Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Matemaatiline analüüs - sarnased materjalid

dxdy, integraal, muutuja, pidevad, piirv, osatuletised, joonintegraal, kont, integraalis, eeldusel, piirväärtus, integraaliks, r2sin, ilmutatud, greeni, jacobi, determinant, jakobiaan, pindalade, integraalsumma, suurimat, kusjuures, ainetihedus, const, kolmekordses, kolmekordne, tasandiline, qkpk, joonel, joone võrrand, jõuvektor, integraaliga
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2

Matemaatiline analüüs II
69 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs II

n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarväli. Def: funktsiooni w=f(P), P Rn MP-ks nim nende punktide hulka, mille puhul funktsiooni väärtus on lõplik. MP={P(x1,...,xn) Rn | w=f(P) f(x1,...,xn) < } Rn

Matemaatiline analüüs 2
336 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon

Matemaatiline analüüs 2
37 allalaadimist
thumbnail
3
doc

Mat analüüs 2

- . xkf=f(x10,x20,... ,xr0+xk,...,xn0)-f(x10,x20,...,xk0,...,xn0) .1: . . . - f:y=f(P) PP0 . >0 >0, (,P0), - . . . dy/dx=-( (F/x)/ (F/y)|(x0,y0) ) . . -. -: .. . . (x0,y0) . . . - - f ( x, y ) dxdy (S ) f ( x,

Matemaatiline analüüs 2
136 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33. Funktsioonide ex , sin x ja cos x arendid Maclaurini valemi j¨argi 34. Funktsiooni kasvamine ja kahanemine 35. Funktsiooni lokaalsed ekstreemumid 36. Funktsiooni suurim ja v¨ahim v¨a¨artus antud l~oigul 37. Funktsiooni graafiku kumerus ja n~ogusus. K¨aa¨nupunktid 38. Funktsiooni graafiku as¨ umptoodid 39. Algfunktsioon ja m¨aa¨ramata integraal 40. Integraalide tabel 2 41. M¨aa¨ramata integraali omadusi 42. Integreerimine muutuja vahetusega 43. Ositi integreerimine 44. Osamurrud ja nende integreerimine 45. Ratsionaalse murru lahutamine osamurdudeks 46. M~onede trigonomeetriliste funktsioonide klasside integreerimine 47. Irratsionaalavaldiste integreerimine 48. M¨aa¨ratud integraali m~oiste 49. M¨aa¨ratud integraali omadused 50. M¨aa¨ratud integraali arvutamine

Matemaatiline analüüs
808 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

..,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahuldab tingimust PA, funktsiooni väärtus f(P) läheneb arvule b Mitmemuutuja funktsiooni pidevus Olgu antud mitmemuutuja funktsioon z=f(P) määramispiirkonnaga D. Funktsiooni f nimetatakse pidevaks punktis A kui AD; eksisteerib piirväärtus lim f ( P ) ; lim f ( P ) = f ( A) PA PA

Matemaatiline analüüs 2
511 allalaadimist
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m vaheline kaugus d (P, Q ) valemiga d (P, Q ) = (x - y i ) , siis nimetatakse seda ruumi

Matemaatiline analüüs II
187 allalaadimist
thumbnail
4
doc

Spikker

VQ = ( f 2' - f1' ) dxdy = ( f 2 + C - f1 - C ) dxdy võrratustega axb ja 1(x)y2(x). Leiame antud funktsiooni f(P) m d f ( P)dS = f ( P)dS + f ( P)dS= f ( p , y)dyx

Matemaatiline analüüs
230 allalaadimist
thumbnail
20
docx

Kõrgem matemaatika II eksamimaterjal

1) un > un+1 > 0 lim u ( n )=0 2) n , siis vahelduvate märkidega rida koondub Integraaltunnus Kui f on pidev monotoonselt kahanev funktsioon piirkonnas [a, ¿ ja un=f(n), siis positiivne rida u ( n) ja päratu integraal f ( x ) dx n=0 a koonduvad (hajuvad) samaaegselt Astmerida Astmereaks nimetatakse rida, mille liikmeteks on funktsioonid f n(x)=anxn, kujul a ( n ) ( x-c )n=a ( 0 ) + a ( 1 ) ( x-c)+a ( 2 ) (x-c)2+ ...+a ( m ) (x-c ) m+... n=0

Kõrgem matemaatika ii
91 allalaadimist
thumbnail
12
docx

Matanalüüs II

1. Kahe muutuja funktsioon ja selle osatuletise rakendused: ekstreemumi leidmine, pinna puutuvtasapind ja normaal, näiteid Kahe muutuja funktsioon esitab pinda xyz-ruumis R3. Piirkonna D (x,y)ЄD igale punktile vastab z=f(x,y). Piirkond D on funktsiooni f määramispiirkond. Osatuletiste rakendused: Ekstreemumi (min, max) leidmine. Punkt, kus osatuletis on 0, nim. kriitiliseks punktiks. P(xo,yo). Puutujatasandi võrrand: fx(x0,y0)x+fy(x0,y0)y-z+d=0. Punkt Q0(x0,y0,z0) kuulub puutujatasandile.Seal pt.s puutujatasandiga risti olev vektor n on pinna normaal pt.s Q0. 2

Matemaatiline analüüs ii
101 allalaadimist
thumbnail
4
pdf

Matemaatiline analüüs II, II teooriaküsimused 2013

Kordamisküsimused matemaatilise analüüsi (II) II osaeksamiks 2013 1. Kahekordne integraal (integraalsumma, kahekordse integraali definitsioon, kahekordse integraali omadused (vastavad teoreemid tõestuseta)). n Moodustame summa: Vn = f ( P1 )s1 + f ( P2 )s 2 + ... + f ( Pn )s n = f ( Pi )s i i =1 Seda summat nimetatakse funktsiooni f(x,y) integraalsummaks üle piirkonna D. Teoreem 1

Matemaatiline analüüs II
161 allalaadimist
thumbnail
9
doc

Diferentseerimise ja integreerimise valemid

0 x x0 + 0 y Kaldasümptoot y = kx + b , kus k = lim ja b = xlim ± ( y ­ kx) x ± x Vertikaalasümptoot asub selles punktis, kus esineb teist liiki katkevus. Võrrand x = a Kahe muutuja funktsiooni piirväärtus: on , kui lim lim f ( x, y ) = lim lim f ( x, y ) = lim f ( x, y ) x x0 y y 0 y y 0 x x0 x x0 : y y 0 puudub, kui lim lim f ( x, y ) lim lim f ( x, y ) x x0 y y 0 y y 0 x x0 võib olla ja võib ka mitte olla, kui lim lim f ( x, y ) = lim lim f ( x, y )

Diferentsiaal-ja...
86 allalaadimist
thumbnail
9
doc

INTEGREERIMISE VALEMID

0 x x0 + 0 y Kaldasümptoot y = kx + b , kus k = lim ja b = xlim ± ( y ­ kx) x ± x Vertikaalasümptoot asub selles punktis, kus esineb teist liiki katkevus. Võrrand x = a Kahe muutuja funktsiooni piirväärtus: on , kui lim lim f ( x, y ) = lim lim f ( x, y ) = lim f ( x, y ) x x0 y y 0 y y 0 x x0 x x0 : y y 0 puudub, kui lim lim f ( x, y ) lim lim f ( x, y ) x x0 y y 0 y y 0 x x0 võib olla ja võib ka mitte olla, kui lim lim f ( x, y ) = lim lim f ( x, y )

Matemaatiline analüüs
109 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs II

Olgu antud funktsioon (x,y) 0. Vaatleme pinna z = (x,y) ja tasandi z=0 vahel paiknevat keha Q ruumalaga V. Üks võimalus on eelnevates teadmistest saadud valem V = (x,y)dxdy Järgnevalt käsitleme pisut teistsugust juhtu. Vaatleme keha Q, mis on alt pinnaga z= 1(x,y) ja ülalt pinnaga z= 2(x,y). Olgu Q projektsioon xy-tasandil tähistatud D-ga. Meid huvitab Q ruumala. Näitame, et V saab esitada 1 ja 2 vahe integraalina, st V= [ 2(x,y) ­ 2(x,y)] dxdy D 8. Muutujate vahetus kahekordse integraali all. Kahekordne integraal (x,y)dxdy ja kaks funktsiooni u= u(x,y) ja v=v(x,y), mis on määratud piirkonnas D. Eesmärgiks on sooritada muutuja vahetus, mille tulemusl asendatakse x ja y u ja v-ga. Kuna funktsioonid u ja v on ühesed kujutsied, siis seavad nad igale punktile P=(x,y) hulgastt D vastavusse ühe kindla punkti P'=(u,v) uv-tasandil. Kui P jookseb läbi kogu

Matemaatiline analüüs
523 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

MITME MUUTUJA FUNKTSIOON 1. Punkti ümbrus. Kinnine ja lahtine piirkond. Mitme muutuja funktsioon ja selle määramispiirkond. Def. 1.1. ( 0 0 )0 Punkti P x1 , x 2 ,..., x n ümbruseks n-mõõtmelises ruumis R n nimetatakse punktide hulka { U ( P ) , mis rahuldavad tingimust U ( P ) = Q( x1 , x 2 ,..., x3 ) R n ( P, Q ) < , kus } ( P, Q ) = PQ = (x1 - x10 ) + (x 2

Matemaatiline analüüs 2
240 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

Paaridf-n *Def. Y=f(x) on paarisf-n juhul kui f(-x)=f(x) x MP graafik sum y telje suhtes, Nt y=x 2 =(-x)2 3. Paaritu f- n- sel korral paaritu kui f(-x)= -f(x), x MP, graafik sümm 0-punkti suhtes 4.Perioodiline f-n-parajasti siis, kui leidub niisugune reaalarv t, et tekib võrdsus iga MP punkti puhul. Märkus: kui f-n perioodiline=> t on lõpmata palju=> min t =T ­periood=> näit ting f-nil t>0 4. Liitfunktsioon Funkts, mille argumendiks ei ole sõltumatu muutuja, vaid tema mingi funktsioon, nim liitfunkt-niks sõltumatu muutuja suhtes y=f(u) u=u(x), Märkus: sisalduvus võib olla mitmekordne 5. Põhilised elementaarfunkts. 1)astmefunkts y=xa; a IR (nii murrulised, kui negatiivsed) 2)eksponentf-n y=ax, a 1, astmef-ni puhul on muutuja konstantses astmes , eksponentf-ni puhul on muutuja muutuvas astmes 3)logaritmf-n y=log ax, a>0, a 1 4)trig. F- nid y=sinx; cosx;tanx;cotx 5)arkus f-nid y=arcsinx;... NB 2ja 3 ning 4 ja 5 on pöördf-nid

Kõrgem matemaatika
147 allalaadimist
thumbnail
2
doc

Matemaatiline analüüs

Mitme muutuja funktsiooni mõiste Def: Kui igale x-I ja y-I väärtuste paarile mingis piirk D on vastavusse seatud muutuja z teatud kindel väärtus, siis öeldakse et z on kahe muutuja y ja x funktsioon. z=(x; y) või z=z(x; y) või z=(x; y) või z=F(x; y). (joon) D-x, y tasandi punktide hulk; - piirk D rajajoon e raja. Def1: Piirk D nim lahtiseks kui ta ei sisalda ühtegi oma rajajoone punkti; Def2: Piirk D nim kinniseks kui ta sisaldab kõiki oma rajajoone punkte. Näiteks on kaks hulka: A={(x; y)x2+y2 muutuja f-n. Def:

Matemaatiline analüüs
265 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

trigonomeetrilise funktsiooni väärtus on null. Seepärast on otstarbekohane teada, et sin x = 0 x = n , cos x = 0 x = n + , 2 tan x = 0 x = n , n Z . 4. MATEMAATILINE ANALÜÜS 4.1 Funktsiooni üldised omadused 22 Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Muutujat x nimetatakse funktsiooni argumendiks ehk sõltumatuks muutujaks ja vastavalt funktsiooni y ka sõltuvaks muutujaks. Argumendi x muutumispiirkonda nimetatakse funktsiooni y määramispiirkonnaks. Funktsiooni väärtused, mis vastavad kõigile argumendi väärtustele piirkonnas X, moodustavad funktsiooni muutumispiirkonna Y.

Matemaatika
1099 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

Seepärast on otstarbekohane teada, et sin x  0  x  n ,  cos x  0  x  n  , 2 tan x  0  x  n , n  Z . 4. MATEMAATILINE ANALÜÜS 4.1 Funktsiooni üldised omadused 22 Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Muutujat x nimetatakse funktsiooni argumendiks ehk sõltumatuks muutujaks ja vastavalt funktsiooni y ka sõltuvaks muutujaks. Argumendi x muutumispiirkonda nimetatakse funktsiooni y määramispiirkonnaks. Funktsiooni väärtused, mis vastavad kõigile argumendi väärtustele piirkonnas X, moodustavad funktsiooni muutumispiirkonna Y.

Algebra I
60 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

LTMS.00.022 ÜHE MUUTUJA MATEMAATILINE ANALÜÜS Loengukursus Tartu Ülikooli loodus- ja täppisteaduste valdkonna üliõpilastele 2019./2020. õppeaasta Toivo Leiger Joonised: Ksenia Niglas Pisitäiendused 2016–20: Märt Põldvere, Natalia Saealle, Indrek Zolk, Urve Kangro 2 Sisukord

Algebra I
8 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . 88 4.3 Funktsiooni suurima ja v¨ahima v¨a¨artuse leidmine l~oigul. . . . . . 92 4.4 Joone kumerus, n~ogusus ja k¨a¨anupunktid. . . . . . . . . . . . . . 92 4.5 Joone as¨ umptoodid. . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Integraalid 103 5.1 Algfunktsioon ja m¨a¨aramata integraal. . . . . . . . . . . . . . . . 103 5.2 Integraalide tabel. M¨a¨aramata integraali omadused. . . . . . . . 104 5.3 Asendusv~ote ja ositi integreerimine m¨a¨aramata integraali aval- damisel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Ratsionaalfunktsioonide integreerimine. Ratsionaalfunktsiooni in- tegraalile taanduvad integraalid. . . . . . . . . . . . . . . . . . . 111 5

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . 88 4.3 Funktsiooni suurima ja v¨ahima v¨a¨artuse leidmine l~oigul. . . . . . 92 4.4 Joone kumerus, n~ogusus ja k¨a¨anupunktid. . . . . . . . . . . . . . 92 4.5 Joone as¨ umptoodid. . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Integraalid 103 5.1 Algfunktsioon ja m¨a¨aramata integraal. . . . . . . . . . . . . . . . 103 5.2 Integraalide tabel. M¨a¨aramata integraali omadused. . . . . . . . 104 5.3 Asendusv~ote ja ositi integreerimine m¨a¨aramata integraali aval- damisel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Ratsionaalfunktsioonide integreerimine. Ratsionaalfunktsiooni in- tegraalile taanduvad integraalid. . . . . . . . . . . . . . . . . . . 111 5

Matemaatika
42 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs kontrolltöö

MITME MUUTUJ A FUNKTSIOON. PIIRV ÄÄRTUS. DIFERENTSEERIMINE Mitme muutuja funktsioon Mitme muutuja funktsiooni üldkuju: w = f ( x, y , z ,...) ( x, y, z ,...) D Kahe puntki vaheline kaugus: Puntkide P1 = ( x1 , y1 , z1 ,...) ja P2 = ( x2 , y 2 , z 2 ,...) vaheliseks kauguseks nimetatakse reaalarvu d ( P1 , P2 ) = ( x1 - x2 ) 2 + ( y1 - y2 ) 2 + ( z1 - z 2 ) 2 + ... . Punkti -ümbrus: Olgu mingi arv. Punkti P0 = ( x0 , y0 , z 0 ,...) -ümbruseks U ( P0 ) nim. kõigi selliste punktide P = ( x, y , z ,..

Matemaatiline analüüs
119 allalaadimist
thumbnail
8
doc

Kordamisküsimused aines "Matemaatiline analüüs I"

· Algebralised funktsioonid on funktsioonid, mis saadakse lõpliku arvu algebraliste tehte rakendamise teel. a. Täisratsionaalsed funktsioonid ehk astmefunktsioonid b. Murdratsionaalsed funktsioonid ehk kahe täisratsionaalse funktsiooni jagatis c. Irratsionaalsed funktsioonid ( sisaldavad lisaks eelnevale veel juurimist) d. Mittealgebralised funktsioonid Liitfunktsioon- on funktsioon, kus sõltuv muutuja y sõltub argumendist x mitme funktsiooni vaheldusel. Kui y=f(z) ja z=g(x) , seega saame liitfunktsiooni y=f(g(x)) . Liitfunktsioonil võib olla ka enam kui kaks koostisosa ja seega enam kui üks vahepealne muutuja. Pöördfunktsioon- pöördfunktsiooni saame, kui võtame algse funktsiooni , avaldame sealt x ja seejärel vahetame x ja y ära. Näiteks : y=2x ; x=0,5y ; y=0,5x , seega y=2x pöördfunktsioon on y=0,5x. Funktsiooni y = f(x) pöördfunktsiooniks nimetatakse funktsiooni y =( x )

Matemaatika analüüs I
159 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

(f(x)-kx-b)=0, millest saame, et k=lim x+ f(x)/x ^ b= lim x+(f(x)-kx). Kui uuritaval juhul vaadeldavad piirväärtused suuruste k ja b leidmiseks eksisteerivad, siis eksisteerib kaldas., kui ei, siis mitte. 35. Määramata integraali omadused Selles punktis tõestame kolm määramata integraali omadust ja kasutame neid omadusi integreerimisel. Omadus 1. [ f ( x ) + g ( x )]dx = f ( x )dx + g ( x )dx , s.t. kahe funktsiooni summa määramata integraal on võrdne nende funktsioonide määramata integraalide summaga. Kaks määramata integraali on võrdsed, kui nad erinevad teineteisest ülimalt konstandi võrra ehk nende tuletised on võrdsed. Näitame seda. Võttes vasakult poolt tuletise, saame punkti 4.1.1 järelduse 1 abil, et ( [ f ( x ) +g ( x )]dx ) = f ( x ) +g ( x ) . Paremalt poolt tuletist võttes kasutame sama järeldust ja tuletise vastavat omadust:

Matemaatiline analüüs
350 allalaadimist
thumbnail
9
doc

Lineaarsete algebraliste võrrandite süsteem

Kehtib a ×b = - b × a ( ) a × b + c = a ×b + a ×c . Vektorkorrutise moodul a ×b = a b sin Paremakäelises koordinaatsüsteemis peab kehtima k =i × j . Funktsiooni tuletis Olgu ühe muutuja x funktsioon y = f ( x ) . Funktsiooni muut argumendi muudu x korral 2 MLF 1121 Geofüüsikaline hüdrodünaamika (Matemaatika ülevaade I) Jüri Elken y = f ( x ) = f = f ( x + x ) - f ( x ) . Tuletis (erinevad tähistused) dy df ( x ) df f ( x + x ) - f ( x )

Matemaatika
74 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 38 4.2 Funktsiooni piirväärtuse mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Ühepoolsed piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Funktsiooni piirväärtuse omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.5 Tähtsad piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.6 Pidevad funktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.7 Funktsiooni katkevusviise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.8 Pidevate funktsioonide omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Funktsiooni tuletis ja diferentsiaal 47 5.1 Keskmine kiirus ja hetkkiirus . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
20
pdf

Matemaatilise analüüsi kollokvium nr.3

Eelnevalt nägime, et treppkeha Z ruumala on võrdne ƒ integraalsummaga Vn. Järelikult kahekordse integraali defnitsiooni põhja Q ruumala= Lim Vn = ∫∫ ƒ(x,y)dxdy єn →0 D Kahekordse integraali omadusi 1. Kui funktsioon f(x,y) on pidev piirkonnas D, siis ta on ka integreeruv piirkonnas D 2. Piirkonnas D konstantne funktsioon 1 on selles piirkonnas integreeruv, kusjuures 3. Kui eksisteerib integraal ja c ϵ R, siis eksisteerib ka integraal , kusjuures 4. Kui eksisteerivad integraalid , siis eksisteerib ka integral , kusjuures 5. Kui eksisteerivad integraalid ning iga P ϵ D korral kehtib f(P)<=g(P), siis 6. Kui eksisteerib integraal ja piirkonnas D kehtib võrratus m<=f(P)<=M, siis . 2

Matemaatiline analüüs 2
98 allalaadimist
thumbnail
82
pdf

Mehhaanika süsteemide modelleerimine

rt Ü tt r r rtsr süst r st rt ssts Põõst stt ts rtss s t s s r stst ä ss st rt õ õ õs tt r tsts s õts õsüs tst t t s ttrsst ssst üst s õss üs rts t trst s õts õ õ tt s ts strtss s tts äts tsstst sst t s ttäär s õ tr stst ä õ üs õ rrt tt õ r ät äär sst tr t ss t õ ss õt tst s stts ss õõt tüs õõtt t üss sttt õõt sts st s s st t rs tt õõrõ tss r s s · õäts ts ts ä s · strr r äts õr rts õü · tt r · tts üüs õ tr tt · tst tr rts · rs s P strrs stts stst tt t ss stt s õ t rööü r s tst tõst rts s t t P t st Põü s s ü ü ss õ õ ü Põüt süst süst sttr s ssr õ üü tr s õr ss ttt tr s ssr õ t ts t õ s ss 1 kg rs 1 sm2 tt tt s stst stts rts ts rst s ststs t õõs t õs t õ säärss t ss s ts õs rst s s s stst ä rt õ tss ss t ss õ

Mehhaanika süsteemide...
21 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

.............21 Lähendite jada koondumine............................................................................................................21 31. Diferentseeruva funktsiooni kasvamis-, kahanemis-ja konstantsustingimused. ......................21 32. Funktsiooni ekstreemumite tarvilikud ja piisavad tingimused. ............................................... 22 33. Funktsiooni graafiku asümptoot, asümptootide liigid, teha selgitav joonis. ........................... 22 34. Määramata integraal, määramata integraali omadused, määramata integraali arvutusvõtted (ositi integreerimine ja asendusvõte). ............................................................................................23 35. Kirjeldada ratsionaalfunktsiooni integreerimist. ..................................................................... 23 36. Esimest ja teist liiki osamurrud. Tuletada valemid nende integreerimiseks. ...........................24 Osamurdude integreerimine................................

Matemaatika
118 allalaadimist
thumbnail
8
pdf

Matemaatiline analüüs II 2. kollokviumi spikker

ruumala, mis pealt on piiratud funktsiooni z=f(x,y) graafikuga, alt funktsiooni z=g(x,y) graafikuga ja küljelt Definitsioon 2. Öeldakse, et kahe muutuja funktsioonil on punktis P2(x2, y2) lokaalne miinimum, kui sellel ∭∆ 𝑓(𝜌 𝑐𝑜𝑠𝜑, 𝜌 𝑠𝑖𝑛𝜑, 𝑧)𝜌 𝑑𝜑 𝑑𝜌𝑑𝑧 .Vaatleme üleminekut sfäärkoordinaatidele, kus teisendus on kujul

Matemaatiline analüüs 2
68 allalaadimist
thumbnail
11
doc

Määramata integraal

Integraali märgi all olevat funktsiooni f(x) nimetatakse integreeritavaks funktsiooniks. Integraalialuseks avaldiseks nimetatakse avaldist f(x)dx. Näide: 2 xdx = x +C 2 1. MÄÄRAMATA INTEGRAALI OMADUSED 1. Tuletis määramata integraalist võrdub integreeritava funktsiooniga [ f ( x) dx ] = f ( x ) 2. Diferentsiaal määramata integraalist võrdub integraalialuse avaldisega: d f ( x ) dx = f ( x ) dx 3. Määramata integraal mingi funktsiooni tuletisest võrdub selle funktsiooniga pluss suvaline integreerimiskonstant: F ( x ) dx = F ( x ) +C 4. Konstantse teguri võib tuua integraalimärgi ette: kf ( x ) dx = k f ( x ) dx , kus k = const 5. Summat ja vahet võib integreerida liikmeti: [ f ( x ) ± g ( x )] dx = f ( x ) dx ± g ( x ) dx INTEGREERIMISE PÕHIVALEMID Integreerimise põhivalemid saadakse tuletiste põhivalemite "tagurpidi" rakendamisel (vt tuletiste tabel paremalt vasakule)

Kõrgem matemaatika
191 allalaadimist
thumbnail
12
pdf

MÄ Ä R AMA T A I N T EGR A A L

Integraali märgi all olevat funktsiooni f(x) nimetatakse integreeritavaks funktsiooniks. Integraalialuseks avaldiseks nimetatakse avaldist f(x)dx. Näide: 2 xdx = x +C 2 1. MÄÄRAMATA INTEGRAALI OMADUSED 1. Tuletis määramata integraalist võrdub integreeritava funktsiooniga [ f ( x) dx ] = f ( x ) 2. Diferentsiaal määramata integraalist võrdub integraalialuse avaldisega: d f ( x ) dx = f ( x ) dx 3. Määramata integraal mingi funktsiooni tuletisest võrdub selle funktsiooniga pluss suvaline integreerimiskonstant: F ( x ) dx = F ( x ) +C 4. Konstantse teguri võib tuua integraalimärgi ette: kf ( x ) dx = k f ( x ) dx , kus k = const 5. Summat ja vahet võib integreerida liikmeti: [ f ( x ) ± g ( x )] dx = f ( x ) dx ± g ( x ) dx TÕESTUSED 1. [ f ( x) dx ] = f ( x ) . Definitsiooni järgi f ( x ) dx = F ( x ) +C , kus F ( x ) = f ( x ) [ f ( x )dx] = [ F ( x ) +C ] = F ( x ) = f ( x ) m.o.t.t

Matemaatika
15 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun