LOGARITM Arvu N logaritmiks alusel a nimetatakse arvu r, millega alust a astendades saadakse arv N logaN=r ar = N N logaritmitav (negatiivsetel arvudel ja arvul 0 puudub logaritm) a - logaritmi alus ( a>0 ja a 1 ) r - arvu N logaritm alusel a Logaritmi omadused: logaa = 1 loga1 = 0 alog a N = N a2log a N = ( alog a N)2=N2 a2+log a N =a2alog a N =a2N a2-log a N= a2 : (alog a N)= a2 : N a-log a N= N-1 Kümnendlogaritm Logaritmi aluseks on arv 10, mida ei kirjutata logN (log10N) Naturaallogaritm Logaritmi aluseks on arv e, mida ei kirjutata lnN (lneN) Avaldise logaritmimine ja potentseerimine Logaritminime avaldise logaritmi leidmine
Aritmeetiline jada-Jada, mille iga liige alates teisest on võrdne eelneva liikme ja selle jada jaoks mingi kindla arvu summaga nimetatakse aritmeetiliseks jadaks. Seda kindlat arvu nimetatakse aritmeetilise arvu jadaks ja tähistatakse tähega d. an=a1+(n-1)d an+1=an+d » an+1-an=d sn= a1+an/2 x n või sn=2a1+(n-1)d/2 Geomeetriline jada- Jada, mille iga liige alates teisest on võrdne eelneva liikme ja antud jada jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks. Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q n-1 n an=a1 x q q=an+1/n sn=a1(q -1)/q-1 Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q Arvu ,,A" nimetatakse jada ,,an" tõkestamatul kasvamisel ja tähistatakse sümboliga liman=A n
12. Jagatise tuletise sõnastus ja valem ()v =¿ Jagatise tuletis võrdub esimese teguri tuletise ja teise teguri korrutise, millest on lahutatud esimese teguri ja teise ' ' ' u u ∗v−v ∗u teguri tuletise korrutis ning jagatud nimetaja ruuduga. () v = v 2 13) Summa tuletis ( u + v )´= u’+v’ x
Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 6. Logaritm- ja eksponentfunktsioonid. Logaritm- ja eksponentvõrrandid ning võrratused Põhiteadmised · Arvu logaritmi mõiste ja omadused; · naturaallogaritm; · eksponent- ja logaritmfunktsioonid, nende graafikud ja omadused. Põhioskused · Avaldiste logaritmimine ja potentseerimine; · üleminek logaritmi ühelt aluselt teisele; · eksponent- ja logaritmfunktsiooni omaduste kasutamine vastavate võrrandite ja võrratuste lahendamisel; · eksponent- ja logaritmfunktsioonide graafikute skitseerimine ja lugemine;
1. Reaalarvud ja avaldised a, kui a 0 · Arvu absoluutväärtus a = - a, kui a < 0 · Astme mõiste ja omadused a 0 = 1, kui a 0 a1 = a a n = a a a a, kui n N 2 1 a-k = , kui a 0 ja k Z või ak
Logaritmid järgmine slaid esitluse lõpp Logaritmi definitsioon Definitsioon Arvu x logaritmiks alusel a ( a > 0, a 1 ) nimetatakse arvu c, mille korral ac = x. Näited Arvu 25 logaritm alusel 5 on 2, kuna 52 = 25 Arvu 0,125 logaritm alusel 2 on -3, kuna 2-3 = 1/8 = 0,125 Logaritmi leidmist nimetatakse logaritmimiseks. Arvu x (logaritmitava) logaritmi alusel a märgitakse sümboliga loga x . Näited logaritm log 3 81 = 4 log1/ 2 1024 = -10 alus logaritmitav algusesse eelmine slaid järgmine slaid esitluse lõpp Kümnend- ja naturaalogaritmid Logaritmi aluseks võib olla suvaline positiivne arv a 1. Kui alus a = 10, siis nimetatakse vastavat logaritmi kümnendlogaritmiks ja tähistatakse sümboliga log x (venekeelses kirjanduses lg x) . Näited log 100 = 2, sest 10 2 = 100
ab n a n b n n a a a nm a ( n a )m n a m b b a leiame a% arvust b x b 100 a a 2 Terve leidmine osa järgi: Ruutvõrrandi lahendamine a 100b ax 2 bx c 0 x 2 px q 0 a% arvust on b x b : 100 a 2 b b2 4ac p p Mitu protsenti moodustab arv a arvust b
V kursus EKSPONENT- JA LOGARITMFUNKTSIOONID NING -VÕRRANDID EKSPONENTFUNKTSIOON Eksponentfunktsiooniks nimetatakse funktsiooni, mis esitub valemina kujul y=ax kus a on positiivne ühest erinev reaalarv ning muutuja x on reaalarv. Uuri eksponentfunktsioonide omadusi graafiku põhjal avades faili lingil: http://www.allarveelmaa.com/ematerjalid/eksponent.pdf Saime teada, et eksponentfunktsiooni korral 1) positiivsusvahemik ühtib määramispiirkonnaga; 2) puuduvad nullkohad; 3) graafik läbib punkti (0;1); 4) funktsioon on kasvav, kui a ¿ 1 ja kahanev, kui 0
Kõik kommentaarid