Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Matemaatika eksami teooria 10. klass - sarnased materjalid

vektor, vektorit, võrratus, juur, ordinaat, avaldis, koordinaat, ratsionaal, liitmis, reaalarv, lineaar, murd, veer, skalaarkorrutis, liitmise, avaldise, reaalarvu, vektorid, lõpmatu, koosinus, sihivektor, täisarv, irratsionaal, avaldist, nimetaja, täisarvu, tehtevusüsteemi, haar, reaalarvud, naturaal, ratsionaalarvvuhulk, võrrandid, siinus
thumbnail
40
doc

Keskkooli matemaatika raudvara

.......................................................9 Arvu 10 astmed.....................................................................................................................9 Juurimine.................................................................................................................................. 9 Ruutjuur................................................................................................................................9 Arvu n-es juur.....................................................................................................................10 Tehted juurtega...................................................................................................................10 Murru nimetaja vabastamine irratsionaalarvust................................................................. 10 Ratsionaalarvulise astendajaga aste....................................................................................

Matemaatika
1453 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

10. Kompleksarvu mõiste, imaginaarühik, kompleksarvu reaalosa ja imaginaarosa, kompleksarvude võrdsus, kaaskompleksarv. Kompleksarvude liitmise, korrutamise ja jagamise valemid. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvu geomeetriline tõlgendus, Kaaskompleksarvude ja kompleksarvude summa geomeetriline tõlgendus. Trigonomeetrilisel kujul antud kompleksarvude korrutamise, jagamise, astendamise ja juurimise valemid. Juurte arv. 11. Geomeetriline vektor. Vektorite kollineaarsus, vektorite võrdsus. Nullvektor. Kolmnurka ja rööpküliku reegel. Lineaarsed tehted geomeetriliste vektoritega (liitmine ja skalaariga korrutamine). Lineaarsete tehete 8 omadust 12. Aritmeetiline vektor. Lineaarsed tehted aritmeetiliste vektoritega (liitmine ja skalaariga korrutamine). Aritmeetiline ruum. 13. Vektorruumi ja vektori definitsioon. Vektorruumi 5 näidet. Vektorite lineaarne kombinatsioon (näide geomeetriliste vektorite kohta)

Algebra I
198 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

INTERVALLIDE MEETOD (JÄRG) Näide 3. Lahendame võrratuse (x + 1)2 (x – 2)2 > 0. Selles võrratuses on x = –1 ja x = 2 vastava võrrandi kahekordsed lahendid, seega ei läbi joon kumbagi punkti, joonisel Vastus: L  R {–1; 2} või teistes sümbolites L   ;1   1;2  2;  Märkus: kui võrratuses oleks range võrratusemärgi asemel mitterange võrratuse- märk ≥, siis rahuldaks seda võrratust iga reaalarv, s.t. L = R. Näide 4. Lahendame võrratuse (x + 1)3 (x – 2)3 ≤ 0 Mõlemad vastava võrrandi lahendid (x = –1 ja x = 2) on paarituarv kordsed (kolmekordsed lahendid, seda näitab aste), siis läbib joon mõlemat punkti. Vastus: L  – 1;2 © Allar Veelmaa 2014 15 10. klass Viljandi Täiskasvanute Gümnaasium

Matemaatika
79 allalaadimist
thumbnail
22
doc

Kõrgem matemaatika

punkti ristkoordinaadid sirgel on selle punkti kaugus null/alguspunktist. Koordinaatteljel asuva punkti P asukoht määratakse üheselt kindlaks ühe reaalarvuga x (nn punkti P koordinaadiga), mis on võrdne punkti P kaugusega |OP| telje alguspunktist O, kas neg või pos suunal. punkti ristkoordinaadid tasandil on selle punkti ristprojektsioonid abstsiss- ja ordinaatteljel. P(x;y) Leiame punkti P ristprojektsioonid Px ja Py vastavalt x-teljel ja y-teljel. Olgu punkti Px koordinaat abstsissteljel xP ja punkti Py koordinaat ordinaatteljel yP. Selle järgi punkti koordinaadid on P(x;y). 11. Polaarkoordinaadistik tasandil. Punkti polaar- ja ristkoordinaatide vahelised seosed. polaarkoordinaat ­ kahemõõtmeline koordinaatide süsteem, kus iga tasandi punkt on määratud kaugusega fikseeritud punktist (punkti ja pooluse vaheline pikkus polaarkaugus r) ning nurgaga fikseeritud suunast (polaarnurk ).

Kõrgem matemaatika
212 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

n saadakse arv a: ( a) n n =a. Arv a on juuritav ja arv n on juurija. Juure omadused 1. Igal positiivsel arvul a on parajasti üks n-ndat järku juur. 2. Negatiivsel arvul ei ole paarisarvulise juurijaga juurt. 3. Igal negatiivsel arvul on parajasti üks paaritu juurijaga juur, mis on samuti negatiivne. 4. Iga n ( n 0 ) korral n 0 = 0 ja n 1 = 1 . 5. 2n a2n = a . 6. 2 n +1 a 2 n +1 = a . Tehted juurtega n ab = n a n b , kui a 0, b 0 (või kitsendusteta, kui n = 2k + 1 ) n ab = n a n b , kui a < 0, b < 0 ja n = 2k a na

Matemaatika
1099 allalaadimist
thumbnail
5
doc

algebra konspekt

Joonte parameetrilised võrrandid Joone parameetrilisteks võrranditeks ruumis nim võrandeid kujul x=x(t) y=y(t) z=z(t) kui esimene võrrand esitab x-i t-funktsioonina, teine võrrand esitab y-i ja kolmas z-i muutuja funktsioonina. Muutujat t nim parametriks. Tasandil nim joone parameetrilisteks võrranditeks võrrandeid x=x(t) y=y(t) Sirge parameetrilised võrrandid Sirge on täielikult määratud kui on teada nullist erinev sirgega paralleelne vektor, nn sirge sihivektor s ja üks punkt M1 sirgel. M on meelevaldne punkt sirgel, siis OM1=r1 ja OM=r. Punktid M1 ja M määravad vektori M1M=r-r1. See vektor on paralleelne sihivektoriga. Võrrand r-r1=st on sirge parameetriline võrrand vektorkujul. Võrrandit y= kx+b nim sirge võrrandiks tõusu ja algordinaadi järgi. Siin arv k on sirge tõus ehk x-telje positiivse suuna ja sirge vahelise nurga tangens. Arvu b nim sirge algordinaadiks.See on sirge ja y-telje lõikepunkti ordinaat.

Algebra ja Analüütiline...
131 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

teljeks. Ristkoordinaadistik ruumis: · Kolm ristuvat suunaga arvsirget; · Alguspuntkid ühtivad; · Ühikud on võrdsed. Punkti ristkoordinaadid ruumis - ­ (punkti koordinaatide saamiseks võtame ristprojektsioonid vastavatele telgedele) M(x;y;z) Mx(x), My(y), Mz(z). Seosed punkti rist- ja sfäärkoordinaatide vahel: 1) x 2) y 3) z = sin* 13. Geomeetrilise vektori mõiste, tähistused. Vektorite võrdsus. Kollineaarsed vektorid. Vektor ehk suunatud lõik ­ lõik, millel on määratud suund, siht ja suurus. Täh a=(a1;a2;a3) või AB=(a1;a2;a3). Vektorite võrdsus: vektoreid nim võrdseteks kui nad on kollineaarsed, samasuunalised ja võrdse pikkusega (võivad erineda vaid alguspunktide poolest). Kollineaarsed vektorid: vektorid, mis asuvad ühel ja samal sirgel või paralleelsetel sirgetel (siht on sama, suund ja pikkus võivad olla erinevad). 14. Vektori korrutamine arvuga (geomeetriliselt)

Kõrgem matemaatika
356 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

n saadakse arv a:  a n n a. Arv a on juuritav ja arv n on juurija. Juure omadused 1. Igal positiivsel arvul a on parajasti üks n-ndat järku juur. 2. Negatiivsel arvul ei ole paarisarvulise juurijaga juurt. 3. Igal negatiivsel arvul on parajasti üks paaritu juurijaga juur, mis on samuti negatiivne. 4. Iga n  n  0  korral n 0  0 ja n 1  1 . 5. 2n a2n  a . 6. 2 n 1 a 2 n 1  a . Tehted juurtega n ab  n a  n b , kui a  0, b  0 (või kitsendusteta, kui n  2k  1 ) n

Algebra I
61 allalaadimist
thumbnail
24
doc

ANALÜÜTILINE GEOMEETRIA RUUMIS, VEKTORID

Kui vektori algus on punktis A ja lõpp punktis B, siis tähistatakse AB , a . Vektor on kindla sihi, suuna ja pikkusega lõik. Siht on teda kandva sirge siht. Suund on alguspunktist lõpp-punkti poole. Definitsioon. Vektori mooduliks nimetatakse tema pikkust, see on lõigu AB pikkust ja tähistatakse   AB  AB , a  a . Vektori moodul on skalaarne mittenegatiivne suurus. Definitsioon. Nullvektoriks nimetatakse vektorit, mille algus- ja lõpp-punkt langevad kokku. Nullvektori moodul on alati võrdne nulliga, tema suund ei ole määratud. Definitsioon. Ühikvektoriks nimetatakse vektorit, mille moodul (pikkus) on 1. Definitsioon. Kollineaarseteks vektoriteks nimetatakse vektoreid, mis asuvad ühel sirgel või paralleelsetel sirgetel.   Kollineaarseid vektoreid tähistatakse a b .  

Matemaatika
39 allalaadimist
thumbnail
5
doc

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks

Vektori a pikkus on a ja tähistatakse |a| = a. Vektoreid a ja b nimetakse kollineaarseteks (a ||b), kui nad on paralleelsed sama sirgega. Kollineaarsed vektorid on kas samasuunalised a b või vastassuunalised a b. Vektoreid a ja b nimetatakse komplanaarseteks, kui nad on paralleelsed ühe ja sama tasandiga. Vektorid a ja b on võrdsed (on sama suured), a=b, kui nende pikkus on sama ja nad on samasuunalised Vektorite a ja b summa a+b on vektor, mille alguspunkt on a alguspunkt ja lõpp-punkt saadakse b paralleellükkega a lõpp-punkti, siis a+b lõpp-punkt on b lõpp-punkt. Tihti kasutatakse ka rööpküliku reeglit, kus vektorid a ja b pannakse paralleellükkega algama samast punktist. Summa on siis rööpküliku pikem diagonaal. a-b=a+(-b). Seega ahelreelgi järgi tuleks vektorite a ja b vaheks vektor a-b, mis saadakse a lõppu b vastasvektori ­b lisamisega. Rööpküliku reeglite järgi oleks vektorite a ja b vahe neile

Lineaaralgebra
177 allalaadimist
thumbnail
25
doc

Algebra ja geomeetria kordamine

. . , aik} nimetame vektorsüsteemi {a1, a2, . . . , am} alamsüsteemiks. Vektorsüsteemi lineaarne sõltuvus (sõltumatus) ­Vektorsüsteemi {a1, a2, . . . , am} nimetame lineaarselt sõltuvaks (lineaarselt sõltumatuks), kui vektorvõrrandil 1a1+ 2a2 + ... + mam on rohkem kui 1 lahend (on ainult 1 lahend) ?Tulemused lineaarse sõltuvuse kohta väikese elementide arvuga vektorsüsteemides ­ viimane tähendab seda, et kui vektorsüsteemis on 1 vektor, siis l-sõltuv on ainult siis kui see vektor on 0 vektor, kui 2 vektorit, siis l-sõltuv, kui need vektorid on kollineaarsed VEKTORRUUMI BAAS: Vektorruumi baas ­ Vektorsüsteemi {e1, e2, .... , en} nimetatakse vektorruumi V baasiks, kui: 1) see vektorsüsteem on lineaarselt sõltumatu; 2) vektorruumi V iga element on avaldatav selle vektorsüsteemi elementide kaudu. Lõpmatumõõtmeline vektorruum ­ Vektorruumi, millel puuduvad baasid, nimetatakse lõpmatumõõtmeliseks ehk lõpmatudimensionaalseks vektorruumiks

Algebra ja geomeetria
62 allalaadimist
thumbnail
36
pdf

Vektor. Joone võrrand. Analüütiline geomeetria

lahendama kolmnurka vektorite abil, leidma lõigu pikkust ja selle keskpunkti koordinaate, koostama sirge võrrandit ka punkti ja sihivektori kaudu ning teisendama kõiki sirge võrrandeid üldkujule. Õpilane leiab ka kahe sirge vahelise nurga, koostab hüperbooli, parabooli ja ringjoone võrrandeid ning leiab kahe joone lõikepunkte. Soovitan kõigil õpetajatel tutvuda kirjastuse Avita poolt välja antud raamatuga ,,Gümnaasiumi kitsas matemaatika III. Vektor tasandil. Joone võrrand". Õpik on ladusas keeles, rohkete illustratsioonidega, järgib hästi ainekava ning sisaldab rohkesti elulisi ülesandeid. Ülesannete raskusaste on kitsale kursusele vastav. Laia kursuse jaoks sobivad ka senini käibel olnud õpikud, kuid ainekava tuleb tõesti tähelepanelikult jälgida. Enne vektori mõiste sissetoomist peaks kordama üle need teadmised, mis puudutavad koordinaatteljestikku ja punkti koordinaate. Selleks sobib kitsa kursuse õpiku alguses olev

Matemaatika
38 allalaadimist
thumbnail
3
odt

Vektor ja Sirge konspekt ja valemid

Vektor Vektor on suunatud sirglõik. Sellist sirglõiku iseloomustavad siht, suund ja pikkus. Siht näitab, kuidas vektor asetseb. Suund näitab, kummale poole on vektor suunatud. Pikkus näitab vektori arvväärtust. Kui vektori alguspunkt on A ja lõpppunkt on B, siis vektorit tähistatakse . Vektorit tohib tähistada ka väiketähega, näiteks Üldiselt mõistetakse matemaatikas vektori all vabavektoreid kui pole öeldud teisiti. Samasihilisteks ehk kollineaarseteks ehk paralleelseteks nimetatakse vektoreid, mis asetsevad ühel ja samal sirgel või paralleelsetel sirgetel. Vektorid on võrdsed, siis kui nad on võrdsete pikkustega, kollineaarsed ja samasuunalised. Vastandvektorid on vektorid, mis on võrdse pikkusega, samasihilised kuid vastassuunalised.

Matemaatika
118 allalaadimist
thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

d= ( x 2−x 1 ) + ( y 2− y 1 ) + ( z 2 + z 1) 2 3. Vektori mõiste-Vektor on suunatud lõik millel on kindel algus- ja lõpp-punkt. 4. Nullvektor-Vektorit, mille pikkus on null, nimetatakse nullvektoriks ja tähistatakse sümboliga . Nullvektori suund on määramata. 5. Ühikvektor- Kui vektori pikkus on 1 6. vektorite liitmine-rööpkülikureegel: Vektorite a ja b summaks nimetatakse niisugust vektorit c, mis väljub nende ühisest alguspunktist ja on niisuguse rööpküliku diagonaal, mille külgedeks on liidetavad vektorid. Kolmnurga reegel-vektorite liitmisel viiakse teise liidetava alguspunkt esimese liidetava lõpp-punkti. Vektorite a ja b summaks on vektor mis kulgeb esimese liidetava alguspunktist teise liidetava lõpp-punkti. 7. vektorite lahutamine- Vektorite a ja b vaheks nimetatakse vektorit d, millel on omadus b+d=a. Kahe vektori vahe leidmiseks viikse nad ühisesse

Matemaatiline analüüs 1
124 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6. korrutamine on assotsiatiivne, st (z1z2)z3 = z1(z2z3) z1, z2, z3 C korral 7. korrutamise suhtes leidub ühikelement, selleks on reaalarv 1: 1z = z1 = z z C korral 8. igal nullist erineval kompleksarvul z = (x;y) = x + yi leidub pöördarv w C, nii et wz=zw=1 9. liitmine ja korrutamine on seotud distributiivsusega, st z 1(z2 + z3) = z1z2 + z1z2; (z1 + z2)z3 = z1z3 + z2z3 z1, z2, z3 C korral Kompleksarvu algebraline kuju: z = (x; y) = (x; 0) + (0; y) = (x;0) + (y; 0)(0; 1) = x + yi; C = {x + yi | x, y R} Tuletatavad tehted: 1. vahe: z1 - z2 = z1 + (-1)*z2 2. jagatis: z1/z2 = z1 * z2-1, kui z2 0

Lineaaralgebra
199 allalaadimist
thumbnail
28
pdf

Lineaaralgebra ja analüütiline geomeetria konspekt

2016 aasta sügis) Ristkoordinaadid. Kui ruumis on antud ristkoordinaadisüsteem, siis ruumi iga punkt P on üheselt määrastud ristkoordinaatidega x, y, z, kus x on punkti P ristprojektsioon abstsissteljele, y on punkti P ristprojektsioon ordinaatteljele ja z on punkti P ristprojektsioon aplikaateljele. Kirjutame P(x, y, z). Kahe punkti vaheline kaugus. Kui P1(x1, y1, z1), P2(x2, y2, z2) on ruumi punktid, siis kaugus d punktide P1 ja P2 vahel on määratud valemiga Vektori mõiste Vektor on suunatud lõik alguspunktiga punktis A ja lõpp-punktiga punktis B. Nullvektor Eukleidilises ruumis (näiteks tasandil) on nullvektoriks määramata suunaga vektor, mille pikkus on null. Ühikvektor Kui vektori pikkus on 1, siis teda nimetatakse ühikvektoriks. Vektorite liitmine ja lahutamine Lahutamine toimub sama põhimõtte järgi. Reaalarvu ja vektori korrutis. Vektori pikkus Vektori pikkuseks loetakse sellele vektorile vastava sirglõigu AB pikkust

Algebra ja analüütiline...
105 allalaadimist
thumbnail
16
docx

Matemaatika kursused

6) sooritab tehteid astmete ning Arvusüsteemid võrdsete juurijatega juurtega; (kahendsüsteemi 7) teisendab lihtsamaid ratsionaal- näitel). ja irratsionaalavaldisi; Ratsionaal- ja 8) lahendab rakendussisuga irratsionaalavaldis ülesandeid (sh ed. protsentülesanded). Arvu n-es juur. Astme mõiste üldistamine: täisarvulise ja ratsionaalarvulise astendajaga aste. Tehted astmete ja juurtega. Võrdus, võrrand, Õpilane: Tekstülesande Võrrandid ja samasus. 1) selgitab võrduse, samasuse ja d

Matemaatika
31 allalaadimist
thumbnail
7
doc

Kõrgem matemaatika

Kõrgema matemaatika kordamisküsimused eksamiks 1. Kahe vektori skalaar- ja vektorkorrutis Vektoriks nim suunaga ja pikkusega sirglõiku. Tähistatakse , kus A ja B tähistavad vastavalt vektori algus- ja lõpp-punkti. Vektori mooduliks nim vektori pikkust. Tähistatakse . Ühikvektoriks nim vektorit, mille pikkus võrdub ühega. . Nullvektoriks nim vektorit, mille alguspunkt ja lõpppunkt ühtivad. . Vabavektoriks nim vektorit, mille alguspunkt ei ole fikseeritud, st vektori asendit võib paralleellükke abil muuta. Kahte vektorit nim võrdseks, kui nad on võrdsete moodulitega ning samasuunalised. Vektorite võrdsus erineb lõikude võrdsusest. Vektoreid nim kollineaarseteks, kui nad pärast ühisesse alguspunkti viimist asuvad ühel ja samal sirgel. Võivad olla sama või vastassuunalised. .

Kõrgem matemaatika
477 allalaadimist
thumbnail
8
doc

Kõrgema matemaatika kordamisküsimused ja vastused

vabaliikmeid on eraldatud püstkriipsuga. Lubatavad elementaarteisendused: 1) Rea korrutamine nullist erineva arvuga 2) Ridade vahetamine 3) Ühele reale mingi arvu kordse teise rea liitmine. Vôimalike lahendite arv: 1) Reaalarvulised lahendid puuduvad 2) Lôpmata palju lahendeid 3) Kindel arv lahendeid (konkreetsed arvud vôi konstantidega üldlahend). Lineaarse vôrrandsüsteemi üldlahend: igale muutujale vastab konstante sisaldav avaldis, mis rahuldab süsteemi kôiki vôrrandeid. Nad vôivad olla omavahel avaldiste kaudu seotud. Lineaarse vôrrandsüsteemi erilahend: andes üldlahendi konstantidele väärtusi saab erilahendi. 7. Lineaarse võrrandisüsteemi maatrikskuju. Maatrikskujul antud võrrandisüsteemi lahendamisest. Lineaarse vôrrandsüsteemi maatrikskuju: AX=B; A=(aij), i=1,...,m ja j=1,...,n. X ­ muutujate maatriks; B ­ vabaliikmete maatriks; A ­ kordajate e. süsteemimaatriks.

Matemaatika
241 allalaadimist
thumbnail
5
docx

Lineaaralgebra Eksami küsimuste vastused

(1,2,3....n-1) 4. Geomeetrilised vektorid,lineaartehted ja nende omadused. Geomeetrilised vektorid on suunatud lõigud,a-algus punk,b-lõpp punkt( või ) on võrdsed kui need on,samasuunalised ja ühepikused.ruumis võib olla mis tahes punkt iga vektori ja p.A-le leidub p.B .kui vektori alg ja lõpp punk langevad kokku siis see on null-vektor.vektorite + = . lineaartehted­ on vektorite liitmine ja skalaar korrutmine omadused ­ , , (null vektor olemas olu), (vastand vektori olemas olu), , 5. Aritmeetilised vektorid lineaartehted ja skalaarkorrutis ja nende omadused. Aritmeetilised vektorid n-mõõtmeline aritm.vektor on n arvu(a1,a2,a3....an)kindlas jäjekorras.tähistatakse (.kõigi n-mõõtmelise vektorite this on . Lineaartehted kui p =(b1,b2,b3,...bn) ja CR. korrutis ) Omadused iga ­ , , leidub ,et null vektor, iga leidub vastand vektor ka , , (ab)=a() , 1* Skalaarkorrutis on arv ­

Lineaaralgebra
952 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
14
doc

KT spikker

, (2) + + . (3) Tõestus. Kuna c2 = c , siis c = ( c ) ( c ) = c2 ( ) = c = c ja võrdus (1) kehtib. = või = , siis võrratus (2) kehtib. Seepärast eeldame, et Tõestame nüüd võrratuse (2). Kui ja . Valime suvalise reaalarvu x ja moodustame vektori = + x . Aksioomi 1° põhjal 0 , s.t. ( + x ) ( + x ) 0 . (4) Avame skalaarkorrutise aksioome kasutades sulud:

Lineaaralgebra
265 allalaadimist
thumbnail
2
docx

Matemaatika mõisted

7. Võrrand on võrdus, mis sisaldab ühte või mitut muutujat, mida vaadeldakse tundmatute suurustena. 8. Determinant on lineaaralgebras funktsioon, mis seab igale ruutmaatriksile vastavusse skalaari, ning on üks olulisemaid matemaatilisi konstruktsioone lineaarvõrrandsüsteemi uurimisel. 9. Juurvõrrand on võrrand, milles muutuja esineb juuritavas. 10. Kui punktid A(x1; y1) ja B(x2;y2) on lõigu otspunktid, siis selle lõigu keskpunkti C(xc;yc) koordinaadid on 11. Vektor on lõik, millel on suund, siht ja pikkus. 12. Vektoreid saab liita, kui liita vektorite vastavad koordinaadid. 13. Vektori vastandvektoriks nim. vektorit, millel on antud vektoriga sama siht ja pikkus, kuid vastupidine suund. 14. Vektorid on kollineaarsed ehk samasihilised, kui nad asuvad ühel ja samal sirgel või paralleelsetel sirgetel. 15. v= lp - ap 16. Vektori pikkus võrdub koordinaatide ruutjuure summast. 17. sin= vastask./hüp. cos= lähisk./ hüp.

Matemaatika
11 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

16. ühikvektorite skalaarkorrutised ii = 1 ji = 0 ki = 0 ij = 0 jj = 1 kj = 0 ik = 0 jk = 0 kk = 1 17. Skalaarkorrutis koordinaatides a b = X1X2 + Y1Y2 + Z1Z2. X 1 X 2 + Y1Y2 + Z 1 Z 2 18. Ühe vektori projektsioon teisel vektoril prb a = X 22 + Y22 + Z 22 19. Vektoria vektorkorrutis vektoriga b on vektor c, mis on määratud järgmiste tingimustega: 1. c = a xb = a b sin , vektori c pikkus võrdub nende vektorite moodulite ja nende vektorite vahelise nurga siinuse korrutisega. 2.Vektori c siht on risti vektoritele a ja b joonestatud rööpküliku tasandiga. ( c a ; c b ) 3.Vektori c suund on selline, et vektorid a, b ja c antud järjekorras moodustaksid parempoolse vektorkolmiku, s.t.

Analüütiline geomeetria
39 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

16. ühikvektorite skalaarkorrutised ii = 1 ji = 0 ki = 0 ij = 0 jj = 1 kj = 0 ik = 0 jk = 0 kk = 1 17. Skalaarkorrutis koordinaatides a b = X1X2 + Y1Y2 + Z1Z2. X 1 X 2 + Y1Y2 + Z 1 Z 2 18. Ühe vektori projektsioon teisel vektoril prb a = X 22 + Y22 + Z 22 19. Vektoria vektorkorrutis vektoriga b on vektor c, mis on määratud järgmiste tingimustega: 1. c = a xb = a b sin , vektori c pikkus võrdub nende vektorite moodulite ja nende vektorite vahelise nurga siinuse korrutisega. 2.Vektori c siht on risti vektoritele a ja b joonestatud rööpküliku tasandiga. ( c a ; c b ) 3.Vektori c suund on selline, et vektorid a, b ja c antud järjekorras moodustaksid parempoolse vektorkolmiku, s.t.

Analüütiline geomeetria
140 allalaadimist
thumbnail
19
doc

Õppematerjal

1 VEKTORALGEBRA PÕHIMÕISTEID DEFINITSIOON. Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e

Kõrgem matemaatika
383 allalaadimist
thumbnail
19
doc

VEKTORALGEBRA PÕHIMÕISTEID

1 VEKTORALGEBRA PÕHIMÕISTEID DEFINITSIOON. Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e

Kõrgem matemaatika
50 allalaadimist
thumbnail
4
doc

Gümnaasiumi I astme valemid

n a an 13. Jagatise aste = b bn 14. Võrdsete alustega astmete korrutis a m a n = a m+ n . am 15. Võrdsete alustega astmete jagatis n = a m -n a mn 16. Astme aste (a ) = a . m n 17. Korrutise juur n a b = n a n b . a na 18. Jagatise juur n = n b b 19. Juure aste ( a ) = a n m n m 20. Juure juur m n a = mn a . 21. Astendaja 0 a 0 = 1 , kui a 0 -n 1 22. Negatiivne astendaja a = n a m 23. Murruline astendaja a n = n a m RUUTVÕRRAND 24

Matemaatika
661 allalaadimist
thumbnail
4
doc

Valemid

n a an 13. Jagatise aste = b bn 14. Võrdsete alustega astmete korrutis a m a n = a m+ n . am 15. Võrdsete alustega astmete jagatis n = a m -n a mn 16. Astme aste (a ) = a . m n 17. Korrutise juur n a b = n a n b . a na 18. Jagatise juur n = n b b 19. Juure aste ( a ) = a n m n m 20. Juure juur m n a = mn a . 21. Astendaja 0 a 0 = 1 , kui a 0 -n 1 22. Negatiivne astendaja a = n a m 23. Murruline astendaja a n = n a m RUUTVÕRRAND 24

Matemaatika
15 allalaadimist
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

abc A1x + B1y + C1 = 0 S= L( x 0 ; y 0 ) 4R 34. Vekor tasandil. Joone võrrand. Punkti koordinaadid tasandil A2x + B2 y + C2 = 0 y-telg ­ ordinaat x-telg ­ abstsiss 35. Kahe punkti vaheline kaugus d = ( x 2 - x1 ) + ( y 2 - y1 ) 48. Ringjoone võrrand 2 2 36. Vektor. Tehted vektoritega a b ( x - a ) 2 + ( y - b) 2 = R2 49. Fn-ide graafikud 37

Matemaatika
1299 allalaadimist
thumbnail
3
doc

Matemaatika valemid

(s.t. vastavate koordinaatide jagatised on võrdsed). Vektori lahutamisel asendame lahutamise vastandvektori liitmisega. Vektori liitmisel liidame vastavad koordinaadid, lahutamisel lahutame. Vektorid i ja j ­ ristuvad ühik vektorid. Ühe ühiku pikkused, teljestiku sihis. Vektori koordinaatide leidmiseks lahutan lõpppunkti koordinaatidest vastavad alguspunkti koordinaadid. Vektori pikkus võrdub ruutjuurega koordinaatide ruutude summast. Sellist vektorit, mille algus punktid on koordinaatide alguspunktis nim kohavektoriks. Kohavektori koordinaadid on samad, mis vektori lõpp koordinaadid. Sellist vektorit, mille pikkus on 0 ühikut, nim nullvektoriks. Sellist vektorit, mis on 1 ühik pikk nim ühikvektoriks.

Matemaatika
1753 allalaadimist
thumbnail
18
ppt

Vektorid (konspekt)

Lahendus AB ( 4 ( 1);6 ( 2);2 1) (5;4;1) Vektori pikkus Teades vektori koordinaate, saame leida selle pikkuse valemist AB X 2 Y2 Z2 kus X ,Y ja Z on vektori AB koordinaadid. Näide Leiame eelmises näites antud vektori AB (5;4;1) pikkuse. Lahendus AB 5 2 (4) 2 11 42 6,5 Tehted vektoritega, vektorite liitmine Vektoreid saab liita, lahutada ja arvuga korrutada. Neid tehteid on võimalik teha, kui on teada vektori koordinaadid või vektor on esitatud geomeetrilisel kujul. Geomeetrilisel kujul esitatud vektorite liitmiseks kasutatakse kolmnurgareeglit rööpkülikureeglit hulknurgareeglit Kolmnurgareegel Kahe vektori a ja b summa leidmiseks joonestame mingist punktist A esmalt vektori AB a ning siis selle lõpp-punktist B vektori BC b . Ühendades punktid A ja C, saame vektori AC a b

Matemaatika
7 allalaadimist
thumbnail
18
ppt

Vektorid

Lahendus AB ( 4 ( 1);6 ( 2);2 1) (5;4;1) Vektori pikkus Teades vektori koordinaate, saame leida selle pikkuse valemist AB X 2 Y2 Z2 kus X ,Y ja Z on vektori AB koordinaadid. Näide Leiame eelmises näites antud vektori AB (5;4;1) pikkuse. Lahendus AB 5 2 (4) 2 11 42 6,5 Tehted vektoritega, vektorite liitmine Vektoreid saab liita, lahutada ja arvuga korrutada. Neid tehteid on võimalik teha, kui on teada vektori koordinaadid või vektor on esitatud geomeetrilisel kujul. Geomeetrilisel kujul esitatud vektorite liitmiseks kasutatakse kolmnurgareeglit rööpkülikureeglit hulknurgareeglit Kolmnurgareegel Kahe vektori a ja b summa leidmiseks joonestame mingist punktist A esmalt vektori AB a ning siis selle lõpp-punktist B vektori BC b . Ühendades punktid A ja C, saame vektori AC a b

Matemaatika
19 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun