Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Matemaatika analüüs I spikker - sarnased materjalid

funk, argu, tuletis, piirväärtus, lähenemisel, muutuja, puutuja, integreerimine, eeskiri, terves, vaatleme, nullile, tuletiste, piirasend, kasvamispiirkond, kahanemispiirkond, ekstreemumid, lahendid, vastupidine
thumbnail
8
doc

Konspekt eksamiks

On eeldused ja järeldused. Teoreetiline analüüs (statistilised probleemid jäetakse kõrvale) *Mat majteaduse mudeli puhul ei arvestata kõiki aspekte, sest see on võimatu, valitakse põhifaktorid (mida asendavad muutujad) ja antakse ette seosed (võrranditena). Matemaatiline mudel koosneb võrranditest, mis kirjeldavad faktorite käitumist ja seovad muutujaid omavahel -> analüütilised eeldused -> loogilised järeldused. 3. Funktsiooni mõiste: Kui muutuja x igale väärtusele hulgas X on vastavusse seotud muutuja y väärtus, siis öeldakse, et hulgal X on määratud funktsioon. y=f(x) eeskiri; üksühene vastavus. Liigid: a) konstantne f. N. y=f(x)=7 b) polünoomid y=a0+a1x+a2x2+...+anxn n=0 konstantne f., n=1 linearne f., n=2 ruutf. (0;a0) a1-tõus c) ratsionaalf. N murrud d) mittealgebralised f. n juured, astmed, exp, log, trig. 4. Tasakaalu mõiste, turu tasakaalu mudelid (1.ja 2. ning n hüvisega)

Kõrgem matemaatika
213 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs II

n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarväli. Def: funktsiooni w=f(P), P Rn MP-ks nim nende punktide hulka, mille puhul funktsiooni väärtus on lõplik. MP={P(x1,...,xn) Rn | w=f(P) f(x1,...,xn) < } Rn

Matemaatiline analüüs 2
336 allalaadimist
thumbnail
1
docx

Matemaatika analüüs I - eksami küsimused ja vastused

Mata eksami küsimused ja vastused 1. Funktsiooni mõiste. Määramispiirkond ja muutumispiirkond. Kolme põhilise elementaarfunktsiooni graafikud. - y=f(x), on eeskiri, mis seab ühe muutuja (sõltumatu muutuja ehk argumendi) igale väärtusele vastavusse teise muutuja (sõltuva muutuja) kindla väärtuse. - Argumendi väärtuste hulk on funktsiooni määramispiirkond X ja funktsiooni väärtuste hulk on funktsiooni muutumispiirkond Y. 2. Funktsioonide liigitus paarisfunktsiooniks ja paarituksfunktsiooniks. Kaks tuntumat paarisfunktsiooni ja kaks tuntumat paaritutfunktsiooni. - Kui terves määramispiirkonnas kehtib funktsiooni f(x) jaoks võrdus f(-x)=f(x), siis on tegemist paarisfunktsiooniga

Matemaatika analüüs I
420 allalaadimist
thumbnail
2
pdf

Kollokvium I, 2012

Määramispiirkond, muutumispiirkond. Jada kuhjumispunktiks nim. arvu, mille igas ümbruseson lõpmata palju vaadeldava jada Paaris ja paaritud funktsioonid. Perioodilised ja antiperioodilised funktsioonid. liikmeid. Pöördfunktsioon. Monotoonsed funktsioonid. Kasvavad ja kahanevad funktsioonid. Lause. Arv a on jada { xn} kuhjumispunkt parajasti siis, kui leidub selline osajada { xnk} , mis 3. Jada definitsioon. Koonduvad jadad, jada piirväärtus. Jada piirväärtuse omadused. koondub arvuks a. 4. Jada tõkestatus. Monotoonsed jadad. Osajadad. Bolzano-Weierstraß'i teoreem. Lause. Jada { xn} koondub parajasti siis, kui ta on tõkestatud ja tal on vaid üks kuhjumispunkt. 5. Cauchy jadad ehk fundamentaaljadad. Kuhjumispunktimõiste. Kuhjumispunktide seos jada koonduvusega. 6. Funktsiooni piirväärtuse mõiste. Seos jada piirväärtusega. Reaalmuutuja funktsiooni 6

Matemaatika analüüs I
122 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
118 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame punkti i =[xi-1,xi] 4

Matemaatiline analüüs
973 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Üksühese funktsiooni mõiste. Olgu antud funktsioon y = f(x). Vastavalt funktsiooni definitsioonile on tegemist kujutisega, mis seab igale argumendi x väärtusele oma määramispiirkonnast vastavusse ühe kindla y väärtuse. Uksühese funktsiooni pöördfunktsioon. Üksühese funktsiooni y = f(x) pöördfunktsiooniks nimetatakse kujutist, mis seab igale f(x)-le funktsiooni f väärtuste hulgast vastavusse x-i. Pöördfunktsiooni avaldise saame, kui lahendame võrrandi y = f(x) muutuja x suhtes. Vahetavad pöördfunktsioonis kohad esialgse funktsiooni määramispiirkond ja väärtuste hulk. Olgu x = g(y) üksühese funktsiooni y = f(x) pöördfunktsioon. Siis funktsioonid f ja g kompenseerivad teineteist järgmises mõttes. g[f(x)] = x , f[g(y)] = y . Funktsiooni y = f(x) ja tema pöördfunktsiooni x = g(y) graafikud kattuvad xy-teljestikus. Kui aga pöördfunktsiooni x = g(y) avaldises muutujate x ja y kohad vahetada, st esitada ta kujul y = g(x), siis

Matemaatiline analüüs
484 allalaadimist
thumbnail
14
docx

Matemaatiline analüüs I eksami kordamisküsimused vastused

Matemaatiline analüüs I Eksamiteemad 1. Muutuvad suurused: Muutuja x on argument ehk sõltumatu muutuja. Muutuja y on sõltuv muutuja. 2. Funktsioon- Muutuvat suurust y nimetatakse muutuva suuruse x funktsiooniks, kui mingi eeskirjaga on suuruse x igale väärtusele seatud vastavusse suuruse y üks väärtus Tähistused: y=f(x); y=g(x); y=H(x) Näited: s(t)=3-0,5gt²( s- kaugus maapinnast langemisel; g- raskuskiirendus) Funktsiooni esitlusviis: a. Piltlik- d. Nooldiagrammine- b

Matemaatiline analüüs 1
75 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

"Matemaatiline analüüs I" Funktsioon Funktsioon- Kui muutja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Sõltumatu muutuja on x, sõltuv y Funktsiooni määramispiirkond-Funktsiooni y määramispiirkonnaks nimetakse argumendi x muutumispiirkonda. Funktsioonide liigid- 1. Paaris funktsioon-rahuldab tingimust f(x)=f(-x) ja see on sümmeetriline y-telje suhtes. (Nt:y=x2) 2.Paaritu funktsioon-rahuldab tingimust f(-x)=-f(x) ja see on sümmetrialine 0 punkti suhtes. (y=sinx) 3.Perioodilised funktsioonid- rahuldab tingimust f(x+T)=f(x), T on periood. 4

Matemaatiline analüüs
258 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

omab funktsioon f lokaalset ekstreemumit punktis c. Peale selle on f teoreemi eelduste p~ohjal diferentseeruv punktis c. J¨arelikult, Fermat' lemma p~ohjal saame f'(c) = 0. Teoreem on t~oestatud. Rolle'i teoreemi geomeetriline sisu. Teoreemi eeldustel on funktsiooni y = f(x) graafik sile joon, mille otspunktid A = (a,f(a)) ja B = (b,f(b)) asuvad x-telje suhtes samal k~orgusel. Teoreem v¨aidab, et sellisel juhul leidub vahemikus (a,b) v¨ahemalt u¨ks punkt c, mille korral funktsiooni tuletis on null, st funktsiooni graafiku puutuja on paralleelne x- teljega. Sõnastada ja tõestada Cauchy teoreem. Kui funktsioonid f ja g on l~oigul [a,b] pidevad, vahemikus (a,b) diferentseeruvad ja iga x (a,b) korral kehtib v~orratus g'(x) 0, siis leidub vahemikus (a,b) v¨ahemalt u¨ks punkt c nii, et f(b) - f(a) /g(b) - g(a)=f'(c)/ g'(c) T~oestus. Defineerime j¨argmise funktsiooni: Arvutame: F(a) = f(a) ­ (f(b)-f(a)/ g(b)-g(a))* (g(a) - g(a)) = f(a),

Matemaatika
46 allalaadimist
thumbnail
22
docx

Matemaatika analüüs I konspekt

x < ∞. Analoogselt ( -∞, b ), [ c, ∞ ), (-∞, d]. ( -∞, ∞) = R Olgu muutuva suuruse väärtused x1, x2, x3, … xn, …, kusjuures i < k. Räägitakse, et xi on eelnev väärtus ja xk on järgnev väärtus. Kasvava muutuva suuruse korral on iga järgnev väärtus suurem kui eelnev väärtus. Kahaneva muutuva suuruse korral on iga järgnev väärtus väiksem kui eelnev väärtus. Funktsioon Funktsioon on eeskiri, mis seab ühe muutuja x igale väärtusele piirkonnast X vastavusse teise muutuja y ühe kindla väärtuse. Muutuja x – sõltumatu muutuja ehk argument. Muutuja y – sõltuv muutuja ehk funktsioon. Argumendi x väärtuste hulk X on funktsiooni määrmaispiirkond. Funktsiooni väärtuste hulk, kus vastab argumendi väärtuste hulk, kus vastab argumendi väärtuste hulgale, on funktsiooni muutumispiirkond. Tähised: y = f (x) , y = y (x), y = g (x) Võib olla x = x (t) x- funktsioon t- argument S=S (r)

Matemaatika analüüs i
24 allalaadimist
thumbnail
8
doc

Kordamisküsimused aines "Matemaatiline analüüs I"

· Algebralised funktsioonid on funktsioonid, mis saadakse lõpliku arvu algebraliste tehte rakendamise teel. a. Täisratsionaalsed funktsioonid ehk astmefunktsioonid b. Murdratsionaalsed funktsioonid ehk kahe täisratsionaalse funktsiooni jagatis c. Irratsionaalsed funktsioonid ( sisaldavad lisaks eelnevale veel juurimist) d. Mittealgebralised funktsioonid Liitfunktsioon- on funktsioon, kus sõltuv muutuja y sõltub argumendist x mitme funktsiooni vaheldusel. Kui y=f(z) ja z=g(x) , seega saame liitfunktsiooni y=f(g(x)) . Liitfunktsioonil võib olla ka enam kui kaks koostisosa ja seega enam kui üks vahepealne muutuja. Pöördfunktsioon- pöördfunktsiooni saame, kui võtame algse funktsiooni , avaldame sealt x ja seejärel vahetame x ja y ära. Näiteks : y=2x ; x=0,5y ; y=0,5x , seega y=2x pöördfunktsioon on y=0,5x. Funktsiooni y = f(x) pöördfunktsiooniks nimetatakse funktsiooni y =( x )

Matemaatika analüüs I
159 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

Paaridf-n *Def. Y=f(x) on paarisf-n juhul kui f(-x)=f(x) x MP graafik sum y telje suhtes, Nt y=x 2 =(-x)2 3. Paaritu f- n- sel korral paaritu kui f(-x)= -f(x), x MP, graafik sümm 0-punkti suhtes 4.Perioodiline f-n-parajasti siis, kui leidub niisugune reaalarv t, et tekib võrdsus iga MP punkti puhul. Märkus: kui f-n perioodiline=> t on lõpmata palju=> min t =T ­periood=> näit ting f-nil t>0 4. Liitfunktsioon Funkts, mille argumendiks ei ole sõltumatu muutuja, vaid tema mingi funktsioon, nim liitfunkt-niks sõltumatu muutuja suhtes y=f(u) u=u(x), Märkus: sisalduvus võib olla mitmekordne 5. Põhilised elementaarfunkts. 1)astmefunkts y=xa; a IR (nii murrulised, kui negatiivsed) 2)eksponentf-n y=ax, a 1, astmef-ni puhul on muutuja konstantses astmes , eksponentf-ni puhul on muutuja muutuvas astmes 3)logaritmf-n y=log ax, a>0, a 1 4)trig. F- nid y=sinx; cosx;tanx;cotx 5)arkus f-nid y=arcsinx;... NB 2ja 3 ning 4 ja 5 on pöördf-nid

Kõrgem matemaatika
147 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs 2 - Janno - teooria

usteemi x1 = 1 (t) x2 = 2 (t) (6.2) ... xm = m (t) , t [T1 , T2 ] . S¨ usteem (6.2) m¨a¨arab iga t [T1 , T2 ] korral u ¨he kindla ruumi Rm punkti P = ¨ (x1 , x2 , . . . , xm ). Uldiselt vastavad muutuja t erinevatele v¨a¨ artustele erinevad ruumi punktid. Kui muutuja t jookseb l¨abi kogu l~oigu [T1 , T2 ], siis t-le vastav punkt kujundab ruumis Rm punktihulga, mida nimetatakse jooneks. V~orrandeid (6.2) nimetatakse selle joone parameetrilisteks v~ orranditeks ja muutujat t selle joone parameetriks. 2) Vektorid mitmemõõtmelises ruumis. Punkti kohavektor. Vektori suunaline sirge ja selle parameetrilised võrrandid.

Matemaatiline analüüs 2
702 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et f(c) = 0. Tõestus. Kuna f(x) on pidev lõigul [a, b], siis saavutab ta oma suurima ja vähima väärtuse sellel lõigul. Olgu M suurim väärtus ja m vähim väärtus. Kui M = m, siis on funktsioon lõigul [a, b] konstantne, st kõigi x [a, b] korral kehtib f(x) = M = m. Sellisel juhul on f(x) tuletis nullfunktsioon, st f(x) 0, ja teoreemi väide on täidetud iga c (a, b) korral. Edasi vaatleme juhtu, kui M m. Funktsioon võib oma absoluutse ekstreemumi saavutada kas lõigu [a, b] otspunktis või vahemikus (a, b). Funktsioon f(x) peab vähemalt ühe oma absoluutsetest ekstreemumitest (kas suurima või vähima väärtuse) saavutama vahemikus (a, b) asuvas punktis. Tähistame selle punkti c-ga. Kuna vahemikus (a, b) asuv absoluutne

Matemaatiline analüüs I
120 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et 27Olgu funktsioon y = f(x) diferentseeruv hulgas D. Siis on tema tuletis f hulgas D määratud funktsioon. Oletame, et f on samuti diferentseeruv hulgas D. Siis saame me arvutada funktsiooni f tuletise ehk funktsiooni f teise tuletise, mida tähistatakse f. Seda protseduuri võib jätkata

Matemaatiline analüüs 1
66 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

· Kui determinandis peadiagonaalist allpool (ülalpool) asetsevad elemendid on kõik nullid, siis determinandi väärtus võrdub peadiagonaali elementide korrutisega. · Determinandi väärtus ei muutu, kui ühele reale (veerule) liita nullist erineva arvuga korrutatud mingi rida (veerg). · Ruutmaatriksi ja tema transponeeritud maatriksi determinantide väärtused on võrdsed. 6. Pöördmaatriksi mõiste. Pöördmaatriksi olemasolu tingimus, leidmise eeskiri. Ruutmaatriksi A pöördmaatriksiks nim sellist maatriksit A -1, mille korral AA-1 = A-1A = E. Täh A-1. Igal ruutmaatriksil ei ole pöördmaatriksit. Ruutmaatriksil A leidub pöördmaatriks A-1 siis kui selle determinant on nullist erinev. Transponeeritakse alamdeterminante. Nt: detA = -45 7. Lineaarse võrrandisüsteemi mõiste, normaalkuju, laiendatud maatriks. Lubatavad

Kõrgem matemaatika
356 allalaadimist
thumbnail
6
docx

Matemaatilise analüüsi (I) I osaeksami teooriaküsimused

ratsionaalarvudeks. Lõpmatute mitteperioodiliste kümnendmurdudena esitatavaid arve nimetatakse irratsionaalarvudeks. Kõik ratsionaal- ja irratsionaalarvud koos moodustavad reaalarvude hulga. x Reaalarvu absoluutväärtuseks ehk mooduliks x nimetatakse mittenegatiivset reaalarvu, mis rahuldab tingimusi x = x, kui x 0, x = -1, kui x < 0. x x. Kehtib seos 2. Muutuv suurus ehk muutuja, jääv suurus ehk konstant. Muutuva suuruse muutumispiirkond. Mõisted: vahemik, lõik, poollõik. Kasvav ja kahanev muutuv suurus, monotoonne suurus. Tõkestatud muutuv suurus. Suurust, mis omandab mitmesuguseid väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Tähised x, y, z, u, ... Suurust, mille väärtus ei muutu, nimetatakse jäävaks ehk konstantseks suuruseks. Tähised a, b, c, ...

Diskreetne matemaatika
72 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I 1. teooria KT

ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Analüütiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. Graafiline esitusviis. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Olgu antud funktsioon f, mille argument on x, sõltuv muutuja y ja määramispiirkond X. Kanname tasandile ristuvad x- ja y-teljed. Vaatleme selles teljestikus joont G, mis koosneb kõikvõimalikest punk- tidest P = (x,f(x)), kusjuures P esimene koordinaat x jookseb läbi kogu määramispiirkonna X. Seda joont nimetataksegi funtsiooni f graafikuks. Seega, lühidalt kirjutades on funktsiooni f graafiku definitsioon järgmine: G = {P = (x,f(x))||x X}.

Matemaatiline analüüs 1
110 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

esitatakse see järgmiselt: x = x (t ) t T y = x(t ) x = t +1 Näiteks: y = t + 2 Polaarkoordinaadid, üleminek parameetrilisele esitusele. Funktsiooni f saab esitada ka polaarkoordinaatides valemiga r = r(), T, mis annab funktsiooni graafiku punktid (x,y) polaarkoordinaatides (r, ). Esituselt polaarkoordinaatides saab minna üle parameetrilisele esitusele kasutades järgmiseid valemeid: Näiteks: 8. Jada (näide). Jada piirväärtus. Näiteks tõestada, et jada xn= piirväärtus on . Alates millisest n väärtusest suurus - xn ei ületa = 0,01 ? Jada. Definitsioon nimetatakse funktsiooni, mille määramispiirkonnaks on naturaalarvude hulk N. Näide: n = (1, , , ...) Jada piirväärtus. Arvu a nimetatakse reaalarvude jada x1, x2, x3, ... piirväärtuseks, kui iga kuitahes vaikese positiivse arvu korral saab näidata sellist jada elementi xn , millest alates

Matemaatiline analüüs
195 allalaadimist
thumbnail
5
doc

Majandusmatemaatika kordamisküsimuste vastused

1. Mis on funktsioon? Mis on sõltumatu muutuja, sõltuv muutuja? Kui hulga X igale elemendile x on seatud vastavusse kindel element y hulgast Y. sõltumatu muutuja ehk argument, sõltuv muutuja ehk funktsiooni väärtus 2. Mis on funktsiooni määramispiirkond muutumispiirkond? Mis on funktsiooni loomulik määramispiirkond? Määramispiirkond - argumendi x selliste väärtuste hulk, mille korral on võimalik funktsiooni f(x) väärtust välja arvutada. Muutumispiirkond - muutumispiirkonna Y all mõeldakse funktsiooni kõikvõimalike väärtuste hulka. loomulik määramispiirkond - Argumendi väärtuste hulk, mille korral

Majandusmatemaatika
287 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Suuruse muutumispiirkond- Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon- Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument- muutuja x, sõltumatu. Sõltuv muutuja- muutuja y. Määramispiirkond- argumendi x muutumispiirkonda. Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul

Matemaatiline analüüs I
105 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

1) x 2 = y1 , millest x1,2 = ± y1 ; 2) x 2 = y2 , millest x3,4 = ± y2 . 2.6 Ruutkolmliikme teguriteks lahutamine x 2 + px + q = ( x - x1 ) ( x - x2 ) , milles x1 , x 2 on ruutkolmliikme nullkohad (vastava ruutvõrrandi x 2 + px + q = 0 lahendid). ax 2 + bx + c = a ( x - x1 ) ( x - x2 ) , milles x1 , x 2 on ruutkolmliikme nullkohad (vastava ruutvõrrandi ax 2 + bx + c = 0 lahendid). 2.7 Determinandid Teist järku determinandi väärtuse arvutamise eeskiri: a11 a12 = a11a22 - a12 a21 . a21 a22 Kolmandat järku determinandi arvutamise eeskiri: a11 a12 a13 a21 a22 a23 == a11a22 a33 - a11a23 a32 - a12 a21a33 + a12 a23 a31 + a13 a21a32 - a13a22 a31 . a31 a32 a33 Skeemi kolmandat järku determinandi arvutamiseks nimetatakse Sarrus`i reegliks:

Matemaatika
1099 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 29 3.5 Põhilised elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SISUKORD 3.6 Elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Jadad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Funktsiooni piirväärtus ja pidevus 37 4.1 Jada piirväärtus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Funktsiooni piirväärtuse mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Ühepoolsed piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Funktsiooni piirväärtuse omadused . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
179 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
11 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Kui funktsioon f on lõigul [a,b] pidev, vahemikus (a,b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a,b) vähemalt üks punkt c nii, et f’(c) = 0. Tõestus. Kuna f(x) on pidev lõigul [a,b], siis saavutab ta oma suurima ja vähima väärtuse sellel lõigul. Olgu M suurim väärtus ja m vähim väärtus. Kui M = m, siis on funktsioon lõigul [a,b] konstantne, st kõigi x ∈ [a,b] korral kehtib f(x) = M = m. Sellisel juhul on f(x) tuletis nullfunktsioon, st f’(x) ≡ 0, ja teoreemi väide on täidetud iga c ∈ (a,b) korral. Edasi vaatleme juhtu, kui M  m. Funktsioon võib oma absoluutse ekstreemumi saavutada kas lõigu [a,b] otspunktis või vahemikus (a,b). Oletame kõigepealt, et mõlemad absoluutsed ekstreemumid saavutatakse lõigu otspunktides a ja b. Siis on f(x) väärtus ühes otspunktis M ja teises otspunktis m ning võrratusest M  m tuleneb, et f(x) väärtused lõigu otspunktides on erinevad

Matemaatiline analüüs 1
13 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs KT2

Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et f(c) = 0. Geomeetriline sisu. See on järgmine. Nimelt teoreemi eeldustel on funktsiooni y = f(x) graafik sile joon, mille otspunktid A = (a, f(a)) ja B = (b, f(b)) asuvad x-telje suhtes samal kõrgusel. Teoreem väidab, et sellisel juhul leidub vahemikus (a, b) vähemalt üks punkt c, mille korral funktsiooni tuletis on null, st funktsiooni graafiku puutuja on paralleelne x-teljega. Lagrange'i teoreem ­ Kui funktsioon f on lõigul [a, b] pidev ja vahemikus (a, b) diferentseeruv, siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et Lagrange'i teoreemi geomeetrilist sisu vaatleme jooniselt. Punktidest A = (a, f(a)) ja B = (b, f(b)) läbi tõmmatud lõikaja t tõus võrdub suhtega Viime paralleellükkega sirge t uude asendisse nii, et saadud uus sirge t oleks joone y = f(x) puutuja. Tähistame

Matemaatiline analüüs
231 allalaadimist
thumbnail
25
doc

MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega

arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Suuruse muutumispiirkond- Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon- Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument- muutuja x, sõltumatu. Sõltuv muutuja- muutuja y. Määramispiirkond- argumendi x muutumispiirkonda. Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul

Matemaatiline analüüs 1
43 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

Funktsiooni mõiste. Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Funktsioone tähistatakse tavaliselt tähtedega f; g; u; v; ; jne. Olgu antud funktsioon f mille argumendiks on x ja s~oltuvaks muutujaks y. Muutuja y väärtust milleks funktsioon f kujutab argumendi x nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega, me võime kirjutada seose y = f(x) ; (1.1) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Mõnikord kasutatakse funktsiooni ja sõltuva muutuja tähistamiseks ühte ja sama sümbolit. Sellisel juhul seos (1.1) omab kuju y = y(x).

Matemaatiline analüüs
598 allalaadimist
thumbnail
16
doc

Majandusmatemaatika teooriaküsimused eksamiks

MATA TEOORIA Teooriaküsimused nr. 1 1) Mis on funktsioon? Mis on sõltumatu muutuja, sõltuv muutuja? Eeskirja, mis seab sõltumatu muutuja igale väärtusele vastavusse sõltuva muutuja mingi ühe kindla väärtuse, nimetatakse funktsiooniks. Sõltuv muutuja - Valemis muutuja, mille väärtus sõltub ühest või enamast teisest muutujast. Sõltumatu muutuja - Valemis iga muutuja, mille väärtus ei sõltu ühestki teisest muutujast. 2. Mis on funktsiooni määramispiirkond muutumispiirkond? Mis on funktsiooni loomulik määramispiirkond? Funktsiooni määramispiirkond - valemina antud funktsiooni argumendi x selliste väärtuste hulk, mille korral on võimalik funktsiooni f(x) väärtust välja arvutada. Funktsiooni muutumispiirkond - muutuja y kõigi väärtuste hulk.

Majandusmatemaatika
239 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun