades saadakse arv N. Korrutise logaritm on võrdne tegurite logaritmide summaga. Jagatise logaritm on võrdne jagatava ja jagaja logaritmide vahega. Astme logaritm on võrdne astendaja ja astme aluse logaritmi korrutisega. Potentseerimiseks nimetatakse avaldise logaritmi või arvu logaritmi järgi vastava avaldise või arvu leidmist. Logaritmfunktsiooniks nimetatakse funktsiooni y = logaX, kus a > 0 ja a 1. Logaritmvõrrandiks nimetatakse võrrandit, milles tundmatu esineb logaritmitavas või logaritmi aluses. logaN = r ar = N alog N = N a logN = log10N lnN = logeN logaN1N2 = logaN1 + logaN2 loga N1/N2 = logaN1 ­ logaN2 logaNr = rlogaN logaN = logbN / logba

Matemaatika
682 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I - I teooria töö

On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2. Analüütiline ­ Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3.Graafiline ­ Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Funktsiooni f graafiku definitsioon on järgmine: G = {P = (x, f(x)) || x X} . · Graafiku omadused: o Kui f(x) > 0, siis graafik paikneb ülalpool xtelge. o Kui aga f(x) < 0, siis graafik jääb xteljest allapoole. o Kui suvaline yteljega paralleelne sirge saab funktsiooni graafikut lõigata maksimaalselt ühes punktis, siis funktsioon on ühene. o Juhul, kui eksisteerib vähemalt üks yteljega paralleleelne sirge lõikab funktsiooni graafikut mitmes punktis, vaadeldav funktsioon on mitmene. 3.

Matemaatika analüüs I
487 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs II teooria töö

On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2. Analüütiline ­ Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3.Graafiline ­ Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Funktsiooni f graafiku definitsioon on järgmine: G = {P = (x, f(x)) || x X} . · Graafiku omadused: o Kui f(x) > 0, siis graafik paikneb ülalpool xtelge. o Kui aga f(x) < 0, siis graafik jääb xteljest allapoole. o Kui suvaline yteljega paralleelne sirge saab funktsiooni graafikut lõigata maksimaalselt ühes punktis, siis funktsioon on ühene. o Juhul, kui eksisteerib vähemalt üks yteljega paralleleelne sirge lõikab funktsiooni graafikut mitmes punktis, vaadeldav funktsioon on mitmene. 3.

Matemaatiline analüüs 2
96 allalaadimist
thumbnail
7
docx

MATEMAATIKA ANALÜÜS 1 KT 1 vastused

Antud funktsiooni korral X = R ja Y = (0;1). 4. Üksühese funktsiooni ja pöördfunktsiooni definitsioonid. Kui iga y korral hulgast Y leidub ainult üks x nii, et valitud y on selle x-i kujutiseks, siis öeldakse, et funktsioon f on üksühene. Funktsiooni f pöördfunktsiooniks nimetatakse kujutist, mis igale y Y seab vastavusse kõigi selliste x X hulga, mille korral kehtib võrdus f(x) = y. Logaritmfunktsioon . Eksponentfunktsiooni pöördfunktsioon on logaritmfunktsioon x = loga y, kus a on logaritmi alus. Määramispiirkond X = (0;) Väärtuste hulk Y=R Graafik Arkusfunktsioonid ja nende seosed trigonomeetriliste funktsioonide ahenditega. Trigonomeetriliste funktsioonide pöördfunktsioonid on arkusfunktsioonid. Arkusfunktsioonide määramispiirkonnad, väärtuste hulgad ja graafikud. y = arcsin x : X = [-1; 1]; Y = [-/2; /2] ; y = arccos x : X = [-1; 1]; Y = [0; ] ; y = arctan x : X = R; Y = (- /2; /2) ; y = arccot x : X = R; Y = (0; ) 5

Matemaatika analüüs I
231 allalaadimist
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

Tõusu ja 51. Kaldnurkse kolmnurga lahendamine algordinaadiga määratud sirge võrrand Vt. Punkt 31,32,33 Y - y1 = k ( X - x1 ) 52. Funktsioonid 53. Võrdeline sõltuvus y = kx + b y = ax , kus x 0 ja a 0 43. Kahe punktiga määratud sirge võrrand Graafik on sirge: X - x1 Y - y1 -läbib kooridnaatide alguspunkti = x 2 - x1 y 2 - y1 -kui võrdetegur a>0, siis sirge asub I,III 44. Sirge võrrandi koostamine telglüikude abil veerandis x y -kui võrdetegur a<0, siis sirge asub II, IV + =1 veerandis

Matemaatika
1299 allalaadimist
thumbnail
18
docx

Elementaarmatemaatika 1. teooria

siis öeldakse, et see arvuhulk on pidev 5. Vastandarv- Naturaalarvu n vastandarvuks nimetatakse sellist arvu -n, mis rahuldab võrdust n + ( -n ) = 0. 6. Täisarvude hulk- · Naturaalarvude hulk on täisarvude hulga osahulk · Z = {....-2; -1; 0; 1; 2; ......} · Jaguneb naturaalarvudeks ja negatiivseteks arvudeks a 7. b Murdarvud- Kui täisarv a jagub täisarvuga b, siis on jagatis täisarv, kui aga ei jagu, siis nimetame saadud arvu murdarvuks ja tähistame sümboliga (reaalarvu, mis ei ole täisarv.) 8. Ratsionaalarvude hulk- Täisarvud koos murdarvudega moodustavad ratsionaalarvude hulga 9. Irratsionaalarv- Lõpmatud mitteperioodilised kümnendmurrud 10. Reaalarvude hulk- Irratsionaalarvud koos ratsionaalarvudega moodustavad reaalarvude hulga. 11. Kompleksarv-

Elementaarmatemaatika 1
63 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

5. Võrratuse märk muutub vastupidiseks, kui võrratuse mõlemat poolt korrutada või jagada ühe ja sama negatiivse arvuga: a b kui a > b ja c < 0 , siis ca < cb ja < . c c Võrratust, mis sisaldab muutujat, saab lahendada. Võrratuste lahendamisel on järgmised reeglid: 1) liikme märk muutub vastupidiseks, kui kanda ta võrratuse ühelt poolelt teisele; 2) võrratuse poolte korrutamisel (jagamisel) ühe ja sama positiivse arvuga jääb võrratuse märk endiseks; 3) võrratuse poolte korrutamisel (jagamisel) ühe ja sama negatiivse arvuga muutub võrratuse märk vastupidiseks; 4) võrratuse pooli ei tohi korrutada ega jagada muutujat sisaldava avaldisega, mille märk pole teada, sest siis võime saada esialgse võrratusega mittesamaväärse võrratuse. 2.10 Lineaarvõrratus

Matemaatika
1099 allalaadimist
thumbnail
78
pdf

Majandusmatemaatika

Tabelarvutust kasutades võime me muuta ka algandmeid, "läbi mängides" erinevaid võimalusi, uurida "mis juhtub, kui..". Näiteks võime leida, kuidas muutuvad summaarsed kulud, kui õnnestub vähendada fikseeritud kulusid 2500 kroonini päevas või kui muutuvkulud ühiku kohta suurenevad 7 kroonini. Peale kulufunktsiooni tabuleerimist võime kulude muutumise iseloomustamiseks kasutada graafikut. Joonis 15 Kulufunktsiooni graafik ©Audentese Ülikool, 2003. Koostanud A. Sauga MAJANDUSMATEMAATIKA I Funktsioonid ja nende algebra 12 Müües teenust või toodet, saab firma tulu (revenue). Tulufunktsioon on funktsionaalne seos müüdud tooteühikute (või tegevusmahu) ja brutotulu R vahel. Lihtsaimal juhul on seos võrdeline ja võrdeteguriks on hind (price) p. Tulufunktsioon = nõutav kogus · hind

