Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

RAKENDUSLIK SÜSTEEMITEOORIA 2012 - sarnased materjalid

lahend, sihifunktsioon, kumer, muutuja, sihifunktsiooni, tõenäosuslik, optimum, grad, karakteristikud, keskväärtus, jaotusfunktsioon, lubatava, juhuslikud, jaotustihedus, rangelt, lisatingimus, jaotusfunktsiooni, kovariatsioon, kriteerium, sõltuvus, kumera, diskreetse, vektor, sammul, deterministlik, nõgus, jaotusseadused, tuletis, gradient
thumbnail
15
pdf

Kordamisküsimuste vastused

Statistika teooria I 1. Kirjeldava statistika põhimõisted: aritmeetiline keskmine, mediaan, kvartiilid, mood, dispersioon, standardhälve, haare. Esitada definitsioonid ja osata antud andmeväärtuste puhul neid mõisteid rakendada N x + x 2 + ... + x N xi Aritmeetiline keskmine: µ = 1 = i =1 N N N-üldkogumi maht Aritmeetilise keskmise erijuht on kaalutud keskmine: N N N µ = 1 µ1 + 2 µ 2 + ... + m µ m N N N µ1, µ2,..., µm on m-rühma keskmised N1 N 2 N , ,..., m on nn kaalud N N N Mediaan: Kui N on paaritu, siis on mediaan järjestatud statistilise rea (variatsioonirea) keskmine liige; kui N on paarisarv, si

Tõenäosusteooria ja...
692 allalaadimist
thumbnail
12
doc

Rakenduslik süsteemiteooria - konspekt

Süsteem – omavahel seotud elementide hulk, mida vaadeldakse ühtse tervikuna. Alamsüsteem – süsteemi S kuuluv süsteem(nt süsteem S1). Ülemsüsteem – süsteem Z kuhu kuulub süsteem S. Väliskeskkond – süsteemi S väliskeskkonnaks on kõik see, mis ei kuulu süsteemi S. Avatud süsteem – süsteem, mis on seotud väliskeskkonnaga. Väliskeskkond mõjutab süsteemi ja vastupidi. Suletud süsteem – süsteem millel ei ole seoseid väliskeskkonnaga. Süsteemi sisenditeks (sisendelementideks) on need süsteemi elemendid, milliseid vaadeldakse kui algressursse, algmaterjale, lähtesuurusi, algandmeid või -põhjuseid. Sisendid on süsteemi sõltumatud muutujad. Sisendid võivad olla mittejuhitavad või juhitavad. Süsteemi väljunditeks (väljundelementideks) on need elemendid, milliseid vaadeldakse kui tegevuse tulemusi või tagajärgi. Väljundid on süsteemi sõltuvad muutujad. Süsteemi operaatoriks (protsessiks, funktsiooniks) nimetatakse eeskirja, algoritmi, tehnoloogi

Energia ja keskkond
25 allalaadimist
thumbnail
20
pdf

Tõenäosusteooria ja matemaatiline statistika

Ta tegi kindlaks, et kuigi pikkadel isadel on enamasti pikad pojad, ei kehti selline seos mitte alati. Uurimistulemuste põhjal tegi Galton kindlaks laste pikkuses massiliselt ilmneva „taandumise“ rahvastiku kekmisele pikkusele, nimetades seda regressiooniks. Sõna regerssioon kasutatakse ühepoolsete tõenäosuslike sõltuvuste iseloomustamiseks, mis tähendab, et ühte kahest muutujaks loetakse sõltumatuks ja see väljendab põhjust ning teine muutuja väljendab tagajärge. Väljundis on regressiooni statistika, R-ruut, normaliseeritud, standartne viga ja uurimine. Dispersiooni analüüsis on regressioon, jääk ja tulemus.

Tõenäosusteooria ja...
162 allalaadimist
thumbnail
34
doc

TÕENÄOSUSTEOORIA

TÕENÄOSUSTEOORIA 1 Juhuslik sündmus 1.1 Juhusliku sündmuse mõiste. Mingi katse või vaatluse tulemusena toimub teatud sündmus. Sündmusi tähistatakse tähtedega A, B, C, … . Iga sündmust vaadeldakse teatud tingimuste kompleksi olemasolu korral. Näiteks lumi sulab 0 kraadi juures normaalrõhul. Sündmused võib jaotada kolme liiki: 1. Kindel sündmus , mis toimub alati antud tingimuste juures ( päike tõuseb idast ja loojub läände). 2. Võimatu sündmus  , mis ei saa kunagi antud tingimuste kompleksi korral toimuda (rong sõidab maanteel, päike loojub itta). 3. Juhuslik sündmus, mis võib toimuda või mitte toimuda (paarisnumbrisaamine täringuviskel, mündi viskamisel saada kull või kiri). 1.2 Sündmuste vahelised seosed. Sündmuste vahelised seosed on nagu vastavate hulkade vahelised seosed. 1. AB, sündmus B järeldub sündmusest A ehk sündmus A sisaldub sündmuses B. Näiteks: A = (2) ja B = (2;4;6), siis

Tõenäosus
46 allalaadimist
thumbnail
8
doc

Kõrgema matemaatika kordamisküsimused ja vastused

Lubatavad elementaarteisendused lineaarse võrrandisüsteemi laiendatud maatriksiga. Võimalike lahendite arv. Lineaarse võrrandisüsteemi üld- ja erilahend. Lineaarne vôrrandisüsteem ­ Olgu antud n muutujat, x1, x2, x3,...,xn ja arvud a1, a2, a3, ..., an, saame muutujate suhtes lineaarse vôrrandi a1x1 + a2x2 + ... + anxn = b, kui meil on m lineaarset vôrrandit samade muutujate suhtes, saame lineaarse vôrrandisüsteemi. Lineaarse vôrrandsüsteemi normaalkuju (a ­ kordaja, x ­ muutuja, b ­ vabaliige): a11 x1 + a12 x 2 +... + a1n x n = b1 a x + a x +... + a x = b 21 1 22 2 2n n 2 .............................................. a m1 x1 + a m 2 x 2 +... + a mn x n = bm Lineaarse vôrrandsüsteemi laiendatud maatriks ­ moodustatakse normaalkujul vôrrandisüsteemi elementidest ja vabaliikmeid on eraldatud püstkriipsuga. Lubatavad elementaarteisendused: 1) Rea korrutamine nullist erineva arvuga 2) Ridade vahetamine

Matemaatika
241 allalaadimist
thumbnail
32
docx

Tõenäosusteooria ja matemaatiline statistika

Teooria eksami probleemid I osa Tõenäosusteooria 1. Defineerige sündmuste algebra. Tooge vähemalt 2 sündmuste algebra mittetriviaalset näidet Klassi F0 nimetatakse sündmuste algebraks, kui: 1) ∅,Ω ∈ F0 (Ω < ∞; Ω – elementaarsündmuste ruum ehk hulk, mille elementideks on juhusliku katse kõikvõimalikud tulemused) 2) A ∈ F0 => Ā ∈ F0 3) A,B ∈ F0 => A + B ∈ F0 Nt: Ω = {1,2,3,4,5,6} a. F = {∅,Ω} b. A = {2,3,5}; F = {∅,Ω,A,Ā} c. F = {∅,Ω,{2,4,5},{5},{1,3,6},{1,2,3,4,6},{1,3,5,6}, {2,4}} 2. Tõenäosuse aksiomaatiline definitsioon. Tõestada aksioomide põhjal, et tühja hulga tõenäosus on null. Tuletada liitmislause 2 sündmuse (liidetava) puhul Kujutist P: F → [0;1] nimetatakse tõenäosuseks, kui: 1) P(Ω) = 1 2) AB = ∅ => P

Tõenäosusteooria ja...
329 allalaadimist
thumbnail
13
pdf

Majandusmatemaatika IIE eksami kordamisküsimused

.. , An ja b. Uue süsteemi leidmiseks tuleb süsteemi igas reas vasakul pool korrutada vastava järjekorranumbriga tundmatu veerumaatriks esimese tundmatu veerumaatriksiga, seejärel teisega jne. Paremale poole jääb vastava järjekorranumbriga tundmatu veerumaatriksi korrutis vabaliikmete veerumaatriksiga. Märkused. 1) Saame võrrandisüsteemi lahendid, kui projekteerime parema poole b veergude ruumi. 2) Kui parem pool b kuulub veergude ruumi, on Ax = b täpne lahend leitav Gaussi meetodiga. 3) TEOREEM: Normaalvõrrandisüsteemil ATA = ATb on ühene lahend, kui maatriksi A veerud on lineaarselt sõltumatud. 4) Gaussi teisenduste korral vähimruutude lahend muutub, see pole vähimruutude ülesandes lubatud. 4. Kumerad hulgad Def: Hulk QcR2 on kumer, kui kõikide punktipaaride x1,x2 jaoks kogu neid punkte ühendav sirglõik kuulub sellesse hulka. Teoreem: Kumerate hulkade Q1...Qk ühisosa on kumerhulk. Tõestus: =!!!! !

Majandusmatemaatika
623 allalaadimist
thumbnail
20
docx

Tõenäosusteooria ja statistika

1. Üldkogum – ehk populatsiooni all mõeldakse kõiki juhtumeid või situatsioone, mille kohta uurijad soovivad, et nende poolt saadud järeldused või prognoosid kehtiksid. Valim – liikmed tuleb valida juhuslikult, st igal üldkogumi liikmel peab olema võrdne võimalus saada valitud valimisse. Valimimaht – Valimisse valitavate objektide arv. Tunnuste- all mõistetakse liikmeid kirjeldavaid erinevaid omadusi. 2. Statistilise uurimistöö etapid. Mingi probleemi statistilise uurimisel läbitakse 4 tööetappi:  Uuringu ettevalmistamine  Statistiline vaatlus või eksperiment  Vaatlusandmete kokkuvõtte ja esialgne töötlemine  Andmete analüüs, järelduste ja üldistuste sõnastamine. 3. Statistlise vaatluse vead. Eristatakse vaatlusmeetodist tulenevaid metodoloogilisi vigu ja registreerimisvigu. Metodoloogilised nt : valimivaatlusel esinevad representatiivsusvead – valim ei kirjelda üldkogumit adekvaatselt. Vaa

Tõenäosusteooria ja...
154 allalaadimist
thumbnail
2
doc

TN teooria III kordamisküsimused

Diskreetne juhuslik suurus on määratud, kui on teada tema võimalikud väärtused ja nende väärtuste ilmumise tõenäosused, st. kui on antud jaotustabel. f(xi)=1 Jaotustabel F(x)=P(X1 F(x)= xi keskväärtus ja dispersioon. Keskväärtuse ja dispersiooni omadused. Diskreetse lõpliku arvu väärtustega juhusliku suuruse keskväärtus on summa EX=ni=1xif(xi). (loenduva arvu väärtustega juhusliku suuruse keskväärtus avaldub lõpmatu summana. Keskväärtuse omadused: Olgu X,Y ja X1, X2,...,Xn juhuslikud suurused, siis 1) E(c)=c, kui c on konstant. Tõestus

Tõenäosusteooria ja...
252 allalaadimist
thumbnail
28
docx

Tõenäosusteooria ja matemaatilise statistika kordamisküsimused

SÜNDMUSE TÕENÄOSUS 1. Mis on sündmus tavaelus? 2. Mis on juhuslik sündmus? 3. Millisest aspektist me tahame sündmusi uurida? 4. Sündmuse matemaatiline definitsioon (elementaarsündmus, elementaarsündmuste ruum, sündmus). Elementaarsündmus on mingi vaadeldava protsessi või läbiviidava katse tulemus. Elementaarsündmuste ruumi moodustavad kõik elementaarsündmused ehk kõikvõimalike tulemuste hulk. Sündmuseks nimetatakse mingit suvalist elementaarsündmuste ruumi alamhulka. 5. Sündmuse toimumise kriteerium. Sündmuse toimumise juures on meile oluline vaid see, kas toimub või mitte. Sündmus toimub, kui toimub sündmust määravatest elementaarsündmustest üks. 6. Mitu erinevat sündmust saab moodustada n-elemendilise elementaarsündmuste ruumi põhjal? Tõesta! N-elemendilise elementaarsündmuste ruumi põhjal saab moodustada 2 n sündmust, mille hulka on arvestatud ka tühihulk. 7. Sündmuste liigitus (kindel, võimatu, vastandsündmus) Kind

Tõenäosusteooria ja...
294 allalaadimist
thumbnail
8
docx

Rakendusstatistika kokkuvõte

Seega saab juhuslike suuruste liitumisel tekkivate juhuslike suuruste jaotust vähemalt ligikaudu kirjeldada normaaljaotusega. Ei ole vaja suur liidetavate arvu, lubatav on liidetavate mõningane vastastikune sõltuvus, normaaljaotusega liidetavate summa jaotus on täpselt normaaljaotus, katseandmete analüüsi kogemus paljudes valdkondades on näidanud, et suur enamus katseandmeid on hästi kirjeldatavad normaaljaotusega. Normaaljaotusel on kaks parameetrit, mis on vastava juhusliku suuruse keskväärtus ja standardhälve. Normaaljaotus on sümmeetriline. Normeeritud normaaljaotus on normaaljaotuse erijuhtum, kui keskväärtus ja standardhälve on vastavalt 0 ja 1. Tähistatakse X-N(0,1). K sigma reegel: näitab, kui suur on juhusliku suuruse normaaljaotuse korral tõenäosus sattude piirkonda keskväärtus pluss-miinus k standardhälve. Lognormaalne jaotus tekib, kui vaadeldava juhusliku suuruse logaritm on jaotunud

Rakendusstatistika
296 allalaadimist
thumbnail
11
docx

ÜLEVAADE TÕENÄOSUSTEOORIA PÕHIMÕISTETEST

vähemalt ligikaudu kirjeldada normaaljaotusega. Ei ole vaja suur liidetavate arvu, lubatav on liidetavate mõningane vastastikune sõltuvus, normaaljaotusega liidetavate summa jaotus on täpselt normaaljaotus, katseandmete analüüsi kogemus paljudes valdkondades on näidanud, et suur enamus katseandmeid on hästi kirjeldatavad normaaljaotusega. Normaaljaotusel on kaks parameetrit, mis on vastava juhusliku suuruse keskväärtus ja standardhälve. Normaaljaotus on sümmeetriline. Normeeritud normaaljaotus on normaaljaotuse erijuhtum, kui keskväärtus ja standardhälve on vastavalt 0 ja 1. Tähistatakse X~N(0,1). K sigma reegel: näitab, kui suur on juhusliku suuruse normaaljaotuse korral tõenäosus sattude piirkonda keskväärtus pluss-miinus k standardhälve. Lognormaalne jaotus tekib, kui vaadeldava juhusliku suuruse logaritm on jaotunud normaaljaotuse

Rakendusstatistika
11 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

Paaridf-n *Def. Y=f(x) on paarisf-n juhul kui f(-x)=f(x) x MP graafik sum y telje suhtes, Nt y=x 2 =(-x)2 3. Paaritu f- n- sel korral paaritu kui f(-x)= -f(x), x MP, graafik sümm 0-punkti suhtes 4.Perioodiline f-n-parajasti siis, kui leidub niisugune reaalarv t, et tekib võrdsus iga MP punkti puhul. Märkus: kui f-n perioodiline=> t on lõpmata palju=> min t =T ­periood=> näit ting f-nil t>0 4. Liitfunktsioon Funkts, mille argumendiks ei ole sõltumatu muutuja, vaid tema mingi funktsioon, nim liitfunkt-niks sõltumatu muutuja suhtes y=f(u) u=u(x), Märkus: sisalduvus võib olla mitmekordne 5. Põhilised elementaarfunkts. 1)astmefunkts y=xa; a IR (nii murrulised, kui negatiivsed) 2)eksponentf-n y=ax, a 1, astmef-ni puhul on muutuja konstantses astmes , eksponentf-ni puhul on muutuja muutuvas astmes 3)logaritmf-n y=log ax, a>0, a 1 4)trig. F- nid y=sinx; cosx;tanx;cotx 5)arkus f-nid y=arcsinx;... NB 2ja 3 ning 4 ja 5 on pöördf-nid

Kõrgem matemaatika
147 allalaadimist
thumbnail
1
docx

Tõenäosusteooria ja matemaatiline statistika

võimalikust näitav arv lõigul [0,1], mida tavaliselt Suhtelise sageduse omadused: 1. Sündmuse suhteline tähistatakse P. Võimatu sündmuse V tõenäosus P(V)=0, sagedus on mittenegatiivne. 2. Kindla sündmuse suhteline 17. Binoomjaotusega juhuslik suurus, selle kindla sündmuse K tõenäosus P(K)=1. Ülejäänud sagedus on 1 3. Võimatu sündmuse suhteline sagedus on jaotustabel, keskväärtus (tõestusega) ja dispersioon sündmused on juhuslikud sündmused. (tõestusega) Sündmuse A toimumise arv X kirjeldatud 0 4. Sündmuse A vastandsündmuse suhteline sagedus on 2. Tehted sündmustega

Tõenäosus
117 allalaadimist
thumbnail
5
docx

Põhimõisted rakendusstatistika eksamiks

Statistika üldiseks eesmärgiks on: asjakohastest eeldustest lähtudes leida vaadeldava stohhastilise objekti kohta mingi tõenäosuslik mudel, sh hinnates mudeli arvparameetreid ja kontrollides erinevaid hüpoteese objekti mudeli kohta. Mediaani hinnang: - kasvavalt järjestatud valimi keskelement (kui valimi maht on paaritu arv) - kasvavalt järjestatud valimi keskelementide poolsumma (kui valimi maht on paarisarv) Haare: valimi suurima ja vähima elemendi vahe Statistika põhiteoreem: Empiiriline jaotusfunktsioon FN(x) on teoreetilise (üldkogumi) jaotusfunktsiooni F(x) nihutamata ja mõjus hinnang.

Rakendusstatistika
539 allalaadimist
thumbnail
3
docx

Tõenäosus

juhusliku suuruse kõikvõimalikud väärtused ja nende omandamise tõenäosused. 14. Juhusliku suuruse keskväärtuse ja dispersiooni omadused. Juhusliku suuruse keskväärtuseks (matemaatiliseks ootuseks) nimetatakse arvu, mis on määratud eeskirjaga Keskväärtuse omadused: Olgu a ja b suvalised konstandid, siis E(aX+b)= aEX+b. Olgu X ja Y suvalised juhuslikud suurused, siis E(X+Y) = EX+EY. Dispersioon on juhusliku suuruse keskväärtuse suhtes arvutatud hälbe ruudu keskväärtus. See on arv, mis kirjeldab juhusliku suuruse hajutatust tema keskväärtuse suhtes. Dispersiooni omadused: Konstandi dispersioon on null. D(aX + b) = a2DX 15. Binoom-, Poissoni-, ühtlase- ja normaaljaotuse keskväärtused ja dispersioonid. Katsetes esineb kahesuse element, kus tulemuseks on soodsatest sündmustest moodustuv diskreetne tõenäosusjaotus, mida nim binoomjaotuseks . Keskväärtus ja dispersioon

Tõenäosusteooria
145 allalaadimist
thumbnail
7
doc

Rakendusstatistika eksamiküsimused

RAKENDUSSTATISTIKA Kontrollküsimused 12.2005 1. Tõenäosus ja tõenäosuse põhilised omadused. Tingimuslik tõenäosus. Bayes'i valem 0 P(A) 1; P(AB) = P(A) + P(B), AB= või U. Tingimuslik tõenäosus ­ tõenäosus sündmusele A kui toimus sündmus B - P(A/B) = P(AB) / P(B) 2. Sündmus ja vastandsündmus. Sõltuvad ja mittesõltuvad sündmused. Sündmuste väli P(A/B) = P(A), P(AB) = P(A)P(B) 3. Sündmuste algebralised operatsioonid. Sündmuste summa ja korrutis. C = F D> C =F D> F> 4. Juhuslik suurus X = X(e) 5. Jaotusseadus ja selle esitamine. Jaotusfunktsioon F(x) ja tema põhiomadused. Väärtus x ja tema tõenäosus p. F(x) juhuslikule suurusele X on tõenäosus, et X võtab väärtuse vähem kui antud arvul x. F(x) = P(Xx). P(x´ X x´´) = F(x´´) - F(x´); 0 F(x) 1; F(x1) F(x2) 6. Tõenäosuse tihedusfunktsioon f(x) ja tema põhiomadused. f(x) = lim P(xXx+x) / x;

Rakendusstatistika
13 allalaadimist
thumbnail
4
docx

Tõenäosusteooria

Binoomjaotusega juhusliku suuruse esinevad üksteisest sõltumatult (st P(I on rikkis ja II töötab) = 0,9 * 0,95 + dispersioon on:DX´=pq 5. Poissoni sisuliselt eeldame, et rikaste protsent nii 0,1 * 0,8 = 0,935 jaotusega juhusliku suuruse keskväärtus on:EX=lamda6. Ühtlase hea tervisega kui ka halva tervisega N'ide21. Urnis on 5 punast 3 sinist ja 2 jaotusega juhusliku suuruse dispersioon on: kodanike hulgas on ühesugune). Leida rohelist kuulikest. Urnist võetakse DX=(b-a)*(b-a)/12 tõenäosus, et juhuslikult valitud kodanik üksteise järel kolm kuulikest. Milline on Tõenäosuse geomeetriline tähendus

Tõenäosusteooria
211 allalaadimist
thumbnail
20
docx

Kõrgem matemaatika II eksamimaterjal

an= f ( x ) cos ( n x ) dx ja bn= f ( x ) sin ( nx ) dx - - Funktsiooni Kui f(x) on perioodiline funktsioon, mille periood on 2l, siis funktsiooni arendamine Fourier' l reaks arendamisel Fourier' reaks peab tegema muutuavahetuse x= t Mitme muutuja Olgu hulk DRm. Kui igale punktile P=(x1, x2, ..., xm) hulgast D on eeskirja f abil funktsioon vastavusse seatud üks ja ainult üks reaalarv u, siis öeldakse, et hulgal D on määratud m muutuja funktsioon u=f(x1, x2, ..., xm) ( x1, x2, ..., xm) D Mitme muutuja Mitme muutuja funktsiooni mõistes hulk D funktsiooni määramispiirkond

Kõrgem matemaatika ii
91 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

trigonomeetrilise funktsiooni väärtus on null. Seepärast on otstarbekohane teada, et sin x = 0 x = n , cos x = 0 x = n + , 2 tan x = 0 x = n , n Z . 4. MATEMAATILINE ANALÜÜS 4.1 Funktsiooni üldised omadused 22 Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Muutujat x nimetatakse funktsiooni argumendiks ehk sõltumatuks muutujaks ja vastavalt funktsiooni y ka sõltuvaks muutujaks. Argumendi x muutumispiirkonda nimetatakse funktsiooni y määramispiirkonnaks. Funktsiooni väärtused, mis vastavad kõigile argumendi väärtustele piirkonnas X, moodustavad funktsiooni muutumispiirkonna Y.

Matemaatika
1099 allalaadimist
thumbnail
14
doc

Matemaatiline analüüs II Teooria

Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi x1 = 1(t) x2 = 2(t) .... xm = m(t) , t [T1, T2] . Antud süsteem määrab iga t [T1, T2] korral ühe kindla ruumi Rm punkti P =(x1, x2, . . . , xm). Üldiselt vastavad muutuja t erinevatele väärtustele erinevad ruumi punktid. Kui muutuja t jookseb läbi kogu lõigu [T1, T2], siis t-le vastav punkt kujundab ruumis Rm punktihulga, mida nimetatakse parameetriliseks jooneks. 2) Vektorid mitmemõõtmelises ruumis. Punkti kohavektor. Vektori suunaline sirge ja selle parameetrilised võrrandid. Vektorite skalaarkorrutis. Mitmemõõtmeline ruum kui eukleidiline ruum. Cauchy-Schwartzi võrratus. Teljed mitmemõõtmelises ruumis.

Matemaatiline analüüs 2
184 allalaadimist
thumbnail
14
doc

Teooria vastused II

Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi x1 = 1(t) x2 = 2(t) .... xm = m(t) , t [T1, T2] . Antud süsteem määrab iga t [T1, T2] korral ühe kindla ruumi Rm punkti P =(x1, x2, . . . , xm). Üldiselt vastavad muutuja t erinevatele väärtustele erinevad ruumi punktid. Kui muutuja t jookseb läbi kogu lõigu [T1, T2], siis t-le vastav punkt kujundab ruumis Rm punktihulga, mida nimetatakse parameetriliseks jooneks. 2) Vektorid mitmemõõtmelises ruumis. Punkti kohavektor. Vektori suunaline sirge ja selle parameetrilised võrrandid. Vektorite skalaarkorrutis. Mitmemõõtmeline ruum kui eukleidiline ruum. Cauchy-Schwartzi võrratus. Teljed mitmemõõtmelises ruumis.

Matemaatiline analüüs 2
335 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Üksühese funktsiooni mõiste. Olgu antud funktsioon y = f(x). Vastavalt funktsiooni definitsioonile on tegemist kujutisega, mis seab igale argumendi x väärtusele oma määramispiirkonnast vastavusse ühe kindla y väärtuse. Uksühese funktsiooni pöördfunktsioon. Üksühese funktsiooni y = f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsiooni avaldise saame, kui lahendame võrrandi y = f(x) muutuja x suhtes. Vahetavad pöördfunktsioonis kohad esialgse funktsiooni määramispiirkond ja väärtuste hulk. Olgu x = g(y) üksühese funktsiooni y = f(x) pöördfunktsioon. Siis funktsioonid f ja g kompenseerivad teineteist järgmises mõttes. g[f(x)] = x , f[g(y)] = y . Funktsiooni y = f(x) ja tema pöördfunktsiooni x = g(y) graafikud kattuvad xy-teljestikus. Kui aga pöördfunktsiooni x = g(y) avaldises muutujate x ja y kohad vahetada, st esitada ta kujul y = g(x), siis

Matemaatiline analüüs
484 allalaadimist
thumbnail
14
odt

DV II KT vastused

DV II teooriatöö kordamisküsimused 1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. V: Kõrgemat järku harilikud diferentsiaalvõrrandid: Üldkuju: F(x, y, y', y'', ..., y(n)) = 0, kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y(n-1)) (1) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. {y(x0) = y0 {y'(x0) = y0(1)

Dif.võrrandid
73 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . . . . 70 7.2 Algfunktsioon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.3 Määramata integraal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.4 Integraal põhilistest elementaarfunktsioonidest . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.5 Tehetega seotud integreerimisreeglid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.6 Muutuja vahetamine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.7 Ositi integreerimine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.8 Ratsionaalfunktsioonide integreerimine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 iv

Kõrgem matemaatika
94 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

Seepärast on otstarbekohane teada, et sin x  0  x  n ,  cos x  0  x  n  , 2 tan x  0  x  n , n  Z . 4. MATEMAATILINE ANALÜÜS 4.1 Funktsiooni üldised omadused 22 Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Muutujat x nimetatakse funktsiooni argumendiks ehk sõltumatuks muutujaks ja vastavalt funktsiooni y ka sõltuvaks muutujaks. Argumendi x muutumispiirkonda nimetatakse funktsiooni y määramispiirkonnaks. Funktsiooni väärtused, mis vastavad kõigile argumendi väärtustele piirkonnas X, moodustavad funktsiooni muutumispiirkonna Y.

Algebra I
61 allalaadimist
thumbnail
64
pdf

Kolokvium 1 materjal

¨s I, TTU Tallinn 2001, 227 lk, ISBN 9985-59-289-1 ¨ Raamatukogu Viitenumber http://www.lib.ttu.ee TTU ~opikute osakonnas 517/T-15 c Ivar Tammeraid, 2001 Sisukord 0.1. Eess~ ona K¨aesoleva ~ oppevahendi aluseks on autori poolt viimastel aastatel Tallinna Tehnika¨ ulikoo- lis bakalaureuse~ oppe u ¨li~ opilastele peetud u ¨he muutuja funktsiooni diferentsiaal- ja inte- graalarvutuse loengud nimetuse "Matemaatiline anal¨ uu¨s I" all. Siiski ei ole tegu pelgalt u ¨hel semestril esitatu kirjapanekuga. Lisatud on paljude v¨aidete t~oestused, mille esi- tamiseks napib loengutel aega. Samuti on tunduvalt mahukam n¨aite¨ ulesannete hulk. ¨ Uhtses kontekstis on lisatud ka keskkoolis-g¨ umnaasiumis matemaatilisest anal¨ uu¨sist esi- ~ tatu

Matemaatiline analüüs
65 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

= cos y cos y cos 2 y sin 2 y + cos 2 y = 1 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 13 Parameetrilise funktsiooni ja ilmutamata funktsiooni tuletis (tõestusega). Definitsioon 1 Ühe muutuja funktsioon on esitatud parameetrilisel kujul, kui nii argument x kui ka funktsiooni väärtus y on antud parameetri (t ) funktsioonis. x = u (t ) (9.1) y = v(t ) Näide: x = R cos t (ringjoone parameetriline võrrand) y = R sin t x 2 + y 2 = R 2 cos 2 t + R 2 sin 2 t = R 2 x2 + y2 = R Teoreem 1 Parameetriliselt esitatud funktsiooni (9.1) tuletis avaldub kujul o y o (9.2) y' = o

Matemaatiline analüüs
11 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

= cos y cos y cos 2 y sin 2 y + cos 2 y = 1 © 2001 - Ivari Horm ([email protected]), Toomas Sarv 13 Parameetrilise funktsiooni ja ilmutamata funktsiooni tuletis (tõestusega). Definitsioon 1 Ühe muutuja funktsioon on esitatud parameetrilisel kujul, kui nii argument x kui ka funktsiooni väärtus y on antud parameetri (t ) funktsioonis. x = u (t ) (9.1) y = v(t ) Näide: x = R cos t (ringjoone parameetriline võrrand) y = R sin t x 2 + y 2 = R 2 cos 2 t + R 2 sin 2 t = R 2 x2 + y2 = R Teoreem 1 Parameetriliselt esitatud funktsiooni (9.1) tuletis avaldub kujul o y o (9.2) y' = o

Matemaatiline analüüs
179 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

a1 = a a0 = 1 a n  a n  am an © Allar Veelmaa 2014 5 10. klass Viljandi Täiskasvanute Gümnaasium LINEAAR- JA RUUTVÕRRANDI LAHENDAMINE 1) Lineaarvõrrandi ax + b = 0 lahendamine b Kui a ≠ 0, siis lahend on x   a Kui a = 0, siis on kaks võimalust: a) kui b = 0, siis võrrandi 0 · x = 0 lahendiks sobib iga arv. b) kui b ≠ 0, siis võrrandil 0 · x = b lahendeid ei ole. 2) Ruutvõrrandi ax2 + bx + c = 0 lahendamine: Kui a = 1, siis sellist võrrandit nimetatakse taandatud ruutvõrrandiks ja esitatakse kujul x2 + px + q = 0 ning see lahendatakse valemiga p p2

Matemaatika
79 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

34. Funktsiooni kasvamine ja kahanemine 35. Funktsiooni lokaalsed ekstreemumid 36. Funktsiooni suurim ja v¨ahim v¨a¨artus antud l~oigul 37. Funktsiooni graafiku kumerus ja n~ogusus. K¨aa¨nupunktid 38. Funktsiooni graafiku as¨ umptoodid 39. Algfunktsioon ja m¨aa¨ramata integraal 40. Integraalide tabel 2 41. M¨aa¨ramata integraali omadusi 42. Integreerimine muutuja vahetusega 43. Ositi integreerimine 44. Osamurrud ja nende integreerimine 45. Ratsionaalse murru lahutamine osamurdudeks 46. M~onede trigonomeetriliste funktsioonide klasside integreerimine 47. Irratsionaalavaldiste integreerimine 48. M¨aa¨ratud integraali m~oiste 49. M¨aa¨ratud integraali omadused 50. M¨aa¨ratud integraali arvutamine. Newton-Leibnizi valem 51. Muutuja vahetus m¨aa¨ratud integraalis 52. Ositi integreerimine (m¨aa¨ratud integraali korral) 53

Matemaatiline analüüs
808 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x ja dy:= y, nimetatakse funktsiooni f(x,y) täisdiferentsiaaliks.

Matemaatiline analüüs 2
37 allalaadimist
thumbnail
8
pdf

Matemaatiline analüüs II 2. kollokviumi spikker

ruumala, mis pealt on piiratud funktsiooni z=f(x,y) graafikuga, alt funktsiooni z=g(x,y) graafikuga ja küljelt Definitsioon 2. Öeldakse, et kahe muutuja funktsioonil on punktis P2(x2, y2) lokaalne miinimum, kui sellel ∭∆ 𝑓(𝜌 𝑐𝑜𝑠𝜑, 𝜌 𝑠𝑖𝑛𝜑, 𝑧)𝜌 𝑑𝜑 𝑑𝜌𝑑𝑧 .Vaatleme üleminekut sfäärkoordinaatidele, kus teisendus on kujul

Matemaatiline analüüs 2
68 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun