Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Funktsioonid I Funktsiooni tuletis - sarnased materjalid

tuletis, avame, sulud, hulkliiget, tuletiste, arcsin, arccos, arctan, jagatise
thumbnail
6
pdf

Matemaatilised meetodid loodusteadustes.

2) y = = = 2x3 + 2 (2x3 + 2)2 (2e2x (2x) + 1)(2x3 + 2) - (2e2x + x)6x2 (4e2x + 1)(2x3 + 2) - (2e2x + x)6x2 = = . (2x3 + 2)2 (2x3 + 2)2 3. Leida tuletis y (x) funktsioonist y = sin2 (3x) ning tuletise v¨a¨artus kohal x = /4. Kas funktsioon sellel kohal kasvab v~oi kahaneb? (2p) Lahendus. y= ((sin(3x))2 ) = 2 sin(3x) · (sin(3x)) = 2 sin(3x) · cos(3x) · (3x) = 6 sin(3x) cos(3x), 3 3 2 2 y (/4) = 6 sin cos =6 - = -3. 4 4 2 2

Looduskaitsebioloogia
50 allalaadimist
thumbnail
7
pdf

Määramata integraalid

"Valgus", Tallinn, 1982. [3] Loone, L., Soomer, V. Matemaatilise analüüsi algkursus. "TÜ Kirjastus", Tartu, 2006. [4] Tõnso, T., Veelmaa, A. Matemaatika XII klassile. "Mathema", Tallinn, 1995. [5] Piskunov, N. Diferentsiaal- ja integraalarvutus. "Valgus", Tallinn, 1981. 3.1 Algfunktsioon ja määramata integraal Kursuse eelnevas osas käsitlesime ühe muutuja funktsiooni y = f (x) tuletise y = f (x) leid- misega seotud küsimusi. Teame, et funktsiooni f (x) = 2x tuletis on f (x) = 2 ja funktsiooni f (x) = sin x tuletis on f (x) = cos x. Vaatleme nüüd vastupidist ülesannet. Olgu antud funktsioon y = f (x). Kuidas leida sellist funktsiooni y = F (x), mille tuletiseks oleks antud funktsioon y = f (x), st kuidas leida funktsiooni y = F (x), kui on teada, et F (x) = f (x)? Funktsioon f (x) = 2x osutub näiteks funktsiooni F (x) = x2 tuletiseks, funktsioon f (x) = sin x on aga funktsiooni F (x) = - cos x tuletiseks

Kõrgem matemaatika
172 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33

Matemaatiline analüüs
808 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

10. klass Viljandi Täiskasvanute Gümnaasium TEHTED ASTMETEGA 1) Võrdsete alustega astmete korrutamisel astendajad liidetakse: am  an  am n 2) Võrdsete alustega astmete jagamisel astendajad lahutatakse: am : an  am n 3) Korrutise aste võrdub tegurite astmete korrutisega: a  bn  an  bn 4) Jagatise aste võrdub jagatava ja jagaja astmete jagatisega: n  a an    b bn 5) Astme astendamisel astendajad korrutatakse: am n  amn Kehtivad ka valemid: m

Matemaatika
79 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
4
pdf

Kordamisülesanded matemaatikas

x3 - 5x2 + 3x + 9 lim . x3 x3 - 8x2 + 21x - 18 4. Arvutada piirv¨aa¨rtus l'Hospitali reeglit kasutades: (1 - x)2 lim . x1 1 - sin x 2 5. Arvutada piirv¨aa¨rtus l'Hospitali reeglit kasutades: lim arcsin x cot x . x0 6. Arvutada piirv¨aa¨rtus l'Hospitali reeglit kasutades: x 1 lim - . x1 x - 1 ln x 7. Leida funktsiooni f (x) = 6 + 8x3 - x4 kasvamis- ja kahanemispiirkonnad ning lokaalsed ekstreemumid. 8. Leida funktsiooni 3

Matemaatiline analüüs I
34 allalaadimist
thumbnail
7
doc

Riigieksami lahendused II

x1 = = 3; x2 = =- . 6 6 3 1 X =- ;- ( 3; ) 3 Kahanemisvahemik: X : y < 0 3x 2 - 8x - 3 < 0 1 X = - ; 3 3 2) Leiame ekstreemumkohad: y´ = 0 1 3 x 2 - 8 x - 3 = 0 x1 = 3; x2 = - . 3 Määrame ekstreemumkoha liigi teise tuletise järgi. Teine tuletis oli f ( x ) = 6 x - 8 . 1 1 1 f - = 6 - - 8 = -2 - 8 = -10 < 0, siis x = - on maksimumkoht 3 3 3 f ( 3) = 6 3 - 8 = 18 - 8 = 10 > 0, siis x = 3 on miinimumkoht 1 1 ;- ( 3; Vastus: X =- ); X =- ; 3 ; miinimumkoht on 3 ja maksimumkoht on -1/3.

Matemaatika
367 allalaadimist
thumbnail
12
pdf

MÄ Ä R AMA T A I N T EGR A A L

INTEGRAALARVUTUS MÄÄRAMATA INTEGRAAL Def Funktsiooni f(x) algfunktsiooniks nimetatakse niisugust funktsiooni y = F(x), mille tuletis võrdub funktsiooniga f(x): F ( x ) = f ( x ) . Näide: Funktsiooni y = 2 x algfunktsioon on y = x 2 , sest ( x 2 ) = 2 x . Antud funktsioonil on mitu algfunktsiooni, sest kui F ( x ) = f ( x ) , siis [ F ( x ) + C ] = F ( x ) = f ( x ) , kus C on suvaline konstant. Funktsioonil on lõpmata palju algfunktsioone, mis erinevad üksteisest konstantse liidetava poolest. Funktsiooni y = f ( x ) algfunktsiooniks on kõik funktsioonid y = F ( x ) + C .

Matemaatika
15 allalaadimist
thumbnail
6
docx

Ruutvõrratused

2.4 RUUTVÕRRATUS Ühe muutujaga ruutvõrratuse üldkuju on ax2 + bx + c > 0, kus a 0. Märgi > asemel võib võrratuses olla ka üks märkidest <, , . Ruutvõrratuse lahendamiseks 1) lahendame ruutvõrrandi ax2 + bx + c = 0; 2) skitseerime parabooli y = ax2 + bx + c; 3) leiame jooniselt, kus funktsiooni väärtused positiivsed, kus negatiivsed. Ruutfunktsiooni y = ax2 + bx + c graafik on parabool. Kui a > 0, siis avaneb parabool ülespoole. Kui a < 0, siis avaneb parabool allapoole. Kui lahendame ruutvõrrandi ax2 + bx + c = 0, siis on kolm erinevat võimalust: A) Diskriminant D = b2 ­ 4ac > 0. Parabool lõikab sel juhul x ­ telge kahes erinevas punktis. ax2 + bx + c > 0 L = (­ ;x1) (x2; ) ax2 + bx + c >0 L = (x1; x2) 1 B) Kui diskriminant D = 0, siis on ruutvõrrandil kaks võrdset reaalarvulist lahendid ning parabool puudutab x ­

Matemaatika
90 allalaadimist
thumbnail
63
doc

Põhikooli matemaatika kordamine

teisendada ühenimelisteks sel teel, et kasutame võrdusi m m m . n n n Saame a 2 b 2 ab ab d) b Lahendus: Ratsionaalavaldised ja murdvõrrandid Ratsionaalavaldiste lihtsustamine 1. Lihtsusta avaldist. a 3a 2 a) : 1 a 1 1 a 2 Lahendus: Lihtsustame selle avaldise tehete kaupa. Selleks teostame kõigepealt tehted sulgudes ja seejärel leiame vajaliku jagatise. Saame Vastus: a 1 6 a 3 4a 3 4a b) 2 2a 2 2a 2 2a 2 5 Lahendus: Vastus: a 1 6 a 3 4a 3 4a 4a 2a 2 2a 2 2a 2 2 5 2. Lihtsusta avaldis ja arvuta siis selle väärtus. a b a b a) 2 : , kui a = 5 ja b = 3 b a b a Lahendus: Kui a = 5 ja b = 3, siis a b 53 2 1 . a b 53 8 4

Matemaatika
91 allalaadimist
thumbnail
14
pdf

Võrratused

Tartu Ülikool Teaduskool VÕRRATUSED Metoodiline juhend TÜ Teaduskooli õpilastele Koostanud Hilja Afanasjeva Jüri Afanasjev Tartu 2003 Juhendmaterjal on jätkuks TÜ Teaduskooli I kursusel läbitöötatud brosüürile E. Tamme "Algebraliste võrrandite lahendamisest". Vaadeldakse kõrgema astme võrratuste lahendamist intervallmeetodiga, absoluutväärtusi sisaldavaid võrratusi ja juurvõrratusi. Õppematerjali koostamisel kasutatud kirjandus: Abel, E. jt Aritmeetika ja algebra. Tartu, 1984 Gabovits, J. Võrratused. Tartu, 1970 Jürimäe, E., Velsker, K. Matemaatika käsiraamat IX - XI klassile. 2. tr. Tallinn, 1984 Litvinenko, V. N. jt Praktikum po reseniju matematitseskih zadats. Moskva, 1984 (vene keeles). 2 VÕRRATUSED

Matemaatika
138 allalaadimist
thumbnail
11
doc

Määramata integraal

INTEGRAALARVUTUS MÄÄRAMATA INTEGRAAL Def Funktsiooni f(x) algfunktsiooniks nimetatakse niisugust funktsiooni y = F(x), mille tuletis võrdub funktsiooniga f(x): F ( x ) = f ( x ) . Näide: Funktsiooni y = 2 x algfunktsioon on y = x 2 , sest ( x 2 ) = 2 x . Antud funktsioonil on mitu algfunktsiooni, sest kui F ( x ) = f ( x ) , siis [ F ( x ) + C ] = F ( x ) = f ( x ) , kus C on suvaline konstant. Funktsioonil on lõpmata palju algfunktsioone, mis erinevad üksteisest konstantse liidetava poolest. Funktsiooni y = f ( x ) algfunktsiooniks on kõik funktsioonid y = F ( x ) + C .

Kõrgem matemaatika
191 allalaadimist
thumbnail
21
pdf

Funktsiooni tuletis (jätk) loeng 6

Funktsiooni tuletis (jätk) - + sin - sin = 2 sin cos 2 2 Funktsiooni y = sin x tuletis Teoreem: Funktsiooni y = sin x tuletis on cos x. x + x - x x + x + x Tõestus: y = sin( x + x) - sin x = 2 sin cos 2 2 x x = 2 sin cos x + 2 2 x x x 2 sin cos x + sin y 2 2 2 cos x + x

Matemaatika
70 allalaadimist
thumbnail
10
docx

11. klass kordamine EKSAMIKS vastustega

d) tan2x -5tanx +6 = 0 Vastus: x1 = arctan3 +n , x2 = arctan2 +n , 3 x1 2n ; x2 arccos 2n n z 3 4 e) 8sin2x -2cosx = 5 Vastus: x 2 6 3

Matemaatika
105 allalaadimist
thumbnail
1080
pdf

Matemaatiline analüüs terve konspekt

Jada piirva¨ artus. ¨ Arv e. Funktsiooni piirva¨ artus. ¨ Joone asumptoodid. ¨ ~ Lopmata ¨ vaikesed ja ~ lopmata ~ suured suurused. Funktsiooni pidevus. Loigul pidevate funktsioonide omadused. Funktsiooni tuletis. Liitfunktsiooni tuletis. Po¨ ordfunktsiooni ¨ tuletis. Parameetri-liselt esitatud funktsiooni tuletis. Ilmutamata ~ funktsiooni tuletis. Logaritmiline diferentseerimine. Pohiliste elementaarfunktsioonide tuletised. ~ Korgemat ¨ jarku tuletised. Leibnizi valem. Funktsiooni diferentsiaalid. Funktsiooni kasvamine ja kahanemine

Matemaatiline analüüs 1
136 allalaadimist
thumbnail
22
docx

Matemaatika eksami kordamine KEVAD 2015

 x   2n n  z c) sin x  3 cos x  2 Vastus: 6 n  d) 2tan2x -5tanx +6 = 0 Vastus: x1 = arctan3 +n  , x2 = arctan2 +n  , n   e) 8sin2x -2cosx = 5   3 x1    2n ; x2      arccos   2n n  z 3  4  x      f) tan  2 6  = 0 Vastus : x = 3 (6k - 1), k   g) Lahendage võrrand 2cos2x + 4sin2 x = a , kui võrrandi üks lahend on 450 ja -3600

Matemaatika
178 allalaadimist
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

3 3 funktsiooni suurim väärtus on 27 . III 1)Kasvamisvahemikud ( ; 0) ja (2; ) , kahanemisvahemik (0; 2) ; 2) lõigul 1; 4 funktsiooni suurim väärtus on 14. Näpunäited I, II, III 1) Funktsioon y f ( x) on diferentseeruv. Diferentseeruv funktsioon on kasvav vahemikus, kus f ( x) 0 ja kahanev vahemikus, kus f ( x) 0 . Seega tuleb leida funktsiooni tuletis ning seejärel lahendada võrratused f ( x) 0 ja f ( x) 0 . Kuna on tegemist kuupfunktsiooniga, siis võrratused f ( x) 0 ja f ( x) 0 kujutavad ruutvõrratusi. Ruutvõrratuse lahendamiseks toimime järgmiselt: 1) leiame vastava ruutfunktsiooni nullkohad, st võrrandi f ' ( x) 0 lahendid; 2) arvestades ruutliikme kordaja märki ja leitud nullkohti skitseerime ruutfunktsiooni graafiku (parabooli);

Algebra ja Analüütiline...
778 allalaadimist
thumbnail
8
doc

Kordamisküsimused aines "Matemaatiline analüüs I"

ära selle osa, mis muudaks selle avaldise lahendamatuks ning seejärel asendame arvuga ja saame vastuse. L'Hospitali valem, selle kasutamise eeldused- L'Hospitali valemit võime kasutada piirväärtuse arvutamise lihtsustamiseks ning reeglina kasutatakse seda ainult selliste piirväärtuste korral, mis sisaldavad mingisugust jagatist. L'Hospitali reegel seisneb selles, et me võtame sellest avaldisest tuletise ( iseseivalt nii ülevalt kui alt, MITTE JAGATISE TULETIST). Kui seejärel määramatus ära ei kao,siis võtame veel kord tuletist. Tuletis, selle rakendused Tuletis, selle geomeetriline tähendus- Funktsiooni tuletis on funktsiooni ja argumendi muudu suhte piirväärtus argumendi muudu tõkestamatul lähenemisel nullile. Teisiti öeldes on tuletis funktsiooni muutumise kiirus ning geomeetriliselt näitab funktsiooni tuletis funktsiooni tõusu punktis, mille abtsiss on x. Tuletise arvutamine definitsiooni järgi- TULETISTE TABEL

Matemaatika analüüs I
159 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II

Matemaatiline analüüs
350 allalaadimist
thumbnail
6
doc

Ruutvõrrandid

Järgmine näide on selle kohta, kuidas lahend võib vale lahendusviisi korral kaduma minna. 1 Näide 3. Lahendame võrrandi (x + 2)(x + 3) = (2x + 1)(x + 3). Kuna võrrandi mõlemal poolel on üks ja sama tegur (x + 3), siis tekib kohe kiusatus sellega läbi jagada. Nii saame võrrandi x + 2 = 2x + 1, millest x = 1. Kui aga lahendame esialgse võrrandi teisiti, näiteks avame kõigepealt sulud ja seejärel lahendame tekkinud võrrandi, siis saame hoopis rohkem lahendeid: (x + 2)(x + 3) = (2x + 1)(x + 3), x2 + 5x + 6 = 2x2 + 7x + 3, millest x2 ­ 2x ­ 3 = 0. Selle võrrandi lahendid on 1 ja (­3). Kumb lahendus on siis õige? Kuhu kadus esimese lahenduse korral lahend (­3)? Esimene lahendus on vale, sest seal jagati võrduse pooled tundmatut sisaldava avaldisega, seda aga ei tohi teha

Matemaatika
29 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

.. on irratsionaalarv, selle väärtust ei saa täpselt esitada. Logaritm alusel e, st logaritmi logex nim naturaallogaritmiks ja tähistatakse lnx. Piirväärtuse arvutamine Teoreemid, mis hõlbustavad piirväärtuse leidmist · Lõpliku arvu muutujate summa piirväärtus võrdub nende piirväärtuste lim y=a, lim z=b summaga: lim(y+z)=a+b · korrutise piirväärtus võrdub piirväärtuste korrutisega (konstantse kordaja võib piirväärtuse märgi ette võtta) · Jagatise piirväärtus võrdub piirväärtuse jagatisega eeldusel, et nimetaja lim y=a, lim z=b piirväärtus ei võrdu nulliga: lim(y/z)=a/b, b0 · Kui yuz ja lim y=lim z=a, siis ka lim u=a · Funktsioonil y=f(x) ei saa olla rohkem kui üks piirväärtus. L'Hospitali valem, selle kasutamise eeldused. See reegel on rakendatav ainult 0/0 ja / korral. Tuletis , selle rakendused. Tuletis, selle geomeetriline tähendus

Matemaatiline analüüs
258 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
118 allalaadimist
thumbnail
2
doc

Tuletise moodustamine ja mõningad seosed

TULETIS · Tuletise moodustamine: On antud funktsioon y = f ( x) . Järgnevalt on vaja leida funktsiooni muut: y = f ( x + x) - f ( x ) Seejärel lihtsustada muudu valemit. Lõpuks on vaja leida funktsiooni piirväärtus, mis ühtlasi on ka tuletis. Tuletist märgitakse [y']-ga. y f ( x + x ) - f ( x ) y ' = lim = lim x x x x Pärast koondamist ja taandamist lähendada või panna x võrduma nulliga. Nii kaob funktsioonist x ära. Järelejäänud avaldis ongi tuletis. NÄIDE: 1 Funktsioon: y = x 1 1 Muut: y = - ( x + x ) x

Matemaatika
87 allalaadimist
thumbnail
12
doc

Funktsioonide lahendamine

d) Funktsiooni f(x) maksimumpunkt. 3) Skitseerige funktsiooni f(x) graafik vahemikus ( 0 ; ). 13. (2001) On antud funktsioon f ( x) ax 2 b ln x . 1) määrake kordajad a ja b, kui f (1) f (2) 1 . 2) Asendage punktis 1) leitud kordajate väärtused funktsiooni avaldisse ning uurige saadud funktsiooni kasvamise ja kahanemise suhtes. 14. (2002) Antud on funktsioon y x 3 3 x 2 . 1) Leidke funktsiooni tuletis. 2) Leidke funktsiooni kasvamis- ja kahanemisvahemikud. 3) Leidke funktsiooni graafiku maksimum- ja miinimumpunkti koordinaadid. 4) Leidke funktsiooni graafikule joonestatud puutuja tõus punktis, mille abstsiss on 3. 5) Skitseerige funktsiooni graafik. Joonestage funktsiooni graafikule puutuja punktis, mille abstsiss on 3. 15. (2002) Vaatleme funktsioone f ( x) cos 2 x ja g ( x) cos x .

Matemaatika
61 allalaadimist
thumbnail
22
docx

Matemaatika analüüs I konspekt

ehk sinx ~ x, kui x→0 (läheneb 0-le ja on väga väike) e ≈ 2,72 Funktsiooni pidevus Funktsioon on pidev mingis punktis y0, kui funktsiooni graafiku joonistamisel punktist (f(x0) ; x0) läbi minnes ei pea pliiatsit paberilt tõstma. Joonis 8. Punktis x0 pideva funktsiooni f(x) korral Joonis 9. Piirväärtuste arvutamisel võivad ette tulla nn. määramatused. Need on järgmised: ; ; 0*∞; ∞ - ∞; ; ; Funktsiooni tuletis Funktsiooni tuletis on funktsiooni muudu ja argumendi muudu suhte piirväärtus argumendi muudu lähenemisel nullile (kui see piirväärtus on olemas). Olgu meil funktsioon y=f(x) Joonis 10. ∆x – argumendi x muut ∆y – argumendi x muudule ∆x vastav funktsiooni muut ∆y = f (x+∆x) – f(x) Tuletise tähised: y ´ ; yx´ ; f´(x) ; (diferentsiaal) ; Tuletise definitsioon sümbolites: ∆y f ( x +∆ x )−f (x ) y ´ = lim = lim

Matemaatika analüüs i
24 allalaadimist
thumbnail
2
doc

Funktsiooni tuletis

Funktsiooni tuletis Paljude matemaatiliste probleemide lahendamine viib tulemusele, et tuleb võtta funktsiooni muudu ja argumendi muudu suhte piirväärtus argumendi muudu lähenemisel 0 st y lim x x 0 Seetõttu on antud sellele piirväärtusele erinimetus ja sümbol. Funktsiooni f(x) muutumise kiirust kohal x0 nimetatakse funktsiooni tuletiseks kohal x0 ja tähistatakse f´`(X) y f ( x 0  x )  f ( x 0 )

Matemaatika
39 allalaadimist
thumbnail
48
doc

Lineaaralgebra täielik konspekt

Lineaaralgebra elemendid. M.Latõnina 1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus).

Kõrgem matemaatika
858 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvu

Matemaatika
1453 allalaadimist
thumbnail
6
docx

Matemaatilise analüüsi (I) I osaeksami teooriaküsimused

x · a 1) y = log a x · Logaritmfunktsioon: , kus logaritmide alus a on ühest erinev positiivne arv ( a > 0, a 1). · Trigonomeetrilised funktsioonid: y = sin x, y = cos x, y = tan x, y = cot x Nendes valemites väljendatakse sõltumatu muutuja x radiaanides. · Arkusfunktsioonid: y = arcsin x , y = arccos x , y = arctan x , y = arc cot x . Kui meil on kaks funktsiooni f(x) ja g(x) ning kui nendest funktsioon f[g(x)], siis on tegemist nö liitfunktsiooniga. 5. Polaarkaugus ja polaarnurk, polaarkoordinaadid. Seosed polaar- ja ristkoordinaatide vahel, joonis. Punkti M asukoha tasapinnal määravad kaks arvu: polaarkaugus (polaarraadius) , mis on punkti M kaugus poolusest, ja polaarnurk , mis on polaartelje ja lõigu OM vahel

Diskreetne matemaatika
72 allalaadimist
thumbnail
7
doc

Matemaatika riigieksam

2 d Sp = . 2 d2 3 3 d d Prisma ruumala V = 12 - d = 6d 2 - d 3 = 3d 2 2- , V = 3d 2 2 - . 2 2 4 4 4 2 d 2. Tuleb leida ruumala funktsiooni V ( d ) = 3d 2 - tuletis. Saame 4 2 d 3 9 V ( d) = 3d 2- = ( 6d 2 ) - d 3 = 12d - d 2 . 4 4 4 Leiame ruumalafunktsiooni ekstreemumkohad: V´= 0 9 12d - d 2 = 0 - 9d 2 + 48d = 0 3d 2 - 16d = 0 d ( 3d - 16 ) = 0 4 16 d1 = 0 ei sobi ja d 2 = . 3

Matemaatika
548 allalaadimist
thumbnail
104
pdf

Konspekt

I. Determinandid 1 Determinandi m~ oiste 1.1 Idee selgitus Algul defineerime esimest j¨ arku determinandi, siis esimest j¨arku determinandi abil teist j¨ arku determinandi, seej¨arel teist j¨arku determinandi abil kolmandat j¨ arku detereminandi jne, n-j¨arku determinandi defineerime (n - 1)-j¨arku determinandi kaudu. Sel- list defineerimisviisi nimetatakse induktiivseks ja vastavat objekti induktiivseks konstruktsiooniks. Eelnevalt on soovitatav tutvuda maatriksi m~oistega (II.1.1). Kooloniga v~ordus A := B t¨ahendab j¨argnevas, et A on defineeri- tud B kaudu. Seda v~ordust kasutame ka samav¨ a¨arsete t¨ ahistuste sissetoomiseks. 1.2 Esimest j¨ arku determinant Arvu a R determinandi |a| ehk esimest j¨ arku determinandi de- fineerime valemiga |a| := det a := a. 1.3 N¨ aide | - 5| = -5

Lineaaralgebra
510 allalaadimist
thumbnail
28
pdf

Kõrgema matemaatika üldkursus

kuitahes lähedale, kui aga argumendi x väärtused on arvule a küllalt lähedal. Kirjutatakse lim f ( x ) = b ehk ka f ( x ) b, kui x a . x a Funktsiooni pidevusest lühidalt: pideva funktsiooni graafikut saab joonistada pliiatsit paberilt eemaldamata. Iga elementaarfunktsioon on pidev oma määramispiirkonnas. Kui funktsioon on pidev kohal a, siis lim f ( x ) = f ( a ) . x a 9.Funktsiooni tuletis. Tema füüsiline ja geomeetriline tõlgendus. Funktsiooni tuletis on matemaatilise analüüsi üks põhimõisteid. Funktsiooni tuletis mingil kohal näitab selle funktsiooni väärtuse muutumise kiirust funktsiooni argumendi muutumisel -- täpsemalt, funktsiooni tuletis on funktsiooni väärtuse muudu ja argumendi muudu suhte piirväärtus argumendi muudu lähenemisel nullile. 10.Põhiliste elementaarfunktsioonide tuletised, liitfunktsiooni tuletis. tuletiste tabel:

Kõrgem matemaatika
324 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun