Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Sissejuhatus robotitehnikasse kodutöö - sarnased materjalid

robot, lesande, kinemaatika, mber, teljestik, imsus, lesanne, rrandid, imsuse, trapets, steem, algoritm, kestuseks, lesandeid, snagi, momendil, diagrammid, planeerimine, mitsubishi, massid, kasutan, mathcad, kahetasandiline, ikese, neljanda, ldine, tasandid, vaatleme, kodut, pilane, algteadmised, kasutusv, likool, viimaseks, tmed, 10kg, juhendaja
thumbnail
23
doc

Insenerimehaanika-Loenguid ja harjutusi dünaamikast

J. Kirs Loenguid ja harjutusi dünaamikast 19 4. Näiteülesanded. Näide 4.1 Masspunkt massiga 2 kg liigub sirgjooneliselt jõu F mõjul, mille algväärtus on 8 N ja mis kasvab igas sekundis 2 N võrra. Leida punkti liikumise seadus kui v0 = 0 . Lahendus Suuname x-telje piki punkti liikumissirget. Kuna siin on tegemist ühedimen- N sionaalse juhtumiga, siis kasutame diferentsiaalvõrrandi üldkuju (4.7), kus Fkx k =1 on kõigi mõjuvate jõudude projektsioonide summa x-teljele, s.t N m x = Fkx (4.15) k =1 Millised jõ

Insenerimehaanika
83 allalaadimist
thumbnail
4
pdf

Küsimused YFR0011 kordamiseks ja eksamiks

(Absoluutselt elastne keha, absoluutselt mitteelastne selgitamiseks. 12. Kuidas konstrueeritakse ühikvektor ja miks see on vajalik? On sageli vajaminev tegevus, et valmistada Koos annavad need kohavektori muutumisvõrrandi ehk liikumisvõrrandi, mis on kinemaatika põhivõrrand. keha, absoluutselt jäik keha, ainepunkt, ainepunktide süsteem jne). hetkel vajaliku suunaga vektorit. | | 18. Lähtudes kiirenduse ja kiiruse definitsioonist, tuletage liikumisvõrrand

Füüsika
140 allalaadimist
thumbnail
52
doc

D’Alembert’i printsiip

Tallinna Tehnikaülikool Mehhatroonikainstituut Jüri Kirs, Kalju Kenk Kodutöö D-2 D'Alembert'i printsiip Tallinn 2007 Kodutöö D-2 D'Alembert'i printsiip Leida mehaanikalise süsteemi sidemereaktsioonid kasutades d'Alembert'i printsiipi ja kinetostaatika meetodit. Kõik vajalikud arvulised andmed on toodud vastava variandi juures. Seda, millised sidemereaktsioonid süsteemi antud asendis tuleb leida, on samuti täpsustatud iga variandi juures. Variantide järel on lahendatud ka rida näiteülesandeid koos põhjalike seletustega. Näiteülesandeid d'Alembert'i printsiibi kohta võib lugeda ka E. Topnik' u õpikus ,,Insenerimehaanika ülesannetest IV. Analüütiline mehaanika", Tallinn 1999, näited 14-17, leheküljed 39-49. Kõikides variantides xy-tasapind on horisontaalne, xz- ja yz-tasapinnad aga on vertikaalsed. Andmetes toodud suurused 0 ja 0 on vastavalt pöördenurga ja

Dünaamika
71 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvu

Matemaatika
1453 allalaadimist
thumbnail
38
pdf

Füüsika lahendused 45-86

LIIKUMISHULK JA JÕUIMPULSS 45. Pall massiga 0.40 kg visatakse vastu kiviseina, nii et ta liigub horisontaalselt edasi- tagasi. Tema kiirus enne põrget on 30 m/s ja pärast põrget 20 m/s. Leida liikumishulga muut ja keskmine jõud, mida sein avaldab pallile, kui põrge kestab 0.010 s. Lahendus: Joonis. Palli mass m = 0,4 kg Palli kiirus enne põrget v1= -30 m/s Palli kiirus pärast põrget v2= 20 m/s Põrke kestvus t = 0,010 s Liikumishulk e. impulss (vektor) ⃗ ⃗ ⃗ 0,4 30 / = 2 / ⃗ 0,4 20 8 / Liikumishulga muut avaldub ⃗⃗⃗⃗⃗⃗ ⃗ ⃗ 8 2 / Keskmise jõu leiame järgmiselt ⃗⃗⃗⃗⃗⃗ / ⃗⃗ = 2000 / = 2000 N

Füüsika
69 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

Kõrgema matemaatika kordamisküsimused 1. Maatriksi definitsioon. Maatriksi elemendid. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Transponeeritud maatriks 2. Maatriksite korrutise definitsioon. Korrutamise omadused ja seosed lineaarsete tehete ning korrutamise vahel. Ühikmaatriks. 3. Teist ja kolmandat järku determinandid. 4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste. Pöördmaatriksi definitsioon ja elementide leidmise eeskiri. Pöördmaatriksi omadused. 7. Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Vasturääkiv, kooskõlaline, määratu süsteem. Süsteemi maatriks ja laiendatud maatriks. 8. Süsteemi lahen

Algebra I
198 allalaadimist
thumbnail
210
docx

Elektroonilised laevajuhtimisseadmed konspekt

Radarid Raadiolokatsioonialused 1.1Raadiolokatsiooni põhimõte Raadiolokatsiooniks nimetatakse objektide avastamist ja avastatud objektide koordinaatide määramist meetodi abil, mis põhineb raadiolainete tagasipeegeldamisel ja peegeldunud raadiolainete vastuvõtul. Sellel põhimõttel töötavat seadet nimetatakse raadiolokaatoriks. Igapäevases keelepruugiks nimetatakse raadio- lokaatorit ka radariks. Termin tuleneb inglise keelest sõnast Radar – radiodetection and ranging 1.2 Radari töö põhimõte Navigatsiooniline raadiolokaator töötab järgmiselt. Saatja genereerib ja kiirgab ülikõrgsageduslikke raadiolaineid, mis sondeerivad ümbritsevat keskkonda. Kui raadiolaine teele satub keha, mille dielektriline läbitavus erineb keskkonna omast, siis teatud osa kehale langevast energiast peegeldub kajana tagasi, millest osa võtab vastu raadiolokaatori antenn ja kuvarile ilmub objekti kaja helendava punkti näol . Sellega on täidetud üks raadioloka

Laevandus
29 allalaadimist
thumbnail
12
pdf

Matemaatika eksami teooria 10. klass

Matemaatika eksami teooria Reaalarvud 1.1. Naturaal-, täis- ja ratsionaalarvud · Naturaalarvude hulk N (ainult positiivsed täisarvud) · Naturaalarvu n vastandarv -n defineeritakse selliselt, et n+(-n)=0 · Naturaalarvud koos oma vastandarvudega moodustavad täisarvude hulga Z (jaguneb pos ja neg) · Iga kahe täisarvu vahe on alati täisarv · Kui arv a ei jagu arv b-ga, siis on tegemist murdarvuga. Kõik täisarvud ja positiivsed ning negatiivsed murdarvud moodustavad kokku ratsionaalarvude hulga Q. Ratsionaalarv on arv, mis avaldub jagatisena a/b, kus a Z, b Z ja b 0. · Iga ratsionaalarv avaldub lõpmatu perioodilise kümnendmurruna. 1.2 Irratsionaal- ja reaalarvud · Arv, mis avaldub lõpmatu mitteperioodilise kümnendmurruna, on irratsionaalarv. · Arvutamisel piirdutakse ligikaudsete väärtustega e lähenditega, nt pii=3,14 · Kuna iga ratsionaalarv avaldub lõpmatu perioo

Matemaatika
79 allalaadimist
thumbnail
16
doc

Võnkumised

7. VÕNKUMISED 7.1 Tasakaalu liigid 1. Ebapüsiv tasakaal. Kui süsteem viia tasakaalust välja, siis hakkab talle mõjuma nullist erinev resultantjõud, mis on suunatud tasakaaluasendist eemale. 2. Püsiv tasakaal. Kui süsteem viia tasakaalust välja, siis hakkab talle mõjuma nullist erinev resultantjõud, mis on suunatud tasakaaluasendi poole. 3. Ükskõikne tasakaal. Süsteemile mõjuv resultantjõud on igas asendis null. 1 Võnkumisnähtused esinevad püsiva tasakaalu korral. Kui süsteem on piisavalt inertne ning hõõrdejõud ja keskkonnatakistus piisavalt väikesed, hakkab süsteem pärast tasakaaluasendist välja viimist võnkuma. Võnkumist iseloomustavad järgmised suurused. 1. Hälve x ­ süsteemi või keha kaugus tasakaaluasendist . 2. Amplituud A ­ süsteemi maksimaalne hälve. 3. Sagedus ­ ajaühikus sooritatud v�

Füüsika
120 allalaadimist
thumbnail
24
doc

ANALÜÜTILINE GEOMEETRIA RUUMIS, VEKTORID

ANALÜÜTILINE GEOMEETRIA RUUMIS, VEKTORID VEKTORI MÕISTE, MOODUL JA SUUND Neid suurusi, mida on võimalik iseloomustada ühe arvuga, nimetatakse skalaarseteks (temperatuur, mass, töö). Suurusi, mille iseloomustamiseks on vaja arvu ja suunda, nimetatakse vektoriaalseteks (jõud, kiirus, kiirendus). Definitsioon. (Geomeetriliseks) vektoriks nimetatakse suunatud sirglõiku, lõiku, millel tehakse vahet alguse ja lõpu vahel.   Kui vektori algus on punktis A ja lõpp punktis B, siis tähistatakse AB , a . Vektor on kindla sihi, suuna ja pikkusega lõik. Siht on teda kandva sirge siht. Suund on alguspunktist lõpp-punkti poole. Definitsioon. Vektori mooduliks nimetatakse tema pikkust, see on lõigu AB pikkust ja tähistatakse   AB  AB , a  a . Vektori moodul on skalaarne mittenegatiivne suurus. Definitsioon. Nullvektoriks nimetatakse vektorit, mille algus- ja lõpp-punkt langevad kok

Matemaatika
38 allalaadimist
thumbnail
40
docx

ElektriIised laevajuhtimisseadmed eksamiküsimuste vastused 2017

41 42 ELJ II eksamiküsimused ja vastused 1. Vaba vurr ja tema omadused Vurri, mille riputuspunkt ühtib raskuskeskmega ja telgedel puuduvad hõõrdejõud, nimetatakse vabaks vurriks. Vabal vurril on kolm omadust: 1) vaba vurr püüab säilitada muutumatuna oma peatelje suunda liikumatu taustsüsteemi suhtes. Kui vaba vurri peatelg suunata mingi tähe peale, siis sõltumata aluse liikumisest, millele vaba vurr on paigutatud, näitab vurri peatelg muutumatult suunda tähele. 2) Välise jõu rakendamisel vaba vurri teljele, mis ei ole peatelg, ei liigu peatelg mitte rakendatud jõu suunas, vaid ristsuunas sellele. Seda vaba vurri omadust nimetatakse pretsessiooniks. 3) Lühiajaline välisjõu mõju –näiteks löök- peateljele ei muuda tema suunda, küll aga põhjustab tema kiire võnkumise tasakaaluasendi ümber. Neid võnkumisi nimetatakse nutatsiooniks. 2. Vurri kineetil

Laevandus
13 allalaadimist
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

2007. aasta matemaatika riigieksami ülesanded koos lahenduste ja kommentaaridega 2 1. ÜLESANNE (5 punkti) Ülesannete tekstid 1 5x 1 I Antud on avaldis 2 , kus x 0 ja x . x 25 x 2 x 0 5 1) Lihtsustage see avaldis. 3 2) Arvutage avaldise väärtus, kui x 2 . Vastus andke täpsusega 10 2. 2 x 2 (9 x 2 x 0 ) 1 II Antud on avaldis , kus x 0 ja x . 1 3x 3 1)

Algebra ja Analüütiline...
778 allalaadimist
thumbnail
3
docx

Varrastarindi tugevusanalüüs pikkele

Kodutöö nr 1 õppeaines TUGEVUSÕPETUS (MES0240) Variant Töö nimetus A B Varrastarindi tugevusanalüüs pikkele 8 2 Üliõpilane Üliõpilaskood Esitamise kuupäev Õppejõud Priit Põdra Tarind, mis koosneb kahest komponendist, terastrossist 7x7 ja männipuit-ümarvardast, on koormatud vertikaalse koormusega F, mis mõjub komponente ühendavale liigendile. Arvutada puitvarda optimaalne läbimõõt d jakoormuse F suurim lubatav väärtus lähtudes komponentide omavahelisest asendist ja komponentide tugevusomadustest (valmistamise tolerantse, pingekontsentratsiooni ja puitvarda võimalikku nõtket arvestamata). Trossi nimiläbimõõ

Tugevusõpetus
85 allalaadimist
thumbnail
24
pdf

Füüsika 1 eksam

r r Kui at > 0 , siis a t v Normaalkiirendus r r Kui at < 0 , siis a t v Iseloomustab kiiruse suuna muutumist ajas. r v2 r an = n , kus n on kiirusega ristiolev r ühikvektor Kinemaatika võrrandid Pöörlemise kinemaatika võrrandid ax t 2 = 0 ± t x = x0 + v0 x t + 2 t2 = 0 t ± v x = v0 x + a x t 2 Ühtlaselt muutuval, ühesuunalisel liikumisel: s v = v0 ± a t v a t2 at s = v0 t ± 2

Füüsika
193 allalaadimist
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

10.klass a1 b1 c1 1. Reaalarvude piirkonnad kui D = 0; D x = 0; D y = 0, siis = = a 2 b2 c 2 2. Astme mõiste üldistamine a m a n = a m +n c)pole lahendeid a1 b1 c a m : a n = a m -n , kui m > n kui D = 0; D x 0; D y 0, siis = 1 a 2 b2 c 2 ( a b) n = a n b n n 12. Ruutvõrrandi süsteemid a an 13. Kolmerealine determinant = n , kui b 0 b b 14. Kolme tundmatug

Matemaatika
1299 allalaadimist
thumbnail
8
doc

12. klass matemaatika kordamine

1. Arvud, mis väljendavad risttahuka mõõtmeid moodustavad geomeetrilise jada. Risttahuka põhja pindala on 108 m² ja täispindala 888 m². Leia risttahuka mõõtmed. 2. Urnis on 5 musta, 7 kollast ja 4 punast palli. Leia tõenäosus, et juhuslikult võetud kolme palli hulgas on. 1) vähemalt 2 kollast palli; 2) Kõik erinevat värvi pallid; 3) kõik ühtevärvi pallid. 3. Leia kõik reaalarvude paarid (x;y), mis rahuldavad võrrandit 2 x +1 = 4 y 2 +1 ja võrratust 2 x 2 y . 4. Kahe positiivse arvu vahe moodustab 1/19 nende kuupide vahest, nend4e korrutis on aga ½ võrra väiksem nende ruutude poolsummast. Leia need arvud. 5. Lahenda võrrand 3sin 9 + 3 = 3 vahemikus (-2; 2). 6. Võrdkülgsesse kolmnurka küljega a on kujundatud teine võrdkülgne kolmnurk, mille tipud asuvad esimese kolmnurga külgedel jaotades need suhtes 1:2. Leia väiksema kolmnurga pindala. 7. Koonusekujulise veiniklaasi kõrgus on h

Matemaatika
327 allalaadimist
thumbnail
8
pdf

Kompleksarvud gümnaasiumiõpikus

Arvu a nimetatakse kompleksarvu a + ib reaalosaks ja arvu bi selle imaginaarosaks. KOMPLEKSARVUD Kui a = 0, siis on tegemist imaginaararvuga bi, kui b = 0, siis saame arvu a + 0·i, mis on reaalarv a. Kui a = b = 0, siis siis saame tulemuseks arvu 0. KOMPLEKSARVU MÕISTE. TEHTED KOMPLEKSARVUDEGA Kaks kompleksarvu on omavahel võrdsed parajasti siis, kui nende reaalosad ja 1. Kompleksarvu mõiste imaginaarosad on vastavalt võrdsed: a + ib = c + id

Matemaatika
16 allalaadimist
thumbnail
8
doc

Punktmassi kinemaatika

Punktmassi kinemaatika. 1.1 Kulgliikumine Taustkeha ­ keha, mille suhtes liikumist vaadeldakse. Taustsüsteem ­ kella ja koordinaadistikuga varustatud taustkeha. Punktmass ­ keha, mille mõõtmed võib kasutatavas lähenduses arvestamata jätta (kahe linna vahel liikuv auto, mille mõõtmed on kaduvväikesed linnadevahelise kaugusega; ümber päikese tiirlev planeet, mille mõõtmed on kaduvväikesed tema orbiidi mõõtmetega jne.). z punktmass v r O taustkeha y x taustsüsteem r - punktmassi kohavektor vaadeldavas taustsüsteemis. v - punktmassi kiirusvektor vaadeldava taustsüsteemi suhtes

Füüsika
152 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3 10. klass Viljandi Täiskasvanute Gümnaasium REAALARVUDE PIIRKONNAD Kuna erinevates õpikutes kasutatakse reaalarvude piirkondade märkimiseks erinevaid tähistusi, siis oleks kasulik teada mõlemat varianti. Nimetus Tingimus Esimene

Matemaatika
79 allalaadimist
thumbnail
28
docx

Võlli tugevusarvutus painde ja väände koosmõjule

1. Algandmed Joonis 1. Rihmülekande võll Joonisel nr.1 on välja toodud rihmülekande ühtlase võlli skeem, millele kogu ülesanne on püstitatud. Võlli materjal: teras E335 Voolepiir tõmbel: σy=325 Mpa Varuteguri väärtus: [S]=5 Võlliga ülekantav võimsus: P=5,5kW Iga rihma vedava ja veetava haru tõmbejõudude F ja f seos on F ≈ 2,5*f Väiksema rihmaratta efektiivläbimõõt: D1=140 mm Suurema rihmaratta efektiivläbimõõt: D2=2*D1=280 mm Võlli pöörlemissagedus: n=2400 p/min F1 ja f1 on väikse rihmaratta rihmade tõmbejõud ning F2 ja f2 on suure rihmaratta rihmade tõmbejõud, kusjuures F1≠f1 ja F2≠f2. Iga rihmaratta rihmade harud on paralleelsed. 2. Võlli aktiivsed koormused 2.1 Väänav koormus Väänav koormus = ülekantav (kasulik) pöördemoment. P Võlliga ülekantav pöördemoment: M= ω , kus P – v

Tugevusõpetus ii
283 allalaadimist
thumbnail
32
pdf

Vahelduvvool

6 Vahelduvvool 6.1 Vahelduvvoolu mõiste Vahelduvvooluks nimetatakse voolu, mille suund ja tugevus ajas perioodiliselt muutub. Tänapäeva elektrijaotusvõrkudes on kasutusel vahelduvvool. Alalisvoolu kasutatakse seal, kus on vaja võrgust sõltumatut toiteallikat ­ akut autol või taskutelefonis, toiteelementi käe- või seinakellas. Alalisvooluga töötab praegu veel enamus transpordivahendeid ­ elektrirong, tramm, trollibuss. Elektrienergia saadakse nende jaoks aga vahelduvvooluvõrgust alaldusalajaamade kaudu. Alalisvooluga töötavad ka elektrokeemilised ja galvaanikaseadmed. Alalisvool, mida seni vaatlesime, on ajalooliselt varemtuntud ja lihtsam. Lihtsamad on ka teda kirjeldavad matemaatilised seosed. Paljud neist kehtivad ka vahelduvvoolu korral, palju on ka erinevusi. Vahelduvvoolu saamiseks enamkasutatav on siinuspinge, raadiotehnikas kasutatakse näiteks ka saehammaspinget. Käesolevas peatükis tuleb vaatluse alla siinuseline vahelduvvool.

Füüsika
35 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

ANALÜÜTILISE GEOMEETRIA VALEMID 1. Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z 1 8. Vektorite kollineaarsus a b,(

Analüütiline geomeetria
140 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

ANALÜÜTILISE GEOMEETRIA VALEMID 1. Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z 1 8. Vektorite kollineaarsus a b,(

Analüütiline geomeetria
39 allalaadimist
thumbnail
60
doc

Kineetilise energia teoreem

Tallinna Tehnikaülikool Mehhatroonikainstituut Jüri Kirs, Kalju Kenk Kodutöö D-3 Kineetilise energia teoreem Tallinn 2009 Kodutöö D-3 Kineetilise energia teoreem Leida mehaanikalise süsteemi mingi keha kiirus ja kiirendus, või mingi ploki nurkkiirus ja nurk- kiirendus vaadeldaval ajahetkel, kasutades kineetilise energia muutumise teoreemi. Mõningates variantides tuleb leida ainult mingi keha kiiruse. See, millise suuruse tuleb variandis leida, on täpsustatud iga variandi juures. Kõik süsteemid on alghetkel paigal. Kõik vajalikud arvulised andmed on toodud vastava variandi juures. Kõik rattad veerevad ilma libisemata. Kõik kehad on absoluutselt jäigad, niidid on venimatud ning kaalutud. Niidid plokkide suhtes kunagi ei libise. Kõik rattad ja plokid on ühtlased ümmargused kettad, kui variandis ei ole spetsiaalselt teisiti mä

Dünaamika
75 allalaadimist
thumbnail
38
pdf

Füüsika ülesannete lahendused 1-44

1. Vektorarvutused. 1. Murdmaasuusataja sõidab 1.00 km põhja poole ja siis 2.00 km itta. Maa on horisontaalne. Kui kaugel ja mis suunas asub ta lähtepunktist? Lahendus: Skeem.... Phytagorase teoreemi järgi saame kauguse - Ja nurga tangensi definitsiooni järgi leiame nurga Vastus: Suusataja kaugus alguspunktist on 2,24 km ja ta asub 63,4⁰ põhjast itta (võib ka öelda 90: - 63,4: = 26,6⁰ idast põhja) 2. Vektori pikkus on 3.00 m ja ta on suunatud x-teljest 45˚ päripäeva. Kui suured on selle vektori x- ja y-komponendid? Lahendus: Joonis Komponentide leidmiseks kasutame Valemeid ja kus D on vektori pikkus ja α vektori ja tema komponendi vaheline nurk.

Füüsika
61 allalaadimist
thumbnail
36
pdf

Vektor. Joone võrrand. Analüütiline geomeetria

Vektor. Joone võrrand. Analüütiline geomeetria. Hele Kiisel, Hugo Treffneri Gümnaasium Analüütilise geomeetria teemad on gümnaasiumi matemaatikakursuses jaotatud kaheks osaks: analüütiline geomeetria tasandil, mida õpetatakse nii kitsas kui laias kursuses 10. klassi viimase teemana ja analüütiline geomeetria ruumis, mida õpetatakse vaid laias matemaatikas 12. klassis. Esimene kursus kannab pealkirja ,,Vektor tasandil. Joone võrrand" nii laias kui kitsas matemaatikas, kuid erinevused sisus on olulised. Kitsas matemaatikas peab kolmanda kursuse lõpetaja oskama selgitada vektori mõistet ja selle koordinaate; liitma ja lahutama vektoreid ning korrutama vektoreid arvuga nii geomeetriliselt kui ka koordinaatkujul; arvutama vektori pikkust; leidma vektorite skalaarkorrutist ning tundma vektorite ristseisu ja kollineaarsuse tunnuseid. Õpilane koostab sirge võrrandi, kui sirge on määratud punkti ja tõusuga, tõusu ja algordina

Matemaatika
38 allalaadimist
thumbnail
37
pdf

FÜÜSIKA I PÕHIVARA

FÜÜSIKA I PÕHIVARA Põhivara on mõeldud üliõpilastele kasutamiseks õppeprotsessis aines FÜÜSIKA I . Koostas õppejõud P.Otsnik Tallinn 2003 2 1. SISSEJUHATUS. Mõõtühikud moodustavad ühikute süsteemi. Meie kasutame peamiselt rahvusvahelist mõõtühikute süsteemi SI ( pr.k. Syste`me Internatsional) mis võeti kasutusele 1960 a. Selle süsteemi põhiühikud on : meeter (m), kilogramm (kg) , sekund (s), amper (A), kelvin (K), kandela (cd) ja mool (mol). Skalaarid ja vektorid. Suurusi , mille määramiseks piisab ainult arvväärtusest,nimetatakse skalaarideks. Näiteks: aeg , mass , inertsmoment jne. Suurusi , mida iseloomustab arvväärtus (moodul) ja suund , nimetatakse vektoriks. Näiteks: kiirus , jõud , moment jne. Vektoreid tähistatakse sümboli kohal oleva noolekesega v , F . Tehted vektoritega: 1. Vektori korrutamine skaalariga. av = av 2. Vektorite liitmine.

Füüsika
19 allalaadimist
thumbnail
414
pdf

TTÜ üldfüüsika konspekt

15.3 Induktiivsus 15.4 Solenoidi induktiivsuse arvutamine 15.5 Magnetvälja energia 16 GEOMEETRILINE OPTIKA 16.1 Geomeetrilise optika seadused 16.2 Fermat’ printsiip 16.3 Läätsed 16.4 Kujutise konstrueerimine läätsedes. Läätse suurendus, õhukese läätse valem. 16.4 Läätse optiline tugevus. Luup 17 LAINEOPTIKA 17.1 Elektromagnetlaine energia. Poyntingi vektor 17.2 Polariseeritud valgus - 1. Punktmassi kinemaatika. 1.1 Kulgliikumine Taustkeha – keha, mille suhtes liikumist vaadeldakse. Taustsüsteem – kella ja koordinaadistikuga varustatud taustkeha. Punktmass – keha, mille mõõtmed võib kasutatavas lähenduses arvestamata jätta (kahe linna vahel liikuv auto, mille mõõtmed on kaduvväikesed linnadevahelise kaugusega; ümber päikese tiirlev planeet, mille mõõtmed on kaduvväikesed tema orbiidi mõõtmetega jne.). z

Füüsika
177 allalaadimist
thumbnail
27
doc

Astronoomia konspekt

1 MERESÕlDUASTRONOOMIA OLEMUSEST Üldastronoomia käsitleb universumi ehitust, taevakehade omavahelist asendit, nende tegelikku liikumist ja püüab seletada universumis toimuvate protsesside põhjusi ning arengut. Meresõiduastronoomia tegevusalaks on taevakehade näiv liikumine, selle seos ajaga ja saadud tulemuste kasutanine navigatsioonis. Kokkuvõttes peab meresõiduastronoomia võimaldarna määrata laeva asukohta ja kompassiõiendit taevakehade järgi. Kuna meresõiduastronoomia põhiülesanded lahendatakse taevakehade näiva liikumise alusel, siis lähtutakse seisukohast, et kogu universum tiirleb ümber Maa.Võib-olla seepärast ei olegi meresõiduastronoomia teadusena kirikuga kunagi konflikti läinud. Päikesesüsteemi kuuluvate taevakehade liikumise vaatluse juures peab siiski arvestama tegelikku olukorda, et seletada nende koordinaatide muutumist taevasfääril. Meresõiduastronoomia jaoks on Maa

Astronoomia
87 allalaadimist
thumbnail
20
pdf

Geomeetria/Planimeetria.

a 2 2 d2 Romb d1  d 2 h a S  ah   a 2 sin  d1 2  P  4a a b Trapets k ab Kesklõik k  h 2 ab S  h  kh 2 a 1

Geomeetria
78 allalaadimist
thumbnail
5
doc

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks See teoreem kehtib meelevaldsete lineaarsete võrrandisüsteemide lahendamiseks, kus võrrandite ja tundmatute arvud on võrdsed. Lisaks peavad võrrandisüsteemid olema korrastatud. Kui lineaarse võrrandisüsteemi maatriksi determinant on nullist erinev, siis avalduvad tundmatud murdudena, mille nimetajaks on süsteemi maatriksi determinant ja mille lugejad on maatriksi, mis saadakse süsteemi maatriksist vastava tunmatu kordajate veeru asendamisel vabaliikmete veeruga, determinandid. Kui maatriks täidab Crameri teoreemi eeldusi, siis öeldakse, et tegemist on Crameri peajuhtumiga. Seega Crameri peajuhtumil 1) m=n, 2) |A| 0. Tähendab, Crameri peajuhul on lineaarsel võrrandisüsteemil üksainus lahend, mis avaldub valemitega x1=|A1|/|A| x2=|A2|/|A| .. xn=|An|/|A| Determinantide omadused, determinandi arendus rea (veeru) järgi Omadus 1. Transponeerimisel (ridade ja veergude ringivahetami

Lineaaralgebra
177 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

MITME MUUTUJA FUNKTSIOON 1. Punkti ümbrus. Kinnine ja lahtine piirkond. Mitme muutuja funktsioon ja selle määramispiirkond. Def. 1.1. ( 0 0 )0 Punkti P x1 , x 2 ,..., x n ümbruseks n-mõõtmelises ruumis R n nimetatakse punktide hulka { U ( P ) , mis rahuldavad tingimust U ( P ) = Q( x1 , x 2 ,..., x3 ) R n ( P, Q ) < , kus } ( P, Q ) = PQ = (x1 - x10 ) + (x 2 2 - x 20 ) 2 ( + ... + x n - x n0 ) 2 Def. 1.2. Piirkonnaks D kahemõõtmelises ruumis nimetatakse selle ruumi osa, mis on piiratud mingi joonega L, mida nimetatakse rajajooneks. Kolme- või enamamõõtmelise ruumi piirkonnaks D nimetatakse selle osa, mis on piiratud

Matemaatiline analüüs 2
240 allalaadimist
thumbnail
12
pdf

2009. aasta matemaatika riigieksami ülesanded ja lahendused

MATEMAATIKA RIIGIEKSAM 2010 Eksami eesmärk Matemaatika riigieksami peamisteks eesmärkideks on: · teada saada, kui struktureeritud ja korrastatud on gümnaasiumilõpetaja matemaatikaalased teadmised; · selgitada välja, kui hästi suudab õpilane õpitut rakendada (näiteks lahendada mitterutiinseid ülesandeid); · teada saada, milline on gümnaasiumilõpetajate matemaatikaalane ettevalmistus õpingute jätkamiseks järgmisel haridusastmel. Eksami vorm Matemaatika riigieksami põhieksam on kahes variandis ja lisaeksam on ühes variandis. Matemaatika riigieksam (ja ka lisaeksam) on kaheosaline kirjalik eksam ­ 1. osa kestus on 120 minutit ja 2. osa kestus on 150 minutit. Kahe eksamiosa vahel on 45 minutiline vaheaeg. Käesoleva õppeaasta matemaatika riigieksam toimub 4. mail 2010.a, algusega kell 10.00. Eksaminandidele, kes mõjuvatel põhjustel põhieksamil osaleda ei saa, korraldatakse lisaeksam 17. mail 2010.a, alg

Matemaatika
1272 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun