Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Matemaatiline analüüs - konspekt I - sarnased materjalid

astm, piirv, tuletis, teoreem, piirväärtus, puutuja, logaritmi, võrratus, muutuja, sinx, lõpmata, normaal, vaatleme, pöördfunktsioon, cosx, logaritmid, tuletised, lagrange, kusjuures, esitusviis, rahuldab, kuubis, miinus, ordinaat, kriips, beta, ruudus, koordinaat, väikeseks, suvaline, teoreemid, mott, ümbrus, graafik, liitfunktsioon
thumbnail
51
pdf

Enno Paisu konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
179 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
11 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

võrdus f(-x) = f(x). Funktsiooni f nimetatakse paarituks funktsiooniks, kui iga x X korral kehtib võrdus f(-x) = -f(x). Perioodilised funktsioonid. Funktsiooni f nimetatakse perioodiliseks, kui leidub konstant C > 0 nii, et iga x X korral kehtib võrdus f(x + C) = f(x). Väikseimat sellist konstanti C nimetatakse funktsiooni f perioodiks. Kasvavad ja kahanevad funktsioonid. Olgu D funktsiooni f määramispiirkonna alamhulk. Valime hulgast D kaks suvalist arvu x1 ja x2 nii, et kehtib võrratus x1 < x2. Kui funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk ei muutu, st f(x1) < f(x2), siis on f kasvav hulgas D. Kui aga funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk muutub vastupidiseks, st f(x1) > f(x2), siis on f kahanev hulgas D. Kasvamispiirkonnas funktsiooni graafik tõuseb, kahanemispiirkonnas aga langeb. Astmefunktsioon on funktsioon järgmisel kujul y = xa, kus a on nullist erinev konstantne astendaja. Selle

Matemaatiline analüüs
484 allalaadimist
thumbnail
64
pdf

Kolokvium 1 materjal

¨s I, TTU Tallinn 2001, 227 lk, ISBN 9985-59-289-1 ¨ Raamatukogu Viitenumber http://www.lib.ttu.ee TTU ~opikute osakonnas 517/T-15 c Ivar Tammeraid, 2001 Sisukord 0.1. Eess~ ona K¨aesoleva ~ oppevahendi aluseks on autori poolt viimastel aastatel Tallinna Tehnika¨ ulikoo- lis bakalaureuse~ oppe u ¨li~ opilastele peetud u ¨he muutuja funktsiooni diferentsiaal- ja inte- graalarvutuse loengud nimetuse "Matemaatiline anal¨ uu¨s I" all. Siiski ei ole tegu pelgalt u ¨hel semestril esitatu kirjapanekuga. Lisatud on paljude v¨aidete t~oestused, mille esi- tamiseks napib loengutel aega. Samuti on tunduvalt mahukam n¨aite¨ ulesannete hulk. ¨ Uhtses kontekstis on lisatud ka keskkoolis-g¨ umnaasiumis matemaatilisest anal¨ uu¨sist esi- ~ tatu

Matemaatiline analüüs
65 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
118 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I 1. teooria KT

ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Analüütiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. Graafiline esitusviis. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Olgu antud funktsioon f, mille argument on x, sõltuv muutuja y ja määramispiirkond X. Kanname tasandile ristuvad x- ja y-teljed. Vaatleme selles teljestikus joont G, mis koosneb kõikvõimalikest punk- tidest P = (x,f(x)), kusjuures P esimene koordinaat x jookseb läbi kogu määramispiirkonna X. Seda joont nimetataksegi funtsiooni f graafikuks. Seega, lühidalt kirjutades on funktsiooni f graafiku definitsioon järgmine: G = {P = (x,f(x))||x X}.

Matemaatiline analüüs 1
110 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Suuruse muutumispiirkond- Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon- Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument- muutuja x, sõltumatu. Sõltuv muutuja- muutuja y. Määramispiirkond- argumendi x muutumispiirkonda. Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul

Matemaatiline analüüs I
105 allalaadimist
thumbnail
1
docx

Matemaatiline analüüs I teooria

1. Tõkestatud hulga mõiste. Ülalt/alt tõkestatud hulga mõiste. Tuua näide. 10,12Jada piirväärtus. Arvu a nimetatakse reaalarvude jada x 1, x2, x3, ... Tõkestatud hulga definitsioon ­ Reaalarvudest koosnevat hulka A piirväärtuseks, kui iga kuitahes vaikese positiivse arvu korral saab näidata nimetatakse tõkestatuks, kui leidub lõplik vahemik (a,b) nii, et A(a,b). sellist jada elementi xn , millest alates kõik järgnevad jada elemendid kuuluvad Tõkestamata hulgad on lõpmatud vahemikud

Matemaatiline analüüs
10 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I - I teooria töö

· Perioodilised funktsioonid. Funktsiooni f nimetatakse perioodiliseks, kui leidub konstant C > 0 nii, et iga x X korral kehtib võrdus f(x + C) = f(x). Väikseimat sellist konstanti C nimetatakse funktsiooni f perioodiks. · Kasvavad ja kahanevad funktsioonid. Olgu D funktsiooni f määramispiirkonna alamhulk. Valime hulgast D kaks suvalist arvu x1 ja x2 nii, et kehtib võrratus x1 < x2. o Kui funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk ei muutu, st f(x1) < f(x2), siis on f kasvav hulgas D. o Kui aga funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk muutub vastupidiseks, st f(x1) > f(x2), siis on f kahanev hulgas D. o Kasvamispiirkonnas funktsiooni graafik tõuseb, kahanemispiirkonnas aga langeb.

Matemaatika analüüs I
487 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs II teooria töö

· Perioodilised funktsioonid. Funktsiooni f nimetatakse perioodiliseks, kui leidub konstant C > 0 nii, et iga x X korral kehtib võrdus f(x + C) = f(x). Väikseimat sellist konstanti C nimetatakse funktsiooni f perioodiks. · Kasvavad ja kahanevad funktsioonid. Olgu D funktsiooni f määramispiirkonna alamhulk. Valime hulgast D kaks suvalist arvu x1 ja x2 nii, et kehtib võrratus x1 < x2. o Kui funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk ei muutu, st f(x1) < f(x2), siis on f kasvav hulgas D. o Kui aga funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk muutub vastupidiseks, st f(x1) > f(x2), siis on f kahanev hulgas D. o Kasvamispiirkonnas funktsiooni graafik tõuseb, kahanemispiirkonnas aga langeb.

Matemaatiline analüüs 2
96 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33

Matemaatiline analüüs
808 allalaadimist
thumbnail
6
docx

Matemaatilise analüüsi (I) I osaeksami teooriaküsimused

ratsionaalarvudeks. Lõpmatute mitteperioodiliste kümnendmurdudena esitatavaid arve nimetatakse irratsionaalarvudeks. Kõik ratsionaal- ja irratsionaalarvud koos moodustavad reaalarvude hulga. x Reaalarvu absoluutväärtuseks ehk mooduliks x nimetatakse mittenegatiivset reaalarvu, mis rahuldab tingimusi x = x, kui x 0, x = -1, kui x < 0. x x. Kehtib seos 2. Muutuv suurus ehk muutuja, jääv suurus ehk konstant. Muutuva suuruse muutumispiirkond. Mõisted: vahemik, lõik, poollõik. Kasvav ja kahanev muutuv suurus, monotoonne suurus. Tõkestatud muutuv suurus. Suurust, mis omandab mitmesuguseid väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Tähised x, y, z, u, ... Suurust, mille väärtus ei muutu, nimetatakse jäävaks ehk konstantseks suuruseks. Tähised a, b, c, ...

Diskreetne matemaatika
72 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I

1. Sõnastada ja tõestada piirväärtusteoreem kahe funktsiooni summa piirväärtuse arvutamiseks protsessis x +. Teoreem (1): Kahe, kolme, üldiselt lõpliku hulga muutuvate suuruste algebralise summa piirväärtus võrdub nende muutuvate suuruste piirväärtuste algebralise summaga. lim(u1 + u2 +....) = lim u1 + lim u2 + ... Tõestus: Tõestan teoreemi kahe funktsiooni liitmise korral. Olgu lim f(x) = A ja lim g(x) = B (Vaatlen mõlemaid protsesse piirprotsessis x +) Teoreem (1) põhjal võib kirjutada lim x + f(x) + g(x) = lim x + f(x) + lim x + g(x) Eeldame, et liidetavaid on lõplik arv.

Matemaatiline analüüs
354 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

Funktsiooni y = f ( x ) , x X võib alati esitada parameetrilised kujul, näiteks: t T = X y = f (t) Vastupidine esitus, s.o. üleminek parameetriliselt kujult ilmutatud kujule ei ole alati teostatav. 5. Esitus ilmutamata kujul, s.o. võrrandi F ( x, y ) = 0 abil. Liitfunktsioon - kui y=f(u), kus u=g(x), siis öeldakse, et y on muutuja x suhtes liitfunktsioon ja kirjutatakse y=f[g(x)] Pöördfunktsioon ­ Paaris- ja paaritudfunktsioonid : *paaris ­ kui iga x X korral on f(-x)=f(x), siis nimetatakse funktsiooni f paarisfunktsiooniks piirkonnas X *paaritu ­ kui iga x X korral on f(-x)=-f(x), siis nimetatakse funktsiooni f paarituks funktsiooniks piirkonnas X Perioodiline funktsioon ­ funktsiooni f nimetatakse perioodiliseks piirkonnas X ja arvu 0 tema perioodiks, kui f ( x + ) = f ( x ) iga x X korral.

Matemaatiline analüüs i
776 allalaadimist
thumbnail
25
doc

MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega

arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Suuruse muutumispiirkond- Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon- Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument- muutuja x, sõltumatu. Sõltuv muutuja- muutuja y. Määramispiirkond- argumendi x muutumispiirkonda. Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul

Matemaatiline analüüs 1
43 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame punkti i =[xi-1,xi] 4

Matemaatiline analüüs
973 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs

Tõkestatud hulga definitsioon: reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik ( a, b ) nii, et A ( a, b ). Tõkestatud hulgad on näiteks kõik lõplikud vahemikud ( a, b ), lõigud [a, b] ja poollõigud [a, b), (a, b]. Tõkestamata hulgad on aga näiteks lõpmatud vahemikud (-, a), (a, ) ja lõpmatud poollõigud (-, a], [a, ). 2. Jääv ja muutuv suurus. Suuruse muutumispiirkond. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused. V: Jääv ja muutuv suurus: Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Näiteks ühtlase liikumise korral on kiirus jääv suurus ja läbitud teepikkus muutuv suurus. Samas mitte ühtlase liikumise korral on ka kiirus

Matemaatiline analüüs
232 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I

vahemik (a, b) nii, et A (a, b). Jääv suurus ­ suurus, mille arvuline väärtus ei muutu. Muutuv suurus ­ suurus, mis võib omandada erinevaid arvulisi väärtusi. Suuruse muutumispiirkond ­ muutuva suuruse kõigi võimalike väärtuste hulk. Funktsioon ­ Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument ­ Muutuja x Sõltuv muutuja ­ Muutuja y Määramispiirkond ­ argumendi x muutumispiirkond Väärtuste hulk - Y={ f(x) || x X } Funktsiooni esitamine tabelina ­ Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas ja neile vastavad funktsiooni väärtused tabeli teises reas. Võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni analüütiline esitusviis ­ valemi kujul. Funktsiooni graafiline esitusviis ­ esitatakse graafikuna tasandi ristkoordinaadistikus.

Matemaatiline analüüs 1
55 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

x a või f(x) A, kui x a. Näide . Tõestame,et lim x1 (2x + 1) = 3. Olgu > 0 suvaline.Siis f(x) - A=(2x+1)-3 = 2x-1< , kui x-1< . Seega võttes = , näeme, et definitsiooni 1nõuded on täidetud. 2 2 Definitsioon 2. Öeldakse, et funktsioonil f on lõpmatu piirväärtus piirprotsessis . x a, kui iga arvu N > 0 korral leidub arv > 0, nii et f(x) > N ( f(x) < -N ), alati kui 0 < | x - a | < . Kirjutame lim xa f(x) = ( vastavalt lim xa f(x) = - ). 2. Funktsiooni piirväärtuse omadused Teoreem 2. Kui eksisteerivad lõplikud piirväärtused lim xa f(x) = A ja lim xa g(x) = B, siis 1) lim xa [ f(x) ± g(x)] = A ± B, 2) lim xa [ c f(x)] = c A, 3) lim xa [ f(x) g(x)] = A B,

Matemaatiline analüüs i
687 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 29 3.5 Põhilised elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SISUKORD 3.6 Elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Jadad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Funktsiooni piirväärtus ja pidevus 37 4.1 Jada piirväärtus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Funktsiooni piirväärtuse mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Ühepoolsed piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Funktsiooni piirväärtuse omadused . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs I 1. kt teooria

Def.Trigonomeetrilised funktsioonid on funktsioonid kujul y=sinx,y=cosx,y=tanx ja y=cotx radiaanides antud argumendiga x. Määramispiirkonnad ja väärtuste hulgad on järgmised: 4. Def. Eeldame, et argument x on funktsiooni väärtuse f(x) kaudu üheselt määratud, st, et iga y Y leidub ainult üks x nii, et valitud y on selle x-I kujutiseks. Kui see on nii, siis öeldakse, et funktsioon f on üksühene. Üksühese funktsiooni korral on võrrand y=f(x) muutuja x suhtes üheselt lahenduv. Def. Üksühese funktsiooni y=f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsioonis funktsiooni argument ja sõltuv muutuja vahetavad oma kohad, st kui funktsiooni f argumendiks on x ja sõltuvaks muutujaks y, siis funktsiooni f pöördfunktsiooni argumendiks on y ja sõltuvaks muutujaks y. Samuti vahetuvad

Matemaatika analüüs I
297 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs I 1 kt teooria

Def.Trigonomeetrilised funktsioonid on funktsioonid kujul y=sinx,y=cosx,y=tanx ja y=cotx radiaanides antud argumendiga x. Määramispiirkonnad ja väärtuste hulgad on järgmised: 4. Def. Eeldame, et argument x on funktsiooni väärtuse f(x) kaudu üheselt määratud, st, et iga y Y leidub ainult üks x nii, et valitud y on selle x-I kujutiseks. Kui see on nii, siis öeldakse, et funktsioon f on üksühene. Üksühese funktsiooni korral on võrrand y=f(x) muutuja x suhtes üheselt lahenduv. Def. Üksühese funktsiooni y=f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsioonis funktsiooni argument ja sõltuv muutuja vahetavad oma kohad, st kui funktsiooni f argumendiks on x ja sõltuvaks muutujaks y, siis funktsiooni f pöördfunktsiooni argumendiks on y ja sõltuvaks muutujaks y. Samuti vahetuvad

Matemaatiline analüüs 2
103 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

avaldises ära jätta. Kehtib ligikaudne valem y dy kui x 0 . Diferentsiaali omadused. 1. d(u + v) = du + dv, 2. d(u - v) = du - dv, 3. d(uv) = vdu + udv, 4. d(Cu) = Cdu , C - konstant, 5. d() = kui v 0. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada ja tõestada Fermat' lemma. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks. Fermat' lemma - Kui funktsioonil f on punktis x1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f(x1) = 0.

Matemaatiline analüüs I
120 allalaadimist
thumbnail
22
docx

Matemaatiline analüüs (vähendatud programm)

> 0. Suuruse lõpmatus ümbruseks nimetatakse suvalist vahemikku (M, ∞), kus M > 0. Suuruse miinus lõpmatus ümbruseks nimetatakse suvalist vahemikku (−∞, −M), kus M > 0.  Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (a, b) nii, et A ⊂ (a, b). 2. Jääv ja muutuv suurus. Suuruse muutumispiirkond. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused.  Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks.  Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks.

Matemaatiline analüüs i
17 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

x= , y= , z= , D D D kus d1 b1 c1 a1 d1 c1 a1 b1 d1 Dx = d 2 b2 c2 , Dy = a2 d2 c2 , Dz = a2 b2 d2 . d3 b3 c3 a3 d3 c3 a3 b3 d3 2.9 Võrratus Kui kahe avaldise (arvu) vahel on võrratusmärk ( < , > , või ), siis sellist seost nimetatakse võrratuseks. Võrratuse omadused 1. Kui a > b , siis b < a . 2. Kui a > b ja b > c , siis a > c . 3. Võrratuse mõlema poolega saab liita ühe ja sama avaldise (arvu): kui a > b , siis a + c > b + c . 11 4

Matemaatika
1099 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

Paaridf-n *Def. Y=f(x) on paarisf-n juhul kui f(-x)=f(x) x MP graafik sum y telje suhtes, Nt y=x 2 =(-x)2 3. Paaritu f- n- sel korral paaritu kui f(-x)= -f(x), x MP, graafik sümm 0-punkti suhtes 4.Perioodiline f-n-parajasti siis, kui leidub niisugune reaalarv t, et tekib võrdsus iga MP punkti puhul. Märkus: kui f-n perioodiline=> t on lõpmata palju=> min t =T ­periood=> näit ting f-nil t>0 4. Liitfunktsioon Funkts, mille argumendiks ei ole sõltumatu muutuja, vaid tema mingi funktsioon, nim liitfunkt-niks sõltumatu muutuja suhtes y=f(u) u=u(x), Märkus: sisalduvus võib olla mitmekordne 5. Põhilised elementaarfunkts. 1)astmefunkts y=xa; a IR (nii murrulised, kui negatiivsed) 2)eksponentf-n y=ax, a 1, astmef-ni puhul on muutuja konstantses astmes , eksponentf-ni puhul on muutuja muutuvas astmes 3)logaritmf-n y=log ax, a>0, a 1 4)trig. F- nid y=sinx; cosx;tanx;cotx 5)arkus f-nid y=arcsinx;... NB 2ja 3 ning 4 ja 5 on pöördf-nid

Kõrgem matemaatika
147 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et 27Olgu funktsioon y = f(x) diferentseeruv hulgas D. Siis on tema tuletis f hulgas D määratud funktsioon. Oletame, et f on samuti diferentseeruv hulgas D. Siis saame me arvutada funktsiooni f tuletise ehk funktsiooni f teise tuletise, mida tähistatakse f. Seda protseduuri võib jätkata

Matemaatiline analüüs 1
66 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

xx1 J¨argnevalt olgu x punktist x1 paremal. Siis x - x1 > 0. Jagades v~orratuse positiivse arvuga x - x1 saame f(x) - f(x1)/ x - x1 0. V~otame piirv¨a¨artuse: F'(x1) = lim f(x) - f(x1)/ x - x1 0. xx1 V~orratused n¨aitavad, et f'(x1) 0 ja f'(x1) 0. See on v~oimalik vaid siis, kui f'(x1) = 0. Seega on lemma t~oestatud juhul, kui x1-s on lokaalne miinimum. Analoogiliselt saab k¨asitleda ka juhtu, kui x1-s on lokaalne miinimum. 25. Sõnastada ja tõestada Rolle'i teoreem. Kui funktsioon f on l~oigul [a,b] pidev, vahemikus (a,b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a,b) v¨ahemalt u¨ks punkt c nii, et f'(c) = 0. T~oestus. Kuna f(x) on pidev l~oigul [a,b], siis saavutab ta oma suurima ja v¨ahima v¨a¨artuse sellel l~oigul. Olgu M suurim v¨a¨artus ja m v¨ahim v¨a¨artus. Kui M = m, siis on funktsioon l~oigul [a,b] konstantne, st k~oigi x [a,b] korral kehtib f(x) = M = m. Sellisel juhul on f(x)

Matemaatika
46 allalaadimist
thumbnail
11
doc

Matmaatiline analüüs I 1. teooriatöö konspekt

muutumispiirkonnaks. On antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Olgu antud funktsioon f, mille argumendiks on x ja sõltuvaks muutujaks y. Muutuja y väärtust, milleks funktsioon f kujutab argumendi x, nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega võimekirjutada seose y = f(x) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Seost nimetatakse funktsiooni võrrandiks. Funktsiooni esitusviisid: 1)tabel 2)analüütiline 3)graafiline G = {P = (x, f(x)) || x X} Vaatleme joont G, mis

Matemaatiline analüüs
246 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

MITME MUUTUJA FUNKTSIOON 1. Punkti ümbrus. Kinnine ja lahtine piirkond. Mitme muutuja funktsioon ja selle määramispiirkond. Def. 1.1. ( 0 0 )0 Punkti P x1 , x 2 ,..., x n ümbruseks n-mõõtmelises ruumis R n nimetatakse punktide hulka { U ( P ) , mis rahuldavad tingimust U ( P ) = Q( x1 , x 2 ,..., x3 ) R n ( P, Q ) < , kus } ( P, Q ) = PQ = (x1 - x10 ) + (x 2

Matemaatiline analüüs 2
240 allalaadimist
thumbnail
10
docx

ARVU ABSOLUUTVÄÄRTUSE OMADUSED

ARVU ABSOLUUTVÄÄRTUSE OMADUSED n∈N korral . 2. Kui jada {x n } koondub ja piirväärtus on a, { |a|= a , kui a≥ 0 −a , kui a ≤ 0 Alt tõkestatud: kui leidub arv M∈R , et iga siis koondub ka

Matemaatika
5 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun