Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Funktsiooni tuletis - sarnased materjalid

tuletis, matemaatik, matemaatika, sinx, cosx, piirväärtus, lähenemisel, leidmist, filosoof, füüsik, newton, lõpust, alguseni, perioodiks, vundament, tsivilisatsioon, tuletiste, tuletised
thumbnail
22
docx

Matemaatika analüüs I konspekt

sirget. Alguses kinnispunkt asub nullpunktis. Ringjoone veeremisel mööda sirget joonistab kinnispunkt tsükloidi kaari. Tsükloidi parameetrilised võrrandid: Joonis 6. Paaris- ja paaritufunktsioon Olgu funktsioonil f (x) 0-punkti suhtes sümmeetriline määramispiirkond ehk –a < x < a. f(-x) = f(x) – paarisfunktsioon f(-x) = -f(x) – paaritufunktsioon Joonis 7. Nt. (-x)2 = x2, paarisf. (-x)3 = -x3, paarituf. sin(-x) = -sinx, paarituf, cos (-x) = cosx, paarisf, tan (-x) = -tanx, paarituf, arcsin (-x) = -arcsinx, paarituf. arctan(-x) = -arctan, paarituf, arccos(-x) , ei ole paaritu ega paarisf. Perioodiline funktsioon Niisugust funktsiooni f(x), mis rahuldab tingimust f(x+t)=f (x), t≠0, iga x ja x+t korral määramispiirkonnast, nim. perioodiliseks funktsiooniks vähimat arvu t aga selle funktsiooni perioodiks. Kui on teada perioodilise funktsiooni ajagraafiku osa perioodi pikas poollõigus, siis on teada ka kogu graafik

Matemaatika analüüs i
24 allalaadimist
thumbnail
6
docx

Matemaatilise analüüsi (I) I osaeksami teooriaküsimused

Arve ja nimetatakse punkti M polaarkoordinaatideks. Polaarkaugus on alati mittenegatiivne: 0. Polaarnurga üheseks määramiseks valitakse see poollõigult 0 < 2 , siis vastab igale punktile tasapinnal peale pooluse teatud kindel arvude ja paar. Pooluse puhul = 0 ja on suvaline. Seose saamiseks punkti polaarkoordinaatide ja ristkoordinaatide vahel võtame pooluseks ristkoordinaatide alguspunkti ning polaarteljeks x-telje positiivse suuna. 6. Muutuva suuruse piirväärtus, selle geomeetriline tähendus. Definitsioon muutuja x lähenemisest lõpmatusele. Arvu a nimetatakse muutuva suuruse x piirväärtuseks, kui iga etteantud kuitahes väikese positiivse arvu puhul saab näidata sellist muutuva suuruse x väärtust, millest x-a < alates kõik järgnevad muutuva suuruse väärtused rahuldavad võrratust .

Diskreetne matemaatika
72 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

Näiteks kui f(x)=ex, siis f-1(y)=lny ja iga x korral ln(ex)=x. Pöördfunktsiooni f-1 leidub ainult niisugusel funktsioonil f, mis on kogu oma määramispiirkonnas kas kasvav või kahanev, sest üksnes selline f korraldab üksühese vastavuse oma määramispiirkonna ja muutumispiirkonna vahel. Kui funktsioon f rahuldab nimetatud tingimust vaid oma määramispiirkonna mingil osahulgal, siis saab rääkida üksnes selle funktsiooni vastava lahendi pöördfunktsioonist. Kui funktsiooni f tuletis f' on kohal x nullist erinev, siis pöördfunktsiooni f-1 tuletis kohal y=f(x) saab avaldada kujul ( f -1 )' ( y ) = f '1( x ) = f ' ( f 1-1 ( y ) ) 4. Funkts. Piirväärtus. Ühepoolsed piirväärtused. Funktsiooni piirv. Def: Funktsioonil f on piirväärtus b kohal a kui suvalises piirprotsessis xa, mis rahuldab tingimust x a, funktsiooni väärtus f(x) läheneb arvule b. Funktsiooni piirväärtuse kirjutusviis on: lim(xa) f(x) = b või f(x) b kui xa

Matemaatiline analüüs
598 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. ............................................................6 Absoluutväärtuse omadused..

Matemaatika
118 allalaadimist
thumbnail
21
pdf

Funktsiooni tuletis (jätk) loeng 6

Funktsiooni tuletis (jätk) - + sin - sin = 2 sin cos 2 2 Funktsiooni y = sin x tuletis Teoreem: Funktsiooni y = sin x tuletis on cos x. x + x - x x + x + x Tõestus: y = sin( x + x) - sin x = 2 sin cos 2 2 x x = 2 sin cos x + 2 2 x x x 2 sin cos x + sin y 2 2 2 cos x + x

Matemaatika
70 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I 1. teooria KT

on funktsioon järgmisel kujul: y = ax , kus astme alus a on konstantne ja rahuldab võrratust a > 0. Lisaks sellele võrratusele eeldame veel, et a ei võrdu 1, sest a = 1 korral saame konstantse funktsiooni y = 1 x = 1. Eksponentfunktsiooni korral X = R ja Y = (0,). Graafik on juhtudel a > 1 ja 0 < a < 1 kvalitatiivselt erinev . Funktsioon y = a x on kasvav kogu oma määramispiirkonnas, kui a > 1 ja kahanev kogu oma määramispiirkonnas, kui 0 < a < 1. Trigonomeetrilised funktsioonid y = sinx, y = cosx, y = tanx ja y = cotx radiaanides antud argumendiga x. Trigonometriliste funktsioonide määramispiirkonnad ja väärtuste hulgad on järgmised: y = sinx : X = R, Y = [-1,1], y = cosx : X = R, Y = [-1,1], y = tanx : X = R {(2k + 1)/ 2 * ||k Z }, Y = R, y = cotx : X = R {k||k Z}, Y = R. Funktsioonid y = sinx ja y = cosx on perioodilised perioodiga 2 ning y = tanx ja y = cotx perioodiga . Funktsioonid y = sinx, y = tanx ja y = cotx on paaritud ning y = cosx paaris. 4

Matemaatiline analüüs 1
110 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I

1. Sõnastada ja tõestada piirväärtusteoreem kahe funktsiooni summa piirväärtuse arvutamiseks protsessis x +. Teoreem (1): Kahe, kolme, üldiselt lõpliku hulga muutuvate suuruste algebralise summa piirväärtus võrdub nende muutuvate suuruste piirväärtuste algebralise summaga. lim(u1 + u2 +....) = lim u1 + lim u2 + ... Tõestus: Tõestan teoreemi kahe funktsiooni liitmise korral. Olgu lim f(x) = A ja lim g(x) = B (Vaatlen mõlemaid protsesse piirprotsessis x +) Teoreem (1) põhjal võib kirjutada lim x + f(x) + g(x) = lim x + f(x) + lim x + g(x) Eeldame, et liidetavaid on lõplik arv.

Matemaatiline analüüs
354 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

korrutis on tõkestamatult kahanev a)cx->tõkestamatult kahanev b)kahe tõkestamatult kahaneva suuruse korrutis on samuti tõkestamatult kahanev *Kasvav: *def.1 suurus x:x1,x2,x3...xn=f(n)...on tõkestamatult kasvav, kui igale pos arvule M, leidub niisugune indeks N IN, mille korral |xn|>M, n>N; arvtelg (xN+2, -M, x1, 0,x2,M,xN+1), Lause: tõkestamatult kasvav suurus x, siis tema pöörväärtus 1/x tõkestamatult kahanev ja vastupidi 7. Muutuva suuruse piirväärtus Suurus x: x1,x2,x3...,xn,..=> def. Arv a on suuruse xn piirväärtus protsessis, kus n läheneb sel korral, kui xn-a on tõkestamatult kahanev suurus, limn-> xn=a, xn-a= n *Kui suurusel piirväärtus on olemas, siis kehtib seos, et xn- a on tõkestamatult kahanev , siis saame xn=a+ n tõkestamatult kah suurus *Kui meil see vahe on tõkes kah siis iga puhul leidub N IN, mille korral | xn-a|< , n>N; arvtelg(x1,0,a- ,xN+1(üles),a,a+ ,x2(üles)) .*Järeldus 1)tõk kah

Kõrgem matemaatika
147 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I konspekt - funktsioon

Liitfunktsioon koosneb mitmest funktsioonist. Pöördfunktsioon Olgu y=f(x) mingi funktsioon, kus x on argument ja y funktsioon.Kui lahendada see võrrand x suhtes, samme x=p(y). Nende graafikud on samad. Tuleb vahetada argumendi ja funktsiooni tähistused saame funktsiooni y=p(x) Pöördfunktsiooni graafik on sümmeetriline algfunktsiooni graafikuga esimese ja kolmanda veeerandi nurgapoolitaja suhtes.(y=x2 y= -+ x ) Piirväärtus Lõpmata väike suurus, selle omadused. Muutuvat suurust, mille piirväärtus on null, nimetakse lõpmata väikseks. Omadused: Lõpliku arvu lõpmata väikeste suuruste summa on lõpmata väike suurus Tõkestatud muutuva suuruse ja lõpmata väikese suuruse korrutis on lõpmata väike suurus Lõpliku arvu lõpmata väikeste suuruste korrutis on lõpmata väike suurus. Arv e Arv e=2,71828... on irratsionaalarv, selle väärtust ei saa täpselt esitada. Logaritm alusel e, st logaritmi logex nim naturaallogaritmiks ja tähistatakse lnx. Piirväärtuse arvutamine

Matemaatiline analüüs
258 allalaadimist
thumbnail
19
doc

Nimetu

aste sulgude ette nii lugejas kui nimetajas. 2. f(x) sisaldab IRRATSIONAALSUSI: ülesande lihtsustamiseks kaotada olemasolevad irratsionaalsused, kasutades algebra põhivalemeid. 3. OLULISI PIIRVÄÄRTUSI lim (sin x)/x = 1, x0 lim (1+(1/x))x = e 2,71... x 5 TULETISTE ARVUTAMINE DEFINITSIOON. Funktsiooni muudu ja argumendi muudu suhte piirväärtust argumendi muudu lähenemisel nullile nimetatakse selle funktsiooni TULETISEKS. Funktsiooni tuletise leidmist nimetatakse tema DIFERENTSEERIMISEKS. d: f(x) f´(x). TULETISTE ARVUTAMISE PÕHIREEGLID 1. (f(x) + g(x))´= f´(x) + g´(x), 2. (f(x) g(x))´= f´(x) g(x) + f(x) g´(x), erijuhul (c f(x))´= c f´(x), 3. (f(x)/ g(x))´= ( f´(x) g(x) ­ f(x) g´(x))/ g2(x), 4. f´(u(x)) = f´u u´x(x). TULETISTE ARVUTAMISE PÕHIVALEMID 5. (u)´= u-1 u´x , 6

177 allalaadimist
thumbnail
6
doc

11. klassi materjal matemaatikas

jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks. Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q n-1 n an=a1 x q q=an+1/n sn=a1(q -1)/q-1 Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q Arvu ,,A" nimetatakse jada ,,an" tõkestamatul kasvamisel ja tähistatakse sümboliga liman=A n lim1/n=0 Piirväärtus n (tõkestamatul kasvamisel) läheneb nullile. n Piirväärtuste arvutamine 1) lim 1/n=0 n 2) lim ±n=± n 3) lim c=c n 4) lim(an±bn)=liman±limbn n n n 5) lim(an x bn)=liman x limbn n n n 6) lim(an÷bn)=liman÷limbn , kui limbn =/ 0 n n n n Murdude piirväärtuste arvutamisel võib esineda kolm juhtumit: A) murru lugeja ja nimetaja on ühe ja sama astme avaldised

Matemaatika
501 allalaadimist
thumbnail
8
doc

Kordamisküsimused aines "Matemaatiline analüüs I"

vahetame x ja y ära. Näiteks : y=2x ; x=0,5y ; y=0,5x , seega y=2x pöördfunktsioon on y=0,5x. Funktsiooni y = f(x) pöördfunktsiooniks nimetatakse funktsiooni y =( x ) .Pöördfunktsiooni graafik on sümmeetriline algse funktsiooni graafikuga, sirge y=x suhtes. Teineteise pöördfunktsioonideks on: eksponent- ja logaritmfunktsioon , tirgonomeetrilised ja arkusfunktsioonid. Piirväärtus Lõpmata väike suurus, selle omadused- Muutuvat suurust, mille piirväärtus on null, nimetatakse lõpmata väikeseks suuruseks. Lõpmata väikese suuruse omadused: 1. Lõpmata väikeste suuruste summa on lõpmata väike(0+0=0) 2. Tõkestatud suuruse ja lõpmata väikese suuruse korrutis on lõpmata väike (A*0=0) 3. Lõpmata väikeste suuruste korrutis on ka lõpmata väike (0*0=0) 1 Lõpmata väikesi suurusi ja nimetatakse sama järku lõpmata väikesteks suurusteks, kui

Matemaatika analüüs I
159 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

X sõltumatu muutuja, y sõltuv muutuja. Mitme muutuja funktsioon ­ kui iga vektori (x1, x2, ..., xn) korral saab leida ühe kindla muutuja w väärtuse, siis see w on funktsioon muutujatest x1, x2, ..., xn. w=f(x1,x2,...,xn). Elementaarfunktsioonid ­ funktsioonid, mida saab moodustada põhielementaarfunktsioonidest aritmeetiliste tehete ja liitfunktsioonide moodustamise abil, n: y=x 2+2x+2, y=log(2x-3). Põhielementaarfunktsioonid: f(x)=c; xa; ax; logax; sinx, arccotx. 29. Jada piirväärtuse ja funktsiooni piirväärtuse mõisted. Olgu arvjada x1, x2, ..., xn. Kui sellel jadal on selline hea omadus, et mis tahes > 0 korral saame vaadeldavas jadas (xn) leida sellise elemendi xi, millest alates kõik ülejäänud jada elemendid kuuluvad mingi fikseeritud arvu a -ümbrusesse, siis öeldakse, et see arv a on jada (xn) piirväärtuseks (ehk jada koondub arvuks a). Funktsioon y = f(x). Olgu x1, x2, ..

Kõrgem matemaatika
356 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 L~opmatult kahanevate ja l~opmatult kasvavate suuruste v~ordlemine. 43 2.9 Funktsiooni pidevus. Katkevuspunktide liigitus. . . . . . . . . . . 45 ¨ 2.10 Uhepoolne pidevus. Pidevus hulkadel. Elementaarfunktsioonide pidevus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 L~oigul pidevate funktsioonide omadusi. . . . . . . . . . . . . . . . 52 3 Tuletis ja diferentsiaal 57 3.1 Tuletise, diferentseeruva funktsiooni ja diferentsiaali m~oisted. . . 57 3.2 N¨aiteid tuletiste kohta rakendustes. . . . . . . . . . . . . . . . . . 60 3.3 Tuletiste arvutamise p~ohireeglid . . . . . . . . . . . . . . . . . . . 61 3.4 Ilmutamata funktsiooni, p¨o¨ordfunktsiooni ja parameetrilise funk- tsiooni diferentseerimine. . . . . . . . . . . . . . . . . . . . . . . . 62

Matemaatika
42 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs - teooria spikker

27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame punkti i =[xi-1,xi] 4

Matemaatiline analüüs
973 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33

Matemaatiline analüüs
808 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . 29 3.5 Põhilised elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SISUKORD 3.6 Elementaarfunktsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Jadad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Funktsiooni piirväärtus ja pidevus 37 4.1 Jada piirväärtus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Funktsiooni piirväärtuse mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Ühepoolsed piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Funktsiooni piirväärtuse omadused . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

järgnev. Muutuva suuruse piirväärtuse üldine definitsioon on järgmine: Olgu x järjestatud muutuv suurus. Arvu a nimetatakse muutuva suuruse x piirväärtuseks, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad arvu a ümbrusesse (a - , a + ), st rahuldavad võrratust |x - a| < . Kui arv a on suuruse x piirväärtus, siis öeldakse, et suurus x läheneb arvule a ehk koondub arvuks a ja kirjutatakse x a või lim x = a . Muutuv suurus x läheneb vasakult arvule a, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad poollõiku (a - , a]. Sellisel juhul kirjutatakse x a- Muutuv suurus x läheneb paremalt arvule a, kui iga kuitahes väikese positiivse arvu korral saab

Matemaatiline analüüs
484 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
179 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x liitfunktsiooniks ehk kompositsiooniks y=f[g(x)]=f*g(x) © 2001 - Ivari Horm ([email protected]), Toomas Sarv 1 Funktsiooni piirväärtus. Teoreemid piirväärtuste kohta (tõestusega). Arv a on funktsiooni y=f(x) piirväärtuseks tingimusel, et xx0, kui >0, () >0, et 0< x-x0< f(x)-a< Selleks, et funktsioonil y = f (x) oleks piirväärtus, kui xx0 on piisav ja tarvilik, et eksisteeriksid ühepoolsed piirväärtused ja et nad oleks võrdsed. lim f ( x) = lim f ( x) = a x x0 - 0 x x0 + 0 Teoreemid piirväärtuste kohta. Teoreem 1 Selleks, et funktsioonil oleks piirväärtus on piisav ja tarvilik, et

Matemaatiline analüüs
11 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

Perioodiline funktsioon (funktsioon y = x ­ [x]). Liitfunktsioon, selle komponendid (näide). Paarisfunktsioon. Funktsiooni y = f(x), mille määramispiirkond X on sümmeetriline nullpunkti suhtes, nimetatakse paarisfunktsioobiks, kui x X kehtib võrdus f(-x)= f(x) Näide: y = x2 Paaritu funktsioon. Funktsioon y = f(x), mille määramispiirkond X on sümmeetriline nullpunkti suhtes, nimetatakse paarituks funktsiooniks, kui x X kehtib võrdus f(-x)=-f(x). Näide: y = sinx. Perioodiline funktsioon. Funktsiooni y = f(x) nimetatakse perioodiliseks piirkonnas X ja arvu T 0 tema perioodiks, kui x X korral ka x ± T X ning kehtib võrdus f(x+T)=f(x) y = x ­ [x] perioodiline ? Oletame t Siis t + 1 [x + 1] = t + 1 = [x] + 1 Nt. t = (x + 1) = x + 1 ­ [x + 1] = x + 1 ­ [x] ­ 1 = x ­ [x] = f(x) T=1 Liitfunktsioon ja selle komponendid (näide). Funktsioonide y = f(u) ja u = g(x) liitfunktsiooniks nimetatakse funktsiooni y=f(g(x)). Funktsioone f ja g nimetatakse

Matemaatiline analüüs
195 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

omab funktsioon f lokaalset ekstreemumit punktis c. Peale selle on f teoreemi eelduste p~ohjal diferentseeruv punktis c. J¨arelikult, Fermat' lemma p~ohjal saame f'(c) = 0. Teoreem on t~oestatud. Rolle'i teoreemi geomeetriline sisu. Teoreemi eeldustel on funktsiooni y = f(x) graafik sile joon, mille otspunktid A = (a,f(a)) ja B = (b,f(b)) asuvad x-telje suhtes samal k~orgusel. Teoreem v¨aidab, et sellisel juhul leidub vahemikus (a,b) v¨ahemalt u¨ks punkt c, mille korral funktsiooni tuletis on null, st funktsiooni graafiku puutuja on paralleelne x- teljega. Sõnastada ja tõestada Cauchy teoreem. Kui funktsioonid f ja g on l~oigul [a,b] pidevad, vahemikus (a,b) diferentseeruvad ja iga x (a,b) korral kehtib v~orratus g'(x) 0, siis leidub vahemikus (a,b) v¨ahemalt u¨ks punkt c nii, et f(b) - f(a) /g(b) - g(a)=f'(c)/ g'(c) T~oestus. Defineerime j¨argmise funktsiooni: Arvutame: F(a) = f(a) ­ (f(b)-f(a)/ g(b)-g(a))* (g(a) - g(a)) = f(a),

Matemaatika
46 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs 2 KT

1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 − ɛ, x1 + ɛ); 2. iga x ∈ (x1 − ɛ, x1 + ɛ ) korral kehtib võrratus f(x) ≥ f(x1).  Fermat’ lemma - kui funktsioonil f on punktis x1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f’(x1) = 0. 20. Kõrgemat järku tuletiste definitsioonid. Olgu funktsioon y = f(x) diferentseeruv hulgas D. Siis on tema tuletis f’ hulgas D määratud funktsioon. Oletame, et f0 on samuti diferentseeruv hulgas D. Siis saame me arvutada funktsiooni f’ tuletise ehk funktsiooni f teise tuletise, mida tähistatakse f’’. Seda protseduuri võib jätkata. Funktsiooni f teise tuletise diferentseerimisel saame selle funktsiooni kolmanda tuletise f’’’ jne. Funktsiooni y = f(x) n-järku tuletiseks nimetatakse selle funktsiooni n − 1- järku tuletise tuletist ja tähistatakse f(n)

Matemaatika
14 allalaadimist
thumbnail
12
docx

Matemaatika 11.klass valemid

7) lim  an  bn   lim an  lim bn n  n  n  8) lim  an  bn   lim an  lim bn n  n  n  9) lim  anbn   lim an  lim bn n  n  n  an 10) lim  lim an  lim bn n  bn n  n  11) Korrutise tuletise sõnastus ja valem (u * v ) ´ = Korrutise tuletis võrdub esimese teguri tuletise ja teise teguri korrutisega, millele on liidetud esimene tegur ja teise teguri tuletise korrutis. (u*v)’ = u’*v+u*v’ ' u 12. Jagatise tuletise sõnastus ja valem ()v =¿ Jagatise tuletis võrdub esimese

Matemaatika
18 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et f(c) = 0. Tõestus. Kuna f(x) on pidev lõigul [a, b], siis saavutab ta oma suurima ja vähima väärtuse sellel lõigul. Olgu M suurim väärtus ja m vähim väärtus. Kui M = m, siis on funktsioon lõigul [a, b] konstantne, st kõigi x [a, b] korral kehtib f(x) = M = m. Sellisel juhul on f(x) tuletis nullfunktsioon, st f(x) 0, ja teoreemi väide on täidetud iga c (a, b) korral. Edasi vaatleme juhtu, kui M m. Funktsioon võib oma absoluutse ekstreemumi saavutada kas lõigu [a, b] otspunktis või vahemikus (a, b). Funktsioon f(x) peab vähemalt ühe oma absoluutsetest ekstreemumitest (kas suurima või vähima väärtuse) saavutama vahemikus (a, b) asuvas punktis. Tähistame selle punkti c-ga. Kuna vahemikus (a, b) asuv absoluutne

Matemaatiline analüüs I
120 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

x a või f(x) A, kui x a. Näide . Tõestame,et lim x1 (2x + 1) = 3. Olgu > 0 suvaline.Siis f(x) - A=(2x+1)-3 = 2x-1< , kui x-1< . Seega võttes = , näeme, et definitsiooni 1nõuded on täidetud. 2 2 Definitsioon 2. Öeldakse, et funktsioonil f on lõpmatu piirväärtus piirprotsessis . x a, kui iga arvu N > 0 korral leidub arv > 0, nii et f(x) > N ( f(x) < -N ), alati kui 0 < | x - a | < . Kirjutame lim xa f(x) = ( vastavalt lim xa f(x) = - ). 2. Funktsiooni piirväärtuse omadused Teoreem 2. Kui eksisteerivad lõplikud piirväärtused lim xa f(x) = A ja lim xa g(x) = B, siis 1) lim xa [ f(x) ± g(x)] = A ± B, 2) lim xa [ c f(x)] = c A, 3) lim xa [ f(x) g(x)] = A B,

Matemaatiline analüüs i
687 allalaadimist
thumbnail
4
pdf

Eksam matemaatikas vastustega

9. Kirjeldage oma sõnadega sümbolite 1. ( ) , 2. ( ) ja 3. ( ) tähendust Arv A on funktsiooni y=f(x) piirväärtuseks kohal a, kui selle funktsiooni väärtused f(x) erinevad arvust A kuitahes vähe kõigi nende x väärtuste korral kohale A. Lühemalt kirjutataksegi see 1. Kirje tähendab seda, et punkt a peab olema ligipääsetav mõlemalt poolt.Funktsiooni piirväärtus iseloomustab väärtusi a ümbruses. 10. Kirjeldage oma sõnadega sümbolite 1. ( ) 2. ( ) ( ) ( ) tähendust 1.Arvu A nim. funktsiooni f(x) piirväärtuseks argumendi x lähenemisel lõpmatusele, kui f(x) läheneb arvule A kuitahes suurte või argumendi x väärtuste korral.2.Arvu A nim. funktsiooni y=f(x) piirväärtuseks arguendi x lähenemisel miinus

Matemaatika
17 allalaadimist
thumbnail
24
pdf

MATEMAATILINE ANALÜÜS I. KORDAMISKÜSIMUSED

kui 𝑥1 < 𝑥2 , 𝑠𝑖𝑖𝑠 𝑓(𝑥1 ) < 𝑓(𝑥2) Funktsioon f on piirkonnas X kahanev, kui selles piirkonnas igale suuremale argumendi väärtusele vastab väiksem funktsiooni väärtus, s.t. kui 𝑥1 < 𝑥2, 𝑠𝑖𝑖𝑠 𝑓(𝑥1 ) > 𝑓(𝑥2 ) Funktsioon f on piirkonnas X konstantne, kui selles piirkonnas igale suuremale argumendi väärtusele vastab võrdne funktsiooni väärtus, s.t. kui 𝑥1 < 𝑥2, 𝑠𝑖𝑖𝑠 𝑓(𝑥1) = 𝑓(𝑥2) Kui funktsiooni f(x) tuletis lõigu (a,b) ulatuses on negatiivne, so f’(x) < 0, siis f-n kahaneb selles vahemikus. Kui funktsiooni f(x) tuletis lõigu (a,b) ulatuses on positiivne, so f’(x) > 0, siis f-n kasvab selles vahemikus. 7. Liitfunktsioon. Näited. Võime saada uusi funktsioone ka mitme funktsiooni kompositsioonina. Liitfunktsiooni saame kahe või enama funktsiooni järjest rakendamisel. Näiteks kui 𝑦 = 𝑓(𝑢) = √𝑢 𝑗𝑎 𝑢 = 𝑔(𝑥) = 𝑥 2 + 1, siis y on funktsioon x-ist, st

Matemaatiline analüüs 1
26 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Kui funktsioon f on lõigul [a,b] pidev, vahemikus (a,b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a,b) vähemalt üks punkt c nii, et f’(c) = 0. Tõestus. Kuna f(x) on pidev lõigul [a,b], siis saavutab ta oma suurima ja vähima väärtuse sellel lõigul. Olgu M suurim väärtus ja m vähim väärtus. Kui M = m, siis on funktsioon lõigul [a,b] konstantne, st kõigi x ∈ [a,b] korral kehtib f(x) = M = m. Sellisel juhul on f(x) tuletis nullfunktsioon, st f’(x) ≡ 0, ja teoreemi väide on täidetud iga c ∈ (a,b) korral. Edasi vaatleme juhtu, kui M  m. Funktsioon võib oma absoluutse ekstreemumi saavutada kas lõigu [a,b] otspunktis või vahemikus (a,b). Oletame kõigepealt, et mõlemad absoluutsed ekstreemumid saavutatakse lõigu otspunktides a ja b. Siis on f(x) väärtus ühes otspunktis M ja teises otspunktis m ning võrratusest M  m tuleneb, et f(x) väärtused lõigu otspunktides on erinevad

Matemaatiline analüüs 1
13 allalaadimist
thumbnail
22
docx

Kõrgem matemaatika 1 kordamisküsimused 2017/2018

Funktsiooni pöördfunktsioon on funktsioon -1, mis seab igale muutumispiirkonna väärtusele y vastavusse need väärtused x määramispiikonnast. Olgu funktsiooni y = f(x) määramispiirkond X ja muutumispiirkond Y. Kui iga yY korral leidub täpselt üks xX, nii et y = f(x), siis öeldakse, et funktsioonil y = f (x) on olemas pöördfunktsioon määramispiirkonnaga Y ja muutumispiirkonnaga X. 33.Funktsiooni piirväärtus 34.Funktsiooni piirväärtus, kui argument läheneb lõpmatusele Kui muutuja x läheneb lõpmatusele, siis nimetatakse teda lõpmatult kasvavaks suuruseks ja kirjutatakse: x . 35.Tõkestamatult kasvav funktsioon 36.Tõkestamatult vähenev funktsioon 37.Summa piirväärtus 38.Korrutise piirväärtus 39.Põhiteoreemid piirväärtuse kohta 40.Mida nimetatakse Euleri arvuks (arvuks e)? E = 2,718281828 41.Pideva funktsiooni mõiste 42.Vahemikus pidev funktsioon

Kõrgem matemaatika
134 allalaadimist
thumbnail
5
docx

Kordamisküsimused aines "Matemaatiline analüüs I"

Funktsiooni y = f(x) pöördfunktsiooniks nimetatakse funktsiooni , mis rahuldab seost ( g ( x) ) = x Pöördfunktsiooni graafik on sümmeetriline algfunktsiooni graafikuga esimese ja kolmanda veerandi nurgapoolitaja suhtes Teineteise pöördfunktsioonideks on: eksponent- ja logaritmfunktsioon tirgonomeetrilised ja arkusfunktsioonid Piirväärtus Lõpmata väike suurus, selle omadused. Muutuvat suurust, mille piirväärtus on null, nimetatakse lõpmata väikeseks lim an = 0, ehk an 0 lim f ( x) = 0, ehk f ( x) 0 n xa Lõpmata väikeste suuruste omadused: Lõpliku arvu lõpmata väikeste suuruste summa on lõpmata väike suurus. Tõkestatud muutuva suuruse ja lõpmata väikese suuruse korrutis on lõpmata väike suurus. Lõpliku arvu lõpmata väikeste suuruste korrutis on lõpmata väike suurus. Arv e. Piirväärtuse arvutamine. L'Hospitali valem, selle kasutamise eeldused.

Matemaatiline analüüs I
26 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et 27Olgu funktsioon y = f(x) diferentseeruv hulgas D. Siis on tema tuletis f hulgas D määratud funktsioon. Oletame, et f on samuti diferentseeruv hulgas D. Siis saame me arvutada funktsiooni f tuletise ehk funktsiooni f teise tuletise, mida tähistatakse f. Seda protseduuri võib jätkata

Matemaatiline analüüs 1
66 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun