Reaalarvud Positiivsed ja negatiivsed täisarvud ning murdarvud koos arvuga 0 moodustavad ratsionaalarvude hulga. Ratsionaalarve saab väljendada kahe täisarvu suhtena ja lõpmatu perioodilise kümnendmurruna. 1 −5 1 1 Nt 4 ; 1 ; 3 =0,(3); 7 . Lõpmatud mitteperioodilised kümnendmurrud moodustavad irratsionaalarvude hulga. Nt. π; e; √2 ; √3 . Ratsionaalarvude ja irratsionaal arvude hulgad moodustavad kokku reaalarvude hulga. Arvtelg ___ lõpmatu sirge, millel on määratud suund, 0-punkt ja pikkusühik. Igale reaalarvule vastab arvteljel üks punkt ja vastupidi. Reaalarvude hulgal on selline omadus, et iga kahe reaalarvu vahel on veel ratsionaalarve ja irratsionaalarve. Reaalarvu absoluutväärtus. Olgu arv x. Selle arvu absoluutväärtus moodul I x I on defineeritud järgmiselt: I x I = x, kui x ≥ 0 I x I = -x, kui x < 0 Nt. I 3 I = 3 ; I -5 I = 5 ; I 0 I = 0 Arvu absoluutväärtus muudab arvteljel selle arvu kaugust
Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsio
Arvtelg sirge, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Reaalarvu absoluutväärtus - nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Absoluutväärtuste omadused: |-a|=|a| |ab|=|a||b| |a+b||a|+|b| |a-b|| |a|-|b| | Reaalarvude ja lõpmatuste ümbrused - Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist poollõiku [a, a+), kus > 0. Suuruse lõpmatus ümbruseks nimetatakse suvalist vahemikku (M,), kus M > 0. Suuruse miinus lõpmatus ümbruseks nimetatakse suvalist vahemikku (-,-M), kus M > 0. Tõkestatud hulgad - Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (a, b) nii, et A (a, b). Jääv suurus suurus, mille arvuline väärtus ei muutu. Muutuv suurus suurus, mis võib omandada erin
KT 2, MAT. ANALÜÜS 18. Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? Tõestada ei ole vaja. ∆y = f’(a)∆x + β Diferentsiaal ja jääkliige on lõpmatult kahanevad protsessis ∆x → 0. 19. Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat’ lemma (tõestust ei küsi). Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ) korral kehtib võrratus f(x) ≤ f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ ) korral kehtib võrratus f(x) ≥ f(x
1. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt,pikkuühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Võib väita,et igale arvtelje punktile vastab üks ja ainult üks realarv ja vastupidi:igale realarvule vastab üks ja ainult üks avtelje punkt. Olgu tasandil antud kaks arvtelge, mis on ristuvad oma nullpunktides. Need moodustavad tasandil nn koordinaatteljestiku. Tasandi punkti ristkoordinaatideks nimetatakse selle punkti ristprojektsioone koordinaatttelgedele. Igale tasandi punktile vastab üks ja ainult üks ristkoordinaatidest moodustatud arvupaar ja vastupidi: igale arvupaarile vastab üks ja ainult üks tasandi punkt. Matemaatikas tähistatakse tavaliselt ühel ristuvatest koordinaattelgedest olevat olevat arvu x-ga ja teisel koordinaatteljel oleval arvu y-ga. Sel juhul on tegemist xy-teljestikuga ja me saame rääkiga tasandil asuva punkti x- ja y-k
(Teoreem lk 13). Teoreem: Kui funktsioonil on olemas lõplik tuletis antud kohal, siis funktsioon on pidev sellel kohal 15. Liitfunktsiooni tuletise leidmine. 16. Kõrgemat järku tuletiste leidmine. 17. Lineaarne lähendamine (selgitada ideed, valemid). Kasutusalasid. Joone puutujat L(x) kasutatakse originaalse funktsiooni f(x) lokaalseks lineaarseks lähendamiseks f(x)≈f(a)+f’(a)(x-a) Kasutusalad: füüsika, optika, matemaatika 18. Funktsiooni muut ja argumendi muut (definitsioonid, tähendused graafiliselt). Definitsioon: Tähendus graafiliselt: 19. Funktsiooni diferentsiaal. Diferentsiaali geomeetriline tõlgendus (võrdlus funktsiooni tuletisega). Funktsiooni diferetsiaaliks nimetatakse funktsiooni, mis avaldub korrutisena, mille tegurid on funktsiooni tuletis kohal x ja argumendi muut dy=f’(x)*dx Võrdlus: 20. L’Hospitali reegel.
27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame punkti i =[xi-1,xi] 4. Pi
Matemaatilise analüüsi II Kontrolltöö 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. a. Teades, et argumendi muut kohal a -funktsiooni muut kohal a a.i. Nii me näitasime, et a.ii. Tähistades ja vahe järgmiselt a.iii. Kehtib võrratus: a.iv. Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: a.v. Korrutades saadud avaldist saame: kus a.vi. Nüüd näemegi, et koosneb kahest liidetavast, esimeseks dy= ja teine on , mis kahanevad piirprotsessis a.vii. Võrdleme neid suuruseid suhtes: a.viii. Lisaks kehtib veel: a.ix. Nüüd teame,et diferentsiaal dy on sama järku kahanev suurus ja kõrgemat
Kõik kommentaarid