Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Logaritm (5)

4 HEA
Punktid

Lõik failist

Ande Andekas-Lammutaja
MatemaatikaLogaritm
Arvu N
logaritmiks
alusel a nimetatakse arvu r, millega alust a astendades saadakse arv
N. Korrutise
logaritm on võrdne tegurite logaritmide summaga . Jagatise
logaritm on võrdne jagatava ja jagaja logaritmide vahega. Astme
logaritm on võrdne astendaja ja astme aluse logaritmi korrutisega.
Potentseerimiseks
nimetatakse avaldise logaritmi või arvu logaritmi järgi vastava
avaldise või arvu leidmist. Logaritmfunktsiooniks

Logaritm #1
Punktid 5 punkti Autor soovib selle materjali allalaadimise eest saada 5 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2007-11-27 Kuupäev, millal dokument üles laeti
Allalaadimisi 682 laadimist Kokku alla laetud
Kommentaarid 5 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Rain Ungert Õppematerjali autor

Autori kodulehekülgkool.spikriladu.net:

Sarnased õppematerjalid

thumbnail
2
doc

Logaritm

LOGARITM Arvu N logaritmiks alusel a nimetatakse arvu r, millega alust a astendades saadakse arv N logaN=r ar = N N ­ logaritmitav (negatiivsetel arvudel ja arvul 0 puudub logaritm) a - logaritmi alus ( a>0 ja a 1 ) r - arvu N logaritm alusel a Logaritmi omadused: logaa = 1 loga1 = 0 alog a N = N a2log a N = ( alog a N)2=N2 a2+log a N =a2alog a N =a2N a2-log a N= a2 : (alog a N)= a2 : N a-log a N= N-1 Kümnendlogaritm Logaritmi aluseks on arv 10, mida ei kirjutata logN (log10N) Naturaallogaritm Logaritmi aluseks on arv e, mida ei kirjutata lnN (lneN) Avaldise logaritmimine ja potentseerimine Logaritminime ­ avaldise logaritmi leidmine

Matemaatika
thumbnail
2
doc

Logaritmimine

a ­ logaritmi alus a > 1 v 0 < a < 0 ; a 1 b ­ logaritmitav b > 0 c ­ logaritmi väärtus cR log10 = 1, kuna 101=10 [kümnendlogaritm 10-st] lneb = c [naturaallogaritm b-st] Naturaallogaritmi alus on e2,7 Logaritmi II definitsioon logx2 log2x = (logx)2 log-1x log log-1x = Logaritmimise reeglid ja nende järeldused I Korrutise logaritmimise reegel Korrutise logaritm on võrdne tegurite logaritmide summaga. logabd = logab + logad Järeldus: Logaritmide summa on võrdne korrutise logaritmiga. logab + logad = logabd II Jagatise logaritmimise reegel Jagatise logaritm on võrdne lugeja ja nimetaja logaritmide vahega. Järeldus: Logaritmide vahe on võrdne jagatise logaritmiga. III Astme logaritmimise reegel Astme logaritm on võrdne astendaja ja astme aluse logaritmi korrutisega.

Matemaatika
thumbnail
6
doc

11. klassi materjal matemaatikas

ax x bx=(ab) nt: 2 x 5 =0,01 (2x5)=1/100=10 10=10 x=-2 2) sulgude ette toomine x1+x2 x1-x2 ax1 x ax2=a ax1/ax2=a 1)Ühesuguste alustega astme korrutamisel/jagamisel tulevad astendajad liita/lahutada 2)Astme astendamisel korrutatakse astendajad 3)Astme juurimisel tuleb astme näitajad jagada juurijaga 4)Juure astendamisel tuleb astendada juuritav 5)Juure juurimisel tuleb korrutada juurijad Arvu logaritm b Olgu avaldis a =c b 1) kui on antud a ja b, siis c=a b 2) kui on antud b ja c, siis a=c b 3) kui on antud a ja c, siis b=loga a-logaritmi alus b-logaritmitav c-arvu b logaritm alusel a Antud arvu logaritmiks antud alusel nimetatakse astendajat, millega tuleb astendada antud alust, et saada antud arv.

Matemaatika
thumbnail
1
doc

Logaritm

LOGARITM Eksponetfunktsiooniks nim funktsiooni y=ax ,kus a>0 ja a=1 Eksponetfunktsiooni omadused: *Eksponentfunktsiooni y=ax määramispiirkond on reaalarvude hulk R *Muutumispiirkond on positiivsette reaalarvude hulk. * Funktsiooni y=ax positiivsuspiirkond ühtib määramispiirkonnaga, negatiivususp. Puudub. *Funktsiooni y=ax on kasvav kui a>1 ja kahanev, kui 0 logaritm näitab mitemendasse astmesse tuleb võtta alus, et saada antud arv. · Arvu 1 logaritm mistahes alusel on null (loga1=0 a0=1) · Logartimi saab leida ainult positiivsest arvust, st logaritmitav peab olema alati postiivne. · Korrutise logaritm võrdub tergurite logaritmide summaga loga(b*c)=logab-logac · Jagatise logaritm võrdub jagatava ja jagaja logaritmide vahega. logab/c=logab-logac · Astme logaritm võrdub astendava logaritmi ja astendaja korrutisega. Logabn= n*logab

Matemaatika
thumbnail
1
odt

Arvude logaritmimine ja potenseerimine

ARVUDE LOGARITMIMINE JA POTENSEERIMINE Korrutise logaritm võrdub tegurite logaritmide summaga, s.t Loga N1 * N2 = loga N1 * loga N2 Jagatise logaritm võrdub jagatava ja jagaja logaritmide vahega, s.t loga N1 / N2 = loga N1 ­ loga N2 Astme logaritm võrdub astendaja ja astme aluse logaritmi korrutisega, s.t loga Nc = c* loga N Neet kolm valemit on logaritmimise eeskirjad. Need valemid on potenseerimise eeskirjad, kui vasak ja parem pool ära vahetada: s.t loga N1 * loga N2 = Loga N1 * N2 s.t loga N1 ­ loga N2 = loga N1 / N2 s.t c* loga N = loga Nc Näited (logaritmimine): 1.) log 10x = log 10 + log x = 1+ log x 2.) log 100a / b = log (100a) ­ log b = log 100 + log a ­ log b = 2 + log a ­ log b 3.) log 10 m = m * log 10 = m*1 = m Näited (potenseerimine): 1.) log a + loga 5 = log 5a 2

Matemaatika
thumbnail
11
ppt

Logaritmid

Logaritmid järgmine slaid esitluse lõpp Logaritmi definitsioon Definitsioon Arvu x logaritmiks alusel a ( a > 0, a 1 ) nimetatakse arvu c, mille korral ac = x. Näited Arvu 25 logaritm alusel 5 on 2, kuna 52 = 25 Arvu 0,125 logaritm alusel 2 on -3, kuna 2-3 = 1/8 = 0,125 Logaritmi leidmist nimetatakse logaritmimiseks. Arvu x (logaritmitava) logaritmi alusel a märgitakse sümboliga loga x . Näited logaritm log 3 81 = 4 log1/ 2 1024 = -10 alus logaritmitav algusesse eelmine slaid järgmine slaid esitluse lõpp Kümnend- ja naturaalogaritmid Logaritmi aluseks võib olla suvaline positiivne arv a 1. Kui alus a = 10, siis nimetatakse vastavat logaritmi kümnendlogaritmiks ja tähistatakse sümboliga log x (venekeelses kirjanduses lg x) . Näited log 100 = 2, sest 10 2 = 100

Matemaatika
thumbnail
8
docx

Logaritmid

Logaritmid 1. Logaritmi mõiste Arvu b logaritmiks alusel a nimetatakse astendajat x, millega alust a astendades saadakse arv b. Sümbolites: log a b=x a x =b . See võrdus seob omavahel kolm arvu. Neid nimetatakse järgmiselt: arv a on logaritmi alus, arv b on logartmitav ja arv x on logaritm. Seejuuures a > 0, a 1 b > 0; x R . Näiteid: 1) log 2 8=3 , sest 23 = 8. 1 1 2) log 3 =-1 , sest 3-1= . 3 3 1 1 3) log 36 6= , sest 36 2 =6 . 2 4) log 45 1=0 , sest 450 = 1. 5) log 5 (-25) ei ole olemas, sest võrrandil 5x = -25 lahend puudub. Logaritme alusel 10 nimetatakse kümnendlogaritmideks ja tähistatakse

Matemaatika
thumbnail
8
docx

EKSPONENT- JA LOGARITMFUNKTSIOONID NING -VÕRRANDID

x 1 x 13) 4 2 3 x ( log 2 ) 2 ( x1 = 3 ja x2 = -1,5 ) 2 2x 14) 4 3x 26 x ARVU LOGARITM Arvu logaritmi definitsioon: Arvu b logaritmiks alusel a nimetatakse arvu c, millega alust a astendades saadakse arv b. log a b=c a =b logaritm on astendaja! c log a b c a c b a loga b b , kus b > 0, a >0 ja a 1 Pea meeles! log a 1 0; log a a 1 b

Matemaatiline analüüs 1




Kommentaarid (5)

hoyohoyo profiilipilt
hoyohoyo: slegesti loetav ;)
23:28 23-08-2009
liis639 profiilipilt
liis639: abiks ikka
12:27 14-04-2009
liis639 profiilipilt
liis639: abiks ikka
12:28 14-04-2009



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun