sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 sin2 cos = sin /tan cos2 1 = - sin2 cot = cos /sin cot =1/tan sin2 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ) sin = vastas kaatet/hüpotenuus cos = sin (90o ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ) tan = vastas kaatet/lähis kaatet cot =tan (90o ) cot = lähis kaatet/vastas kaatet tan = cot (90o ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos a/sin=b/sin=c/sin=2R S=1/2a*b*
b b2 4ac p p Mitu protsenti moodustab arv a arvust b? x1;2 x1;2 q 2a 2 2 a x 100% Viete i valemid: x1 x2 q x1 x2 p , b Muutumine protsentides a-st b-ni Ruutkolmliikme tegurdamine: ax 2 bx c a(x x1 )(x x2 ) ba Täisnurkne kolmnurk x 100% a a
Aritmeetiline jada-Jada, mille iga liige alates teisest on võrdne eelneva liikme ja selle jada jaoks mingi kindla arvu summaga nimetatakse aritmeetiliseks jadaks. Seda kindlat arvu nimetatakse aritmeetilise arvu jadaks ja tähistatakse tähega d. an=a1+(n-1)d an+1=an+d » an+1-an=d sn= a1+an/2 x n või sn=2a1+(n-1)d/2 Geomeetriline jada- Jada, mille iga liige alates teisest on võrdne eelneva liikme ja antud jada jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks. Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q n-1 n an=a1 x q q=an+1/n sn=a1(q -1)/q-1 Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q Arvu ,,A" nimetatakse jada ,,an" tõkestamatul kasvamisel ja tähistatakse sümboliga liman=A n lim1/n=0 Piirväärtus n (tõkestamatul kasvamisel) läheneb nullile. n Piirväärtust
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon
a cos 7. Võrrandid ja võrratused(lineaar, ruut, 1 1 + tan 2 = murd) cos 8. Parameetrit sisaldavad võrratused(peale Phytagorase teoreem a2+b2=c2 otsitava x veel täheline suurus) Täiendusnurga valemid 9. Biruutvõrrand sin = cos( 90° - ) ax 4 + bx 2 + c = 0 cos = sin ( 90° - ) 10. Võrrandite ja võrrandisüsteemide tan = cot ( 90° - ) lahendamine ja koostamine(tekstül.) cot = tan ( 90° - ) 11. Kaherealine determinant a b 23. Nurga mõiste üldistamine. Nurkade liigitus
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α alfa Ν ν nüü Β β beeta Ξ ξ ksii Γ γ gamma Ο ο omikron Δ δ delta Π π pii Ε ε epsilon Ρ ρ roo Ζ ζ dzeeta Σ σ sigma
Valemid, teoreemid, seosed, tunnused, tingimused MATEMAATIKA EKSAMIL XI KLASSIS 1) a2-b2 = (a+b)(a-b) 2) a3 + b3=(a+b)(a2-ab+b2) 3) a3 - b3=(a-b)(a2+ab+b2) 4) (a+b)3 =a3+3a2b+3ab2+b3 5) (a-b)3 =a3-3a2b+3ab2-b3 −b ± √ b2−4 ac 2 6) a) lahenda ax + bx+c =0 2a b) tegurda : ax2 + bx+c= a( x− x1 )( x−x 2) c) tegurda ax3 + bx2+ax+b= x2(ax+b)+ax+b = (ax+b)(x2+1) 7) lim an bn lim an lim bn n n n 8) lim an bn lim an lim bn n n n 9) lim anbn lim an lim bn n n n an 10) lim lim an lim bn n bn n n 11) Korrutise tuletise sõnastus ja valem (u * v ) ´ = Korrutise tuletis võrdub esimese teguri tu
y = tan x periood: TRIGONOMEETRIA 1 + tan2 = 1 + cot2 = sin (+) = sin (-) = cos (+) = cos(-) = tan (+) = tan (-) = sin 2 = cos 2 = tan 2 = sin /2 = cos /2 = tan /2 = Võrrandid: sin x = m x= cos x = m x= tan x = m x= Eukleidese teoreem: Teoreem kõrgusest: Siinusteoreem: 2R = Koosinusteoreem: NB! p pool ümbermõõtu, r siseringjoone raadius, R ümberringjoone raadius Ebatavalised pindala valemid: S = 0,5 bc sin S = pr S = abc/4R NB! Vaata üle ka nt Thalese teoreem JADA Aritmeetiline jada an = Sn = Geomeetriline jada an = Sn = Hääbuva jada summa: Sn = Potentseerimise teoreemid: NB! a^ loga N = N loga Nm = Uuele alusele viimine: loga N = loga N1 · N2 = loga N1 / N2 = KUJUNDID Sektori pindala: Ringi pindala: Ringjoone ümbermõõt: Kera ruumala: Kera pindala: Koonuse ruumala: Koonuse pindala: Püramiidi ruumala: Trapetsi pindala:
Kõik kommentaarid