Raamatupidamise alused
399 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

5. Võrratuse märk muutub vastupidiseks, kui võrratuse mõlemat poolt korrutada või jagada ühe ja sama negatiivse arvuga: a b kui a  b ja c  0 , siis ca  cb ja  . c c Võrratust, mis sisaldab muutujat, saab lahendada. Võrratuste lahendamisel on järgmised reeglid: 1) liikme märk muutub vastupidiseks, kui kanda ta võrratuse ühelt poolelt teisele; 2) võrratuse poolte korrutamisel (jagamisel) ühe ja sama positiivse arvuga jääb võrratuse märk endiseks; 3) võrratuse poolte korrutamisel (jagamisel) ühe ja sama negatiivse arvuga muutub võrratuse märk vastupidiseks; 4) võrratuse pooli ei tohi korrutada ega jagada muutujat sisaldava avaldisega, mille märk pole teada, sest siis võime saada esialgse võrratusega mittesamaväärse võrratuse. 2.10 Lineaarvõrratus

Algebra I
61 allalaadimist
thumbnail
1
doc

Logaritm

LOGARITM Eksponetfunktsiooniks nim funktsiooni y=ax ,kus a>0 ja a=1 Eksponetfunktsiooni omadused: *Eksponentfunktsiooni y=ax määramispiirkond on reaalarvude hulk R *Muutumispiirkond on positiivsette reaalarvude hulk. * Funktsiooni y=ax positiivsuspiirkond ühtib määramispiirkonnaga, negatiivususp. Puudub. *Funktsiooni y=ax on kasvav kui a>1 ja kahanev, kui 0 graafik läbib alati punkte (o;1) ja (1;a) · Arvu logaritm näitab mitemendasse astmesse tuleb võtta alus, et saada antud arv. · Arvu 1 logaritm mistahes alusel on null (loga1=0 a0=1) · Logartimi saab leida ainult positiivsest arvust, st logaritmitav peab olema alati postiivne. · Korrutise logaritm võrdub tergurite logaritmide summaga loga(b*c)=logab-logac · Jagatise logaritm võrdub jagatava ja jagaja logaritmide vahega. logab/c=logab-logac

Matemaatika
127 allalaadimist
thumbnail
2
doc

Logaritmimine

LOGARITMIMINE Logaritmi I definitsioon Arvu b logaritmiks alusel a nimetatakse arvu c, kui arvuga c alust a astendades saadakse arv b. logab = c <-> ac = b logab = c [logaritm b-st alusel a] a ­ logaritmi alus a > 1 v 0 < a < 0 ; a 1 b ­ logaritmitav b > 0 c ­ logaritmi väärtus cR log10 = 1, kuna 101=10 [kümnendlogaritm 10-st] lneb = c [naturaallogaritm b-st] Naturaallogaritmi alus on e2,7 Logaritmi II definitsioon logx2 log2x = (logx)2 log-1x log log-1x = Logaritmimise reeglid ja nende järeldused I Korrutise logaritmimise reegel Korrutise logaritm on võrdne tegurite logaritmide summaga.

Matemaatika
91 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

tõkestatuks piirkonnas A, kui leidub selline reaalarv k, nii et | f(x) | <= k iga x A korral. 5. Perioodiline funktsioon - funktsiooni f(x) nim. perioodiliseks, kui leidub selline nullist erinev reaalarv , nii et f( x + ) = f (x) iga x X korral. Vähimat positiivset väärtust, mille korral see võrdus kehtib, nim. funktsiooni y = f(x) perioodiks. (kõik trigonomeetrilised funktsioonid) 6. Paaris funktsioon - funktsiooni y = f(x) nim. paaris funktsiooniks kui f(-x) = f(x). Paarisfunktsiooni graafik on sümmeetriline y-telje suhtes ( cos ) 7. Paaritu funktsioon - funktsiooni y = f(x) nim. paarituks funktsiooniks kui f(-x) = - f(x). Paaritu funktsiooni graafiks on sümmeetriline 0-punkti suhtes. ( sin, tan, cot ) 8. Liitfunktsioon - olgu funktsiooni f määramispiirkonnaks X ja muutumispiirkonnaks Y. Funktsiooni g määramispiirkond Yg sisaldugu piirkonnas Y ning tema muutumispiirkond olgu Z. Siis saab moodustada uue funktsiooni F, mis hulga X igale elemendile seab vastavusse elemendi

Matemaatika
118 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I

Kasvavad ja kahanevad funktsioonid. Olgu D funktsiooni f määramispiirkonna alamhulk. Valime hulgast D kaks suvalist arvu x1 ja x2 nii, et kehtib võrratus x1 < x2. Kui funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk ei muutu, st f(x1) < f(x2), siis on f kasvav hulgas D. Kui aga funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk muutub vastupidiseks, st f(x1) > f(x2), siis on f kahanev hulgas D. Kasvamispiirkonnas funktsiooni graafik tõuseb, kahanemispiirkonnas aga langeb. Astmefunktsioon ­ funktsioon kujul y = xa, kus a on nullist erinev konstantne astendaja. Selle funktsiooni määramispiirkond, väärtuste hulk ja graafik sõltuvad oluliselt astmest a. Eksponentfunktsioon on funktsioon järgmisel kujul: y = ax , kus astme alus a on konstantne ja rahuldab võrratust a > 0. Lisaks sellele võrratusele eeldame veel, et a = 1 Eksponentfunktsiooni korral X = R ja Y = (0,).

Matemaatiline analüüs 1
55 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs

Esitusviis tabeli kujul: Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendi on lõplik arv väärtusi. Analüütiline esitusviis: Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. Näiteks avaldis y = x2 , x [0, 1] Funktsiooni graafiku mõiste: Funktsiooni f graafik on kõikide järjestatud paaride (x, f(x)) hulk, kus x on määramispiirkonna X element. G = { P = (x, f(x)) || x X} . Graafiku omadused: Suvaline y-teljega paralleelne sirge saab funktsiooni graafikut lõigata maksimaalselt ühes punktis. 3. Paaris- ja paaritud funktsioonid: Funktsiooni f nimetatakse paarisfunktsiooniks, kui iga x X korral kehtib võrdus f(-x) = f(x). Funktsiooni f nimetatakse paarituks funktsiooniks, kui iga x X korral kehtib võrdus f(-x) = -f(x)

Matemaatiline analüüs
232 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

Kanname tasandile riistuvad x ja y teljed.Vaatleme selles teljestikus joont G mis koosneb punktidest P=(x;f(x)) kusjuures P esimene kordinaad x jookesb läbi kogu määramispirkonda X .Seda joont nimetataksegi funktsiooni f graafikuks. Graafiku omadused Punkt P teist kordinaadi f(x) võib tõlgendada P ,,kõrgusena" x telje suhtes.Kui f(x)>0 ;siis on graafiku kõrgus positiivne,kui aga f(x) < 0 siis negatiivne. X-y teljestikus antud punkti üldkuju on P=(x,y) , funktsiooni f graafik koosneb aga punktidest P=(x, f(x)) , siis rahuldavad graafiku punktid võrrandit y = f(x) . Suuvaline y-teljega parallelne sirge saab funktsiooni grafikut lõigata maksimalselt ühes punktis. 3. Paaris- ja paaritud funktsioonid- Funktsiooni f nimetatakse paarisfunktsiooniks, kui iga x kuulub X korral kehtib võrdus f(-x) = f(x). Funktsiooni f nimetatakse paarituks funktsiooniks, kui iga x kuulub X korral kehtib võrdus f(-x) = -f(x).

Matemaatiline analüüs I
105 allalaadimist
thumbnail
11
docx

Kordamisküsimusi 1. teema kohta - Teooriatöö I

üks x väärtus, millele vastab mitu y väärtust 7. Kirjeldada funktsiooni esitust tabelina ja analüütiliselt. (lk 4) Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neile vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 8. Mis on funktsiooni graafik? Loetleda graafiku omadusi. (lk 4 – 5) Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Graafik on joon(ed), mis kirjeldavad x ja y omavahelist seost ja suhet kindlates punktides. Kanname tasandile ristuvad x- ja y-teljed. Vaatleme tasandil hulka G, mis koosneb punktidest P(x, f(x)), mille esimene koordinaat x omandab kõik väärtused määramispiirkonnas X. Seda hulka nimetatakse funktsiooni f graafikuks. 9. Defineerida paaris- ja paaritu funktsioon. (lk 6)

Matemaatika analüüs i
8 allalaadimist
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

21 1197 ⋅100 57 6) 1,197: = = . 100 1000 ⋅ 21 10 57 Vastus. . 10 7 Näide 3. Leida x, kui 4 3 15 3 − 1 = 5,625. (5,5 + x) : 21 7 3 8 Lahendus. Esimese tehtega arvutame tundmatut x sisaldava murru väärtuse. Teises tehtes leiame selle murru nimetaja väärtuse. Nimetajas on jagatis, mille jagatava 5,5+x väärtuse arvutame kolmanda tehtega. Neljanda tehtega saame tundmatu x väärtuse. 4 3 15 3 3 5 1) = 1 + 5, 625 = 1 + 5 = 7; (5,5 + x) : 21 37 8 8 8 4 49 7 2) (5,5 + x ) : 21 73 = 3 : 7 = = ; 15 15 ⋅ 7 15 3 7 150 ⋅ 7

Matemaatika
75 allalaadimist
thumbnail
30
pdf

Funktsioon loeng 2

y = y (t ) Näide: x = 5 cos(t ) , t [0; 2 ] y = 5 sin(t ) 4 Paaris- ja paaritud funktsioonid Funktsiooni y = f (x) nimetatakse paarisfunktsiooniks, kui f (-x) = f (x) ja paarituks funktsiooniks, kui f (-x) = -f (x) iga x korral määramispiirkonnast X. Paarisfunktsiooni graafik on Paaritu funktsiooni graafik on sümmeetriline y-telje suhtes sümmeetriline 0-punkti suhtes. 6 5 2 x 4 cos ( x) 3 x

Matemaatika
56 allalaadimist
thumbnail
22
docx

Matemaatiline analüüs (vähendatud programm)

tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on n lõplik arv väärtusi. Analüütiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. Analüütiliselt antud funktsiooni loomulikuks määramispiirkonnaks nim. argumendi kõigi nende väärtuste hulka mille korral funktsiooni avaldis on täielikult määratud.  Funktsiooni graafik. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Olgu antud funktsioon f, mille argument on x, sõltuv muutuja y ja määramispiirkond X. Kanname tasandile ristuvad x- ja y- teljed. Vaatleme selles teljestikus joont G, mis koosneb kõikvõimalikest punktidest P = (x, f(x)), kusjuures P esimene koordinaat x jookseb läbi kogu määramispiirkonna X.  Graafiku omadused. Suvaline y-teljega paralleelne sirge saab funktsiooni

Matemaatiline analüüs i
17 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2. Anaüüutiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3.Graafiline esitusviis. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Funktsiooni f graafiku definitsioon on järgmine: G = {P = (x, f(x)) || x X} . Kui f(x) > 0, siis graafik paikneb ülalpool x-telge. Kui aga f(x) < 0, siis graafik jääb x-teljest allapoole. Kui suvaline y-teljega paralleelne sirge saab funktsiooni graafikut lõigata maksimaalselt ühes punktis, siis funktsioon on ühene. Juhul, kui eksisteerib vähemalt üks y-teljega paralleleelne sirge lõikab funktsiooni graafikut mitmes punktis, vaadeldav funktsioon on mitmene. 3. Paaris- ja paaritud funktsioonid. Perioodilised funktsioonid. Kasvavad ja kahanevad funktsioonid. Astmefunktsioon

Matemaatiline analüüs
484 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I 1. teooria KT

Vaatleme selles teljestikus joont G, mis koosneb kõikvõimalikest punk- tidest P = (x,f(x)), kusjuures P esimene koordinaat x jookseb läbi kogu määramispiirkonna X. Seda joont nimetataksegi funtsiooni f graafikuks. Seega, lühidalt kirjutades on funktsiooni f graafiku definitsioon järgmine: G = {P = (x,f(x))||x X}. Graafiku punkti P teist koordinaati f(x) võib tõlgendada P "kõrgusena" x- telje suhtes. Kui f(x) > 0, siis on graafiku "kõrgus" positiivne, st graafik paikneb ülalpool x-telge. Kui aga f(x) < 0, siis on "kõrgus" negatiivne, st graafik jääb x-teljest allapoole 3. Paaris- ja paaritud funktsioonid. Funktsiooni f nimetatakse paarisfunktsiooniks, kui iga x X korral kehtib võrdus f(-x) = f(x). Funktsiooni f nimetatakse paarituks funktsiooniks, kui iga x X korral kehtib võrdus f(-x) = -f(x). Perioodilised funktsioonid. Funktsiooni f nimetatakse perioodiliseks, kui leidub konstant C > 0 nii, et iga x X korral

Matemaatiline analüüs 1
110 allalaadimist
thumbnail
33
doc

Matemaatika riigieksam

1) 2) 3) 4) 3 4 5 2 3 1- log 3 6 - log 4 0 ,125 3. Arvuta avaldise 27 -4 väärtus. 1) 0 2) 7,875 3) ­ 7,875 4) ­ 3,875 4. On antud perioodilise funktsiooni y = f ( x ) graafik, on teada, et funktsiooni periood T = 4, leia f (10) . 1) 0 2) 1 3) 2 4) 3 5. Leia kõigi täisarvude summa, mis jäävad lõigule [-5;7] ja kuuluvad funktsiooni y = 2 - log 2 ( 2 + 4 x - x 2 ) määramispiirkonda. 1) 7 2) 4 3) 5 4) 13 6. Leia funktsiooni suurima ja vähima väärtuse korrutis. 1) -2,25 2) 2,25 3) -2,125 4) 2,125 y = f ( x)

Matemaatika
526 allalaadimist
thumbnail
25
doc

MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega

Kanname tasandile riistuvad x ja y teljed.Vaatleme selles teljestikus joont G mis koosneb punktidest P=(x;f(x)) kusjuures P esimene kordinaad x jookesb läbi kogu määramispirkonda X .Seda joont nimetataksegi funktsiooni f graafikuks. Graafiku omadused Punkt P teist kordinaadi f(x) võib tõlgendada P „kõrgusena” x telje suhtes.Kui f(x)>0 ;siis on graafiku kõrgus positiivne,kui aga f(x) < 0 siis negatiivne. X-y teljestikus antud punkti üldkuju on P=(x,y) , funktsiooni f graafik koosneb aga punktidest P=(x, f(x)) , siis rahuldavad graafiku punktid võrrandit y = f(x) . Suuvaline y-teljega parallelne sirge saab funktsiooni grafikut lõigata maksimalselt ühes punktis. 3. Paaris- ja paaritud funktsioonid- Funktsiooni f nimetatakse paarisfunktsiooniks, kui iga x kuulub X korral kehtib võrdus f(−x) = f(x). Funktsiooni f nimetatakse paarituks funktsiooniks, kui iga x kuulub X korral kehtib võrdus f(−x) = −f(x).

Matemaatiline analüüs 1
43 allalaadimist
thumbnail
8
doc

Matemaatika praktikumi töö

Siit saab välja kirjutada võrratuse lahendipiirkonnad x=]-;-1[ U ]3;[ Otspunkte ei võta kaasa, sest meil on range võrratus. Intervallmeetodi puhul tuleb meeles pidada, et kui teguri aste on paarisarv, näiteks (x+1)2, siis joon põrkab, mitte ei läbi intervalli. Murdvõrratus Murdvõrratusi on kõige kergem lahendada, saades aru, et kui kahe arvu korrutis on positiivne, on ka nende jagatis positiivne ning vastupidi. Tänu sellele võib jagatise asendada korrutisega ning kasutada samuti intervallmeetodit. Enne seda tuleb aga kõik liikmed viia vasakule poole ning viia ühisele nimetajale. Mitterange võrratuse puhul tuleb kindlasti juurde mainida, et ei tohi lubada argumendi väärtusi, mille korral nimetaja väärtus oleks võrdne nulliga. Näide:

Matemaatika
23 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun