Diskreetne matemaatika Sisukord Arvusüsteemid ................................................................................................................................................... 2 Kahendkoodid.................................................................................................................................................... 4 Loogikafunktsioonid ja loogikaavaldised ........................................................................................................... 5 Avaldiste teisendused........................................................................................................................................ 8 Karnaugh’ kaart ................................................................................................................................................. 9 McCluskey’ minimeerimismeetod .................................
Ühekohaline predikaat ehk omadus on ühe muutujaga. Määramispiirkond näitab, milliseid väärtusi predikaatmuutuja võib omandada. Predikaatlause P(x) on täidetav ehk kehtestatav, kui ta on tõene ainult osade muutujaväärtuste x korral (ehk tõene osas oma määramispiirkonnas) ; samaselt tõene, kui ta on kehtiv kogu oma mpk-s ; samaselt väär, kui ta ei kehti oma mpk mitte mingite muutujaväärtuste korral. Kvantoriteks on üldsuse kvantor ja eksistentsikvantor. Muutuja on seotud, kui talle on rakendatud kvantorit ja vaba, kui predikaatmuutuja on kvantormärgiga mitteseotud (∀𝑥𝑃(𝑥, 𝑦) korral x on seotud ja y vaba muutuja). Hüüumärgiga eksistentsikvantor tähendab, et „leidub täpselt üks x …“. Kvantorid on omavahel seotud nagu ∀𝑥𝑃(𝑥) ≡ ∃ ̅𝑥∃𝑃̅(𝑥). Predikaadid on võrdväärsed (ekvivalentsed), kui nende tõeväärtuspiirkonnad langevad kokku. Loogikaseadused on
Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad
Margus Kruus HULGATEOORIA PÕHIMÕISTEID HULK - algmõiste, intuitiivse definitsiooni järgi objektide kogum. George Cantor (1845-1918) - saksa matemaatik, hulgateooria rajaja. Hulgad jaotuvad lõpmatuteks ja lõplikeks. Meie kursuses käsitletakse lõplikke hulki, mõnikord ka lõpmatuid loenduvaid hulki. Hulgateoreetilised operatsioonid · Hulkade ühend AB={x |(xA)V (xB)} · Hulkade ühisosa (lõige) AB={x |(xA)& (xB) · Hulga täiend A = { x | ( x I ) & ( x A ) }, kus I on nn. universaalhulk. · Hulkade vahe A\B={x |(xA)& (xB)} · Hulkade sümmeetriline vahe A B = { x | (( x A ) & ( x B )) V (( x A ) & ( x B )) } Hulga A astmehulgaks 2A nimetatakse hulga A kõigi alamhulkade hulka. Hulgateoreetiliste operatsioonide omadused · Kommutatiivsusseadused AB=B A B = B · Assotsiatiivsusseadused A(BC)=(AB)C 1 A(BC)=(AB)C · Distributiivsusseadused A(BC)=(AB)(AC) A(BC)=(AB)(AC)
A B = B A B = B Assotsiatiivsusseadused A ( B C ) = ( A B ) C A ( B C ) = ( A B ) C Distributiivsusseadused A ( B C ) = ( A B ) ( A C ) A ( B C ) = ( A B ) ( A C ) De Morgani seadus seadused A B A B A B A B Idempotentsusseadus A= A A= A Välistatud kolmanda seadused A A = I A A = Topelttäiendi seadus A =A = A I = A A = A A I = I Neeldumisseadused 1 A ( A B ) = A A ( A B ) = A B A ( A B ) = A A ( A B ) = A B Kleepimisseadused ( A B ) (A B ) = A ( A B ) (A B ) = A A\ B = A B A B = ( A\ B ) ( B \ A) = ( A B ) \ ( A B ) Hulkade võimsus ja Grassmani valemid
Sisukord Eessõna Hea õpilane! Microsofti arenduspartnerid ja kliendid otsivad pidevalt noori ja andekaid koodimeistreid, kes oskavad arendada tarkvara laialt levinud .NET platvormil. Kui Sulle meeldib programmeerida, siis usun, et saame Sulle pakkuda vajalikku ja huvitavat õppematerjali. Järgneva praktilise ja kasuliku õppematerjali on loonud tunnustatud professionaalid. Siit leid uusimat infot nii .NET aluste kohta kui ka juhiseid veebirakenduste loomiseks. Teadmiste paremaks omandamiseks on allpool palju praktilisi näiteid ja ülesandeid. Ühtlasi on sellest aastast kõigile kättesaadavad ka videojuhendid, mis teevad õppetöö palju põnevamaks. Oleme kogu õppe välja töötanud vabavaraliste Microsoft Visual Studio ja SQL Server Express versioonide baasil. Need tööriistad on mõeldud spetsiaalselt õpilastele ja asjaarmastajatele Microsofti platvormiga tutvumiseks
KARNAUGH' KAARDID Karnaugh' kaart on funktsiooni tõeväärtustabeli sihipärane topoloogiline ümberpaigutus tasandil või ruumis. T Ü Tõeväärtustabeli igale reale vastab kaardil üks ruut. T Karnaugh' kaartide topoloogia 2muutuja Karnaugh' kaart on tabel mõõtmetega 2 2 (või 1 4) ruutu ; 3muutuja Karnaugh' kaart on tabel mõõtmetega 2 4 = 8 ruutu ; 4muutuja Karnaugh' kaart on tabel mõõtmetega 4 4 = 16 ruutu ; e h n ik a t või i 6 - muutuja Karnaugh' kaart
LAUSEARVUTUS Küsimus 1 Õige Hinne 1,00 / 1,00 otsusta, kas see väide on tõene või vale: "Tautoloogia" on lause, mille tõeväärtus on alati VALE. Tõene Väär Küsimus 2 Õige Hinne 1,00 / 1,00 Mida tähendab hüüumärgiga eksistentsikvantor? Vali üks: hüüumärk muudab kvantori tähenduse vastupidiseks hüüumärk täpsustab, et "leidub täpselt 1" hüüumärk rõhutab kvantori suurt tähtsust Küsimus 3 Õige Hinne 1,00 / 1,00 Kui loogikaavaldises pole sulgudega määratud tehete järjekorda, siis KONJUNKTSIOONi, DISJUNKTSIOONi ja INVERSIOONi leidumisel avaldises . . . Vastus 1 kõige esimesena tehakse loogikaavaldises INVERSIOON Vastus 2 ...selle järel järgmisena tehakse KONJUNKTSIOON
Kõik kommentaarid