Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Matemaatika analüüs I spikker (2)

3 KEHV
Punktid
Matemaatika analüüs I spikker #1
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2012-02-29 Kuupäev, millal dokument üles laeti
Allalaadimisi 213 laadimist Kokku alla laetud
Kommentaarid 2 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Danny Õppematerjali autor
matemaatika analüüs I spikker....endal tuleb ära õppida ainult joonised...ülejäänud on spikril ilusti olemas ... sain ise selle spikri järgi tehes 4

Sarnased õppematerjalid

thumbnail
8
doc

Konspekt eksamiks

1. Mis on staat anal, võrdl staat anal, dünaamiline anal, mis on eesmärgiks? *Staatilises e. tasakaaalu analüüsis on valitud muutujate väärtused sellised, et süsteemi seisund säilub (s.t. puudub tendents muutuda). Tasakaal ei ole tingimata ideaalne seis. Osaline turutasakaal (lineaarne & mittelineaarne mudel), üldine turutasakaal. *Võrdlevstaatiline analüüs tegeleb erinevate tasakaalu seisundite võrldemisega (vastab erinevate parameetrite ja välimuutujate komplektidele). Kui mingi parameeter või välimuutuja muutub, läheb süsteem tasakaalust välja, siis võrreldakse uut ja vana. VSA on kvalitatiivne või kvantitatiivne. Peaülesanne ­ leida sisemuutujate muudumäärad sõltuvalt parameetri või välimuutuja muutudst. *Dünaamilises analüüsis jälgitakse muutujate teed ajas ning kas antud aja jooksul muutujad

Kõrgem matemaatika
thumbnail
14
pdf

Matemaatiline analüüs II

Mitmemõõtmelise ruumi mõiste Def: On antud n reaalarvu x1...xn ja nende järjestatud jada (x1...xn)(-punkt) ­ seda nim n- mõõtmelise ruumi punktiks. Rn={(x1,...,xn) | xi R, i=1,...,n}, P(x1,...,xn) ­ punkt koordinaatidega xi n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarv�

Matemaatiline analüüs 2
thumbnail
1
docx

Matemaatika analüüs I - eksami küsimused ja vastused

Mata eksami küsimused ja vastused 1. Funktsiooni mõiste. Määramispiirkond ja muutumispiirkond. Kolme põhilise elementaarfunktsiooni graafikud. - y=f(x), on eeskiri, mis seab ühe muutuja (sõltumatu muutuja ehk argumendi) igale väärtusele vastavusse teise muutuja (sõltuva muutuja) kindla väärtuse. - Argumendi väärtuste hulk on funktsiooni määramispiirkond X ja funktsiooni väärtuste hulk on funktsiooni muutumispiirkond Y. 2. Funktsioonide liigitus paarisfunktsiooniks ja paarituksfunktsiooniks. Kaks tuntumat paarisfunktsiooni ja kaks tuntumat paaritutfunktsiooni. - Kui terves määramispiirkonnas kehtib funktsiooni f(x) jaoks võrdus f(-x)=f(x), siis on tegemist paarisfunktsiooniga. Paarisfunktsiooni graafik on sümmeetriline y-telje suhtes. f(x)=x2, sest (-x)2=x2 f(x)=cosx, sest cos(-x)=cos x - Kui terves määramispiirkonnas kehtib funktsiooni f(x) jaoks võrdus f(-x)=-f(x), siis on tegemist paaritu funktsiooniga. Gr

Matemaatika analüüs i
thumbnail
2
pdf

Kollokvium I, 2012

Teemad: 5. Öeldakse, et { xn} on Cauchy jada ehk fundamentaaljada, kui iga > 0 korral leidub C N, 1. Norm ja kaugus (meetrika). Ümbrused. -ümbruse definitsioon. Reaalarvu ühepoolsed et iga naturaalarvu n > C ja naturaalarvu p korral kehtib võrratus |xn+p - xn| < . ümbrused. Lõpmatuse ümbrused. Lause. Jada { xn} koondub parajasti siis, kui ta on Cauchy jada. 2. Funktsiooni mõiste. Reaalmuutuja ühene funktsioon. Määramispiirkond, muutumispiirkond. Jada kuhjumispunktiks nim. arvu, mille igas ümbruseson lõpmata palju vaadeldava jada Paaris ja paaritud funktsioonid. Perioodilised ja antiperioodilised funktsioonid. liikmeid. Pöördfunktsioon. Monotoonsed funktsioonid. Kasvavad ja kahanevad funktsioonid. Lause. Arv a on jada { xn} kuhjumispunkt pa

Matemaatika analüüs i
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

Sisujuht 16. Esimest liiki katkevuspunkt - niisugust katkevuspunkti, kus funktsioonil f on olemas ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. .....

Matemaatika
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame punkti i =[xi-1,xi] 4. Pi

Matemaatiline analüüs
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suva

Matemaatiline analüüs
thumbnail
14
docx

Matemaatiline analüüs I eksami kordamisküsimused vastused

Matemaatiline analüüs I Eksamiteemad 1. Muutuvad suurused: Muutuja x on argument ehk sõltumatu muutuja. Muutuja y on sõltuv muutuja. 2. Funktsioon- Muutuvat suurust y nimetatakse muutuva suuruse x funktsiooniks, kui mingi eeskirjaga on suuruse x igale väärtusele seatud vastavusse suuruse y üks väärtus Tähistused: y=f(x); y=g(x); y=H(x) Näited: s(t)=3-0,5gt²( s- kaugus maapinnast langemisel; g- raskuskiirendus)

Matemaatiline analüüs 1




Kommentaarid (2)

saag15 profiilipilt
els e: Hea kokkuvõte
21:16 07-11-2012
deodorajosephamaria profiilipilt
deodorajosephamaria: oli abi !
23:09 15-10-2012



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun