(kraadides) 0o 30o 45o 60o 90o 180o 270o 360o x (radiaanides) 0 3 2 6 4 3 2 2 3.2 Teravnurga trigonomeetrilised funktsioonid Täisnurkse kolmnurga teravnurkade trigonomeetrilised funktsioonid on järgmised. vastaskaatet a b Teravnurga siinus = ; sin = , sin = hüpotenuus c c lähiskaatet b a c Teravnurga koosinus = ; cos = , cos = a hüpotenuus c c vastaskaatet a b
x (radiaanides) 0 3 2 6 4 3 2 2 3.2 Teravnurga trigonomeetrilised funktsioonid Täisnurkse kolmnurga teravnurkade trigonomeetrilised funktsioonid on järgmised. vastaskaatet a b Teravnurga siinus ; sin , sin hüpotenuus c c lähiskaatet b a c Teravnurga koosinus ; cos , cos a hüpotenuus c c vastaskaatet a b
tan 150° = tan(180° – 30°) = – tan 30°, sest 150° on teise veerandi nurk sin 1200° = sin (3 · 360° + 120°) = sin 120° = sin (180° – 60°) = sin 60°, sest 120° on teise veerandi nurk. © Allar Veelmaa 2014 17 10. klass Viljandi Täiskasvanute Gümnaasium KAHE NURGA SUMMA JA VAHE SIINUS, KOOSINUS JA TANGENS Kui on teada kahe nurga x ja y siinus, koosinus ja tangens, siis saab leida ka sin( x y ) cos(x y ) tan(x y ) Järgmiste valemite abil on võimalik lihtsustada trigonomeetrilisi avaldisi ja leida ka mõningate nurkade siinuse, koosinuse või tangensi täpset väärtust. sin(x y ) sin x·cos y cos x·sin x cos(x y ) cos x·cos y sin x·sin y tan x tan y tan(x y ) 1 tan x·tan y Näide: Leiame sin 105° täpse väärtuse.
................................................................................ 8 Negatiivse täisarvulise astendajaga aste...............................................................................9 Arvu 10 astmed.....................................................................................................................9 Juurimine.................................................................................................................................. 9 Ruutjuur................................................................................................................................9 Arvu n-es juur.....................................................................................................................10 Tehted juurtega...................................................................................................................10 Murru nimetaja vabastamine irratsionaalarvust.........................................
ax2 + bx + c ( ruutkolmliikme lahutamine teguriteks) : ax2 + bx + c = a(x-x1)(x-x2). x1 ja x2 ruutvõrrandi lahendid. DETERMINANDID = a ·d - c·b. = aei + cdh +bfg gec ahf dbi. TRIGONOMEETRIA PÕHISEOSED sin2 + cos2 = 1 1 + cot2 a = tan = tan a cot a =1 1+ tan2 a = TÄIENDUSNURGA VALEMID sin (90 - a) =cos a cos (90 - a) = sin a tan (90 - a) = 1/tan a = cot a cot (90 - a) = 1/cot a = tan a NEGATIIVSE NURGA SIINUS,KOOSINUS,TANGENS JA KOOTANGENS. sin (- a) = -sin a cos (- a) = cos a tan (- a) = -tan a cot (- a) = -cot a KAHEKORDSE NURGA SIINUS, KOOSINUS, TANGENS JA KOOTANGENS. sin 2a =2sin a cos a cos 2a =cos2 a - sin2 a cos 2a = 2 cos2 a -1 cos 2a = 1- 2 sin2 a tan 2a = 2 tan a/ (1 - tan2 a) cot 2a = cot2 a - 1/ (2cot a) NURKADE TRIGONOMEETRILISTE FUNKTSIOONIDE VÄÄRTUSED. 0 30 45 60 90 sin 0 0.5 1
üks lahend A 2 B2 A 1 B1 C1 = lahend puudub A 2 B2 C 2 A 1 B1 C1 = = lõpmata palju lahendeid A 2 B2 C 2 3. Vektor tasandil. Joone võrrand · Lineaartehted vektoritega AB = ( x 2 - x 1 , y 2 - y1 ) kui A(x1; y1), B(x2; y2) OA = x 1 i + y1 j või a = ( x 1 ; y1 ), kui A( x 1 ; y1 ), O( 0; 0 ) i = (1; 0 ), j = ( 0; 1)
Aritmeetiline jada: an = a1+(n-1)d d = an-an-1 Sn = Geomeetriline jada: an = a1qn-1 Sn = Hääbuv jada: S = Trigonomeetria: sin 2 2 2 = sin +cos = 1 1+tan = sin2 = 2cossin cos2 = 2cos2-1 tan2 = siinusteoreem: (ümberringjoone raadius) koosinusteoreem: a2=b2+c2-bccos erikülgne kolmnurk: S= n Põhivõrrandid: sinx= a x=(-1) +180n, n Z cox= a x=+360n, n Z tanx= a x= +180n, n Z Kaare pikkus: l= Sektori pindala: S= n Liitintress: c= a(1) a-algväärtus Vektorid: pikkus paralleelsus || ristseis X1X2+Y1Y2= 0 nurk vektorite vahel cos = Sirge võrrand: kahe punktiga tõusu ja algkoordinaadiga y= kx+b (lp y-teljega) tõusu ja punktiga y-y1=k(x-x1) Kahe sirge vastastikused asendid: paralleelsed A||B k1=k2 risti AB k1k2 = -1 s1+s2 =
4R 34. Vekor tasandil. Joone võrrand. Punkti koordinaadid tasandil A2x + B2 y + C2 = 0 y-telg ordinaat x-telg abstsiss 35. Kahe punkti vaheline kaugus d = ( x 2 - x1 ) + ( y 2 - y1 ) 48. Ringjoone võrrand 2 2 36. Vektor. Tehted vektoritega a b ( x - a ) 2 + ( y - b) 2 = R2 49. Fn-ide graafikud 37. Vektorite liitmine · Lineaar u + v = ( x1 + x 2 ; y1 + y 2 ) y = ax + b 38
Hulkliikmete korrutamine Tehted Arvu ruutjuur Funktsioonide graafikud Ring (a+b)2 =a2+2ab+b2 astmetega a, kui a > 0 Võrdeline seos : y=ax d (a-b)2=a2-2ab+b2 (a : b)n=an : bn a>0 d = 2r r=
Valemid, teoreemid, seosed, tunnused, tingimused MATEMAATIKA EKSAMIL XI KLASSIS 1) a2-b2 = (a+b)(a-b) 2) a3 + b3=(a+b)(a2-ab+b2) 3) a3 - b3=(a-b)(a2+ab+b2) 4) (a+b)3 =a3+3a2b+3ab2+b3 5) (a-b)3 =a3-3a2b+3ab2-b3 −b ± √ b2−4 ac 2 6) a) lahenda ax + bx+c =0 2a b) tegurda : ax2 + bx+c= a( x− x1 )( x−x 2) c) tegurda ax3 + bx2+ax+b= x2(ax+b)+ax+b = (ax+b)(x2+1) 7) lim an bn lim an lim bn n n n 8) lim an bn lim an lim bn n n n 9) lim anbn lim an lim bn n n n an 10) lim lim an lim bn n bn n n 11) Korrutise tuletise sõnastus ja valem (u * v ) ´ = Korrutise tuletis võrdub esimese teguri tu
Püstprisma sin 0 1 2 3 1 2 tan tan 2 = Ruumala: V = S p h 2 2 1 - tan 2 2 Külgpindala: S k = PH sin cos 1 3 2 1 0 tan = Täispindala: S t = S k + 2 S p 2 1 + cos 2 2 2 1 - cos Korrapärane püramiid sin = ± 1 t
sin =± cos =± 2 2 2 2 1 - cos sin 1 - cos tan = ± tan = = 2 1 + cos 2 1 + cos sin VEKTORID TASANDIL On antud punktid A( x1 ; y1 ) ja B ( x 2 ; y 2 ) 41. Vektori AB koordinaadid on AB = ( x 2 - x1 ; y 2 - y1 ) On antud vektorid u =( a; b) ja v =(c; d ) 42. Summa ja vahe u ±v =( a ±c; b ±d ) 43. Korrutis arvuga r r u = ( ra; rb) 44. Vektorite skalaarkorrutis u v = a c + b d ja u v =u v cos 45. Vektori pikkus u = u1 +u 2 2 2 46. Kah e punkti A( x1 ; y1 ) ja B ( x 2 ; y 2 ) vaheline kaugus AB = ( x 2 - x1 ) 2 + ( y 2 - y1 ) 2 47. Nurk vektorite vahel u v cos = u v KOLMNURK
sin =± cos =± 2 2 2 2 1 - cos sin 1 - cos tan = ± tan = = 2 1 + cos 2 1 + cos sin VEKTORID TASANDIL On antud punktid A( x1 ; y1 ) ja B ( x 2 ; y 2 ) 41. Vektori AB koordinaadid on AB = ( x 2 - x1 ; y 2 - y1 ) On antud vektorid u =( a; b) ja v =(c; d ) 42. Summa ja vahe u ±v =( a ±c; b ±d ) 43. Korrutis arvuga r r u = ( ra; rb) 44. Vektorite skalaarkorrutis u v = a c + b d ja u v =u v cos 45. Vektori pikkus u = u1 +u 2 2 2 46. Kah e punkti A( x1 ; y1 ) ja B ( x 2 ; y 2 ) vaheline kaugus AB = ( x 2 - x1 ) 2 + ( y 2 - y1 ) 2 47. Nurk vektorite vahel u v cos = u v KOLMNURK
16. ühikvektorite skalaarkorrutised ii = 1 ji = 0 ki = 0 ij = 0 jj = 1 kj = 0 ik = 0 jk = 0 kk = 1 17. Skalaarkorrutis koordinaatides a b = X1X2 + Y1Y2 + Z1Z2. X 1 X 2 + Y1Y2 + Z 1 Z 2 18. Ühe vektori projektsioon teisel vektoril prb a = X 22 + Y22 + Z 22 19. Vektoria vektorkorrutis vektoriga b on vektor c, mis on määratud järgmiste tingimustega: 1. c = a xb = a b sin , vektori c pikkus võrdub nende vektorite moodulite ja nende vektorite vahelise nurga siinuse korrutisega. 2.Vektori c siht on risti vektoritele a ja b joonestatud rööpküliku tasandiga. ( c a ; c b ) 3.Vektori c suund on selline, et vektorid a, b ja c antud järjekorras moodustaksid parempoolse vektorkolmiku, s.t.
16. ühikvektorite skalaarkorrutised ii = 1 ji = 0 ki = 0 ij = 0 jj = 1 kj = 0 ik = 0 jk = 0 kk = 1 17. Skalaarkorrutis koordinaatides a b = X1X2 + Y1Y2 + Z1Z2. X 1 X 2 + Y1Y2 + Z 1 Z 2 18. Ühe vektori projektsioon teisel vektoril prb a = X 22 + Y22 + Z 22 19. Vektoria vektorkorrutis vektoriga b on vektor c, mis on määratud järgmiste tingimustega: 1. c = a xb = a b sin , vektori c pikkus võrdub nende vektorite moodulite ja nende vektorite vahelise nurga siinuse korrutisega. 2.Vektori c siht on risti vektoritele a ja b joonestatud rööpküliku tasandiga. ( c a ; c b ) 3.Vektori c suund on selline, et vektorid a, b ja c antud järjekorras moodustaksid parempoolse vektorkolmiku, s.t.
Hulkliikmete korrutamine Tehted Arvu ruutjuur Funktsioonide graafikud Ring (a+b)2 =a2+2ab+b2 astmetega ⎧a, kui a > 0 Võrdeline seos : y=ax d (a-b)2=a2-2ab+b2 (a : b)n=an : bn ⎪ a>0 d = 2r r=
· on hulk, mis on kinnine liitmise, korrutamise, lahutamise ja nullist erineva arvuga jagamise suhtes Reaalarvude hulk R · on järjestatud lõpmatu hulk, milles puudub nii vähim, kui ka suurim arv · on tihe arvuhulk, iga kahe reaalarvu vahel paikneb alati veel reaalarve · on pidev, s.t need arvud katavad kogu arvtelje · on hulk, mis on kinnine liitmise, korrutamise, lahutamise ja nullist erineva arvuga jagamise suhtes. Ruutjuur mittenegatiivsest reaalarvust on alati reaalarv. 1.4 Põhitehted reaalarvudega ja nende omadused · Kommutatiivsus e vahetuvus: a+b=b+a, ab=ba · Assotsiatiivsus e ühenduvus: a+(b+c)=(a+b)+c, a(bc)=(ab)c · Korrutamise distributiivsus e jaotuvus liitmise suhtes: a(b+c)=ab+ac Sündmuse A toimumise tõenäosuseks P(A) nimetatakse selle sündmuse jaoks soodsate võimaluste arvu m ja kõigi võimaluste arvu n suhet: P(A)= m/n 1.5 Reaalarvu absoluutväärtus
Paele vaadeldud p~ohiliste elementaarfunktsioonide vaadeldakse matemaati- lises anal¨ uu¨sis veel nn h¨ uperboolseid funktsioone ja nende p¨o¨ordfunktsioone, nn areafunktsioone. H¨ uperboolsed funktsioonid ja areafunktsioonid avaldu- vad juba vaadeldud p~ohiliste elementaarfunktsioonide kaudu. 16 H¨uperboolseteks funktsioonideks on h¨uperboolne siinus, h¨ uperboolne koo- sinus, h¨ uperboolne tangens ja h¨ uperboolne kootangens. H¨uperboolne siinus y = sh x on defineeritud kui ex - e-x sh x = . 2 H¨ uperboolse siinuse graafik on esitatud joonisel 1.24. Funktsiooni m¨a¨aramispiirkond
. . . . . . . . . . . . . . . . . . . . . . . . 106 12.4 Integraalide rakendusi statistikas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 12.5 Euler'i integraalid * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 12.6 Irratsionaalfunktsioonide integreerimine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 12.7 Trigonomeetriliste funktsioonide integreerimine . . . . . . . . . . . . . . . . . . . . . . . . . 111 13 Vektorid ruumis 113 13.1 Suunatud lõikude hulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 13.2 Vabavektorid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 13.3 Projektsioonivektor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 13.4 Kohavektorid . . . . . . . . . . . . . . . . . . . . .
suhtes Siinusfunktsioon on perioodiline funktsioon perioodiga 2=360° koosinusfunktsioon y=cos X=R Y=[-1;1] -1cosx1 cos(-x)=cosx paarisfunktsioon-graafik on sümmeetriline y-telje suhtes koosinusfunktsioon on perioodiline funktsioon perioodiga 2 Tangensfunktsioon y=tan x ei tohi võrduda 90°, 270°, -90°, -270° tan(-x)=-tanx paaritufunktsioon Tangensfunktsioon on perioodiline funktsioon perioodiga Arkusfunktsioon Siinusfunktsiooni pöördfunktsioon y=arcsinx Arkussiinus x on nurk, mille siinus on x y=arcsin(-x)=-arcsin n X=(-1)arcsinm+n Koosinusfunktsiooni pöördfunktsioon y=arccosx Arkuskoosinus x on nurk, mille koosinus on x arccos(-x)=-arccosx x=±arccosm+2 Tangensfunktsiooni pöördfunktsioon y=arctanx Arkustangens on nurk, mille tangens on x arctan(-x)=-arctanx x=arctanm+n Homogeenne trigonomeetriline võrrand võib olla järgmisel kujul: 2 2 asinx+bsinx=0 asinx+bcosx+csinxcosx=0 Tuletis (x²)´=2x (u±v)´=u´±v´
2007. aasta matemaatika riigieksami ülesanded koos lahenduste ja kommentaaridega 2 1. ÜLESANNE (5 punkti) Ülesannete tekstid 1 5x 1 I Antud on avaldis 2 , kus x 0 ja x . x 25 x 2 x 0 5 1) Lihtsustage see avaldis. 3 2) Arvutage avaldise väärtus, kui x 2 . Vastus andke täpsusega 10 2. 2 x 2 (9 x 2 x 0 ) 1 II Antud on avaldis , kus x 0 ja x . 1 3x 3 1)
Kui vektori algus on punktis A ja lõpp punktis B, siis tähistatakse AB , a . Vektor on kindla sihi, suuna ja pikkusega lõik. Siht on teda kandva sirge siht. Suund on alguspunktist lõpp-punkti poole. Definitsioon. Vektori mooduliks nimetatakse tema pikkust, see on lõigu AB pikkust ja tähistatakse AB AB , a a . Vektori moodul on skalaarne mittenegatiivne suurus. Definitsioon. Nullvektoriks nimetatakse vektorit, mille algus- ja lõpp-punkt langevad kokku. Nullvektori moodul on alati võrdne nulliga, tema suund ei ole määratud. Definitsioon. Ühikvektoriks nimetatakse vektorit, mille moodul (pikkus) on 1. Definitsioon. Kollineaarseteks vektoriteks nimetatakse vektoreid, mis asuvad ühel sirgel või paralleelsetel sirgetel. Kollineaarseid vektoreid tähistatakse a b .
cos + + tan + + 15. 16. Nurgaradiaan on kesknurk, mis toetub raadiuse pikkusele kaarele. 17. Seos kraadimõõdu ja radiaanmõõdu vahel on 180º= rad 18. Vektorite a ja b skalaarkorrutiseks a · b nim. nenede vektorite pikkuste ning vektoritevahelise nurga koosinuse korrutist. 19. Vektorite ristiseisu tunnus: kaks nullvektorist erinevat vektorit on risti siis ja ainult siis, kui nenede skalaarkorrutis on null 20. Siinusteoreem: a/sin = b/sin = c/sin 21. Koosinusteoreem: a2=b2-c2-2bccos, b2=a2+c2-accos, c2=a2+b2-2abcos 22. Kolmnurga pindala: S=ab· sin/2, S=ac·sin/2, S=cb· sin/2 23. Kahe nurga summa ja vahe sin sin(+)= sincos+cossin, sin(-)=sincos-cossin 24. Kahe nurga summa ja vahe cos cos(+)=coscos-sinsin, cos(-)=coscos+sinsin 25. Kahe nurga summa ja vahe tan tan(+)=tan+tan/1-tantan, tan(-)=tan-tan/1+tantan 26
Need juured saadakse avaldisest z 1/n = r1/n(cos(( + 2k)/n) + isin(( + 2k)/n)) andes arvule k järjest väärtused 0, 1, ..., n-1 3. Korpuse defnitsioon. Skalaari mõiste. Korpuste näiteid. Korpuseks nimetatakse hulka K, kus on kaks tehet, + ja *, mis rahuldavad omadusi 1-9 Skalaariks nimetatakse mis tahes korpuse elemente. Korpuse näiteid: 1. Q, R, C 2. jäägiklassikorpus Zp (p - algarv); Zp {0, 1, ..., p-1} i, j Zp; ij = i+j, kui i+j <= p-1; i+j-p, kui i+j >= p 4. Geomeetriline vektor. Lineaarsed tehted geomeetriliste vektoritega ja nende omadused. Geomeetriline vektor on suunatud lõik tasandil või ruumis. Kahte geomeetrilist vektorit loetakse võrdseiks, kui need vektorid on kollineaarsed ( || ), samasuunalised ( ) ja ühepikkused (|||| = ||||) Lineaarsed tehted geomeetriliste vektoritega: 1. liitmine 2. skalaariga korrutamine (skalaaride hulgaks R). Korrutis rahuldab tingimusi: 1. c || ; 2. c >= 0 <=> c ; c < 0 <=> c ; 3. ||c|| = |c| * ||||;
reaalarvude järjestatud kolmikuga (xP ; yP ; zP ), kus xP on punkti P ristprojektsiooni Px koordinaat abstsissteljel, yP on punkti P ristprojektsiooni Py koordinaat ordinaatteljel ja zP on punkti P ristprojektsiooni Pz koordinaat aplikaatteljel. punkti silinderkoordinaadid üleminekuvalemid silinderkoordinaadistiku ja ristkoordinaadistiku vahel: 13. Geomeetrilise vektori mõiste, tähistused. Vektorite võrdsus. Kollineaarsed vektorid. Geomeetriliseks vektoriks nimetatakse suunatud sirglõiku. iseloomustab: suund, siht ja pikkus. tähistus a=(a1; a2; a3) või AB=(a1; a2; a3). geomeetrilised vektorid on võrdsed, kui nad on samasihilised, samasuunalised ja pikkuselt võrdsed. erineda võivad alguspunktid. geomeetrilised vektorid on samasihilised ehk kollineaarsed, kui nad asuvad kas ühel ja samal sirgel või paralleelsetel sirgetel (siht on sama, suund ja pikkus võivad olla erinevad). tähistus a|| b.
12. Polaarkoordinaadistik tasandil. Punkti polaar- ja ristkoordinaatide vahelised seosed. Polaarkoordinaadistik tasandil: 1) Suunaga arvtelg e. polaartelg. 2) Alguspunkt 3) Ühiku pikkus 4) Polaarraadius r = |OM| 5) Polaarnurk , nurk OM ja polaartelje pos. suuna vahel. M(r;). Punkti polaarkoordinaatide ja ristkoordinaatide vahelised seosed: 1) x = rcos; y = rsin. 2) r = (x2+y2)1/2; tan = y/x. 13. Geomeetrilise vektori mõiste, tähistused. Vektorite võrdsus. Kollineaarsed vektorid. Vektor e. suunatud lôik lôik, millel on määratud suund (siht, suund ja suurus). Tähistused a = (a1;a2;a3) vôi AB = (a1;a2;a3). Vektorite vôrdsus - vektoreid nim. vôrdseteks, kui nad on kollineaarsed, samasuunalised ja vôrdse pikkusega (vôivad erineda vaid alguspunkti poolest). Kollineaarsed vektorid vektorid, mis asuvad ühel ja samal sirgel vôi paralleelsetel sirgetel (siht on sama, suud ja pikkus vôivad olla erinevad). 14. Vektori korrutamine arvuga (geomeetriliselt)
'],' fi i s li'k rr e il,"q rin c. E ii'ira ig u r:- r' !,,. C{ * pr =Y11' .-^{) u -ta ={-: "a )--) SlnA = -. = cos,6' * fi) = eosex ft'=fr h'=Gr- (, sira(900 t2
Potentseerimise teoreemid: NB! a^ loga N = N loga Nm = Uuele alusele viimine: loga N = loga N1 · N2 = loga N1 / N2 = KUJUNDID Sektori pindala: Ringi pindala: Ringjoone ümbermõõt: Kera ruumala: Kera pindala: Koonuse ruumala: Koonuse pindala: Püramiidi ruumala: Trapetsi pindala: Rombi pindala: TULETIS [f(x) · g(x)]´ = [f(x) / g(x)]´ = y = f[g(x)]; y´ = (ln x)´ = (ex)` = (ax)` = (logax)´= (sin x)´ = (cos x)´ = (tan x)´ = LÕIK, SIRGE, VEKTOR, TASAND Lõigu pikkus ruumis: d = Tasandi projektsiooni pindala: Sp = Vektorite paralleelsuse tingimus: Vektorite ristseisu tingimus: Skalaarkorrutis: Nurk vektorite vahel: Vektorite liitmine ja lahutamine: Vektori pikkus: Ühel tasandil olevaid vektoreid nimetatakse komplanaarseteks. Komplanaarsuse tingimus: Sirge võrrand tasandil Kahe punktiga: Punkti ja sihivektoriga: Punkti ja tõusuga: Tõusu ja algordinaadiga: NB
Tasapinnalised kujundid Ruut Diagonaal: Pindala: S = a2 Ümbermõõt: P = 4·a Ruudu kõik küljed on võrdsed ja nurgad täisnurgad. Ristkülik Diagonaal: Pindala: S = a · b Ümbermõõt: P = 2(a + b) Ristkülikuks nimetatakse rööpkülikut, mille kõik nurgad on täisnurgad. Romb + = 180º Pindala: S = a · h Ümbermõõt: P = 4·a Rööpkülik + = 180º Pindala: S = a · h Ümbermõõt: P = 2(a + b) Rööpkülikuks nimetatakse nelinurka, mille vastasküljed on paralleelsed. Kolmnurk + + = 180º Pindala: Ümbermõõt: P = a + b + c Võrdkülgne kolmnurk Kõrgus: Pindala: Ümbermõõt: P = 3 · a Täisnurkne kolmnurk
Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsioonid. . . . . . . . .
Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsio
(a+b)(a² -ab +b²) =a³ +b³ Pythagorase joonis: c a b sin=a/c sin=b/c cos=b/c cos=a/c tan=a/b tan=b/a Rööptahukas: Sp=ab, Sk=2(a+b)h, V=Sp*h Koonus: Sp=r , Sk=rm, V=Sph/3=r2h/3 2 Püramiid: V=1/3Sph Ring: C=2r S=r2 Silinder: c=2r, Sk=2rh, St=Sk+2Sp, Sp=r2, V=r 2h=Sp*h Kera: S=4r2, V=4/3r3 Kuup: S=6*a2, V=a3 Kolmnurk: S = a x h : 2, P=a+b+c Trapets: S = (a + a2) : 2 x h, P = a + a2 + c + d Rööpkülik: S=a*h, P=2(a+b) Romb: S=a*h, P=2(a+b) Risttahukas: S=2(ab+ac+bc), V=abc Rööpkülik: S=a*h
n = cos n + i sin n . Seda valemit nimetatakse Moivre´i valemiks. 2. Juurimine. + 2k + 2k n r ( cos + i sin ) = n r cos + i sin . n n kompleksarvu n-ndal juurel on n erinevat väärtust. 3. Geomeetriline vektor. Lineaarsed tehted geomeetriliste vektoritega (liitmine ja skalaariga korrutamine). Lineaarsete tehete 8 omadust. Def. 1. Geomeetriliseks vektoriks nimetatakse suunatud lõiku. Geomeetriline vektor on kujutatud järgmisel joonisel. uuur uuur uuur uuur uuur uuur Def. 4. Vektorite AB ja BC summaks nimetatakse vektorit AC ja tähistatakse AC = AB + BC . Def. 5