Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Tõenäosusteooria ja matemaatiline statistika - sarnased materjalid

keskväärtus, statistikeoreem, valim, algebra, piirteoreem, regressioon, poisson, hüpotees, juhuslikudsentraalse, sigma, binoomjaotus, normaaljaotusõenäosusteooria, bayesinglik, jaotusfunktsioon, nihketaõepära, geomeetriline, poissoni, diskreetse, jaotusfunktsiooniihedusfunktsioon, korrelatsioon, statistiliste, nimetameuletamine
thumbnail
32
docx

Tõenäosusteooria ja matemaatiline statistika

Teooria eksami probleemid I osa Tõenäosusteooria 1. Defineerige sündmuste algebra. Tooge vähemalt 2 sündmuste algebra mittetriviaalset näidet Klassi F0 nimetatakse sündmuste algebraks, kui: 1) ∅,Ω ∈ F0 (Ω < ∞; Ω – elementaarsündmuste ruum ehk hulk, mille elementideks on juhusliku katse kõikvõimalikud tulemused) 2) A ∈ F0 => Ā ∈ F0 3) A,B ∈ F0 => A + B ∈ F0 Nt: Ω = {1,2,3,4,5,6} a. F = {∅,Ω} b. A = {2,3,5}; F = {∅,Ω,A,Ā} c

Tõenäosusteooria ja...
329 allalaadimist
thumbnail
28
docx

Tõenäosusteooria ja matemaatilise statistika kordamisküsimused

p(zk)= p(xi)  p(yj). Sõltuvate juhuslike suuruste puhul peab arvestama tinglikke tõenäosusi. 28. Mis on juhusliku suuruse mood? Diskreetse juhusliku suuruse moodiks nimetame juhusliku suuruse kõige suurema p ( xmo ) =max p(x i) tõenäosusega esinevat väärtust.Seega väärtus xmo on mood, kui x i. Vastavalt kas on üks või mitu moodi, on unimodaalne või multimodaalne. 29. Mis on juhusliku suuruse keskväärtus? Diskreetse juhusliku suuruse keskväärtuseks EX nimetatakse matemaatilist ootust ehk EX= ∑ x i p (x i) ooteväärtuseks ehk arvu x ∈X i 30. Keskväärtuse omadused. Ec=c; E(cX)=cEX; E(X+Y)=EX+EY; E(X-Y)=EX-EY; sõltumatute juhuslike suuruste korral ka E(XY)=EXEY 31. Mis on dispersioon? Diskreetse juhusliku suuruse dispersiooniks DX nimetatakse hälbe ruudu keskväärtust keskväärtuse suhtes ehk arvu DX=E(X-EX)2

Tõenäosusteooria ja...
294 allalaadimist
thumbnail
15
pdf

Kordamisküsimuste vastused

Juhusliku suuruse X väärtused x1 x2 ... xn Väärtuste ilmumise tõenäosused f(x1) f(x2) ... f(xn) f (x ) = 1 i Diskreetse juhusliku suuruse jaotusfunktsioon F(x)=P(X keskväärtus ja dispersioon. Keskväärtuse ja dispersiooni omadused. Diskreetse lõpliku arvu väärtustega juhusliku suuruse keskväärtus on summa EX = i =1 xi f ( xi ) n Loenduva arvu väärtustega juhusliku suuruse keskväärtus avaldub lõpmatu summana EX = i =1 xi f ( xi ) , mis ei pruugi alati eksisteerida. Omadused: 1. E(c)=c, kui c on konstant 2. E(cX) = cE(X), 3. E(X+Y) = E(X) + E(Y), E(X1+X2+...+Xn)=E(X1)+E(X2)+...+E(Xn) , 4. E(X+c) = E(X) + c, 5

Tõenäosusteooria ja...
692 allalaadimist
thumbnail
11
docx

ÜLEVAADE TÕENÄOSUSTEOORIA PÕHIMÕISTETEST

vähemalt ligikaudu kirjeldada normaaljaotusega. Ei ole vaja suur liidetavate arvu, lubatav on liidetavate mõningane vastastikune sõltuvus, normaaljaotusega liidetavate summa jaotus on täpselt normaaljaotus, katseandmete analüüsi kogemus paljudes valdkondades on näidanud, et suur enamus katseandmeid on hästi kirjeldatavad normaaljaotusega. Normaaljaotusel on kaks parameetrit, mis on vastava juhusliku suuruse keskväärtus ja standardhälve. Normaaljaotus on sümmeetriline. Normeeritud normaaljaotus on normaaljaotuse erijuhtum, kui keskväärtus ja standardhälve on vastavalt 0 ja 1. Tähistatakse X~N(0,1). K sigma reegel: näitab, kui suur on juhusliku suuruse normaaljaotuse korral tõenäosus sattude piirkonda keskväärtus pluss-miinus k standardhälve. Lognormaalne jaotus tekib, kui vaadeldava juhusliku suuruse logaritm on jaotunud normaaljaotuse

Rakendusstatistika
11 allalaadimist
thumbnail
22
docx

Statistika kordamisküsimused

Pidev suurus - väärtused täidavad mingi vahemiku täielikult ära Jaotusseadus - Diskreetse juhusliku suuruse X jaotusseaduseks nimetatakse vastavust suuruse kõikvõimalike väärtuste xi ja nende tõenäosuste pi vahel. Jaotusfunktsioon - tõenäosus, et juhusliku suuruse X väärtus on väiksem-võrdne mingist reaalarvust x. Valem: F(x)=P(X<=x) Keskväärtus ehk oodatav väärtus - Kui juhusliku suuruse X väärtuse xi esinemise tõenäosus on pi , siis selle juhusliku suuruse keskväärtus ehk oodatav väärtus. Oodatav väärtus on otsustamisel kriteeriumiks. Valitakse see alternatiiv, mille korral oodatav väärtus on ekstremaalne. Näiteks: oodatav kasum maksimaalne,oodatav kulu minimaalne Valem: µ=E[X]= ∑ pixi Dispersioon – diskreetse juhusliku suuruse dispersioon σ^2=∑(xi-µ)^2*pi Pidev juhuslik suurus - Pideva juhusliku suuruse korral ei saa rääkida mingi üksiku konkreetse väärtuse esinemise tõenäosusest

Statistika
61 allalaadimist
thumbnail
10
docx

Tõenäosusteooria harjutusülesanded

Olgu X küsimuste arv, mida tudeng neist teab. Leidke suuruse X jaotusseadus, jaotusfunktsioon F(x) analüütiliselt ja graafiliselt, jaotustihedus f(x), karakteristlik funktsioon g(w), genereeriv funktsioon G(z), keskväärtus E(X) ja dispersioon D(X) ning tabamuste arvud esimesel ja teisel viskel. Leidke standardhälve. suuruste X1 ja X2 ning X genereerivad funktsioonid, Lahendus: X=1,2,3 suuruse X jaotusseadus, F(x) , Gx(z), EX, DX. C13 C 22 /C 35 =3/10 Lahendus: X=X1-X2 p1=P(X=1)= X1+-X2

Tõenäosusteooria ja...
133 allalaadimist
thumbnail
2
doc

TN teooria III kordamisküsimused

Diskreetne juhuslik suurus on määratud, kui on teada tema võimalikud väärtused ja nende väärtuste ilmumise tõenäosused, st. kui on antud jaotustabel. f(xi)=1 Jaotustabel F(x)=P(X1 F(x)= xi keskväärtus ja dispersioon. Keskväärtuse ja dispersiooni omadused. Diskreetse lõpliku arvu väärtustega juhusliku suuruse keskväärtus on summa EX=ni=1xif(xi). (loenduva arvu väärtustega juhusliku suuruse keskväärtus avaldub lõpmatu summana. Keskväärtuse omadused: Olgu X,Y ja X1, X2,...,Xn juhuslikud suurused, siis 1) E(c)=c, kui c on konstant. Tõestus

Tõenäosusteooria ja...
252 allalaadimist
thumbnail
8
docx

Rakendusstatistika kokkuvõte

Seega saab juhuslike suuruste liitumisel tekkivate juhuslike suuruste jaotust vähemalt ligikaudu kirjeldada normaaljaotusega. Ei ole vaja suur liidetavate arvu, lubatav on liidetavate mõningane vastastikune sõltuvus, normaaljaotusega liidetavate summa jaotus on täpselt normaaljaotus, katseandmete analüüsi kogemus paljudes valdkondades on näidanud, et suur enamus katseandmeid on hästi kirjeldatavad normaaljaotusega. Normaaljaotusel on kaks parameetrit, mis on vastava juhusliku suuruse keskväärtus ja standardhälve. Normaaljaotus on sümmeetriline. Normeeritud normaaljaotus on normaaljaotuse erijuhtum, kui keskväärtus ja standardhälve on vastavalt 0 ja 1. Tähistatakse X-N(0,1). K sigma reegel: näitab, kui suur on juhusliku suuruse normaaljaotuse korral tõenäosus sattude piirkonda keskväärtus pluss-miinus k standardhälve. Lognormaalne jaotus tekib, kui vaadeldava juhusliku suuruse logaritm on jaotunud

Rakendusstatistika
296 allalaadimist
thumbnail
1
docx

Tõenäosusteooria ja matemaatiline statistika

võimalikust näitav arv lõigul [0,1], mida tavaliselt Suhtelise sageduse omadused: 1. Sündmuse suhteline tähistatakse P. Võimatu sündmuse V tõenäosus P(V)=0, sagedus on mittenegatiivne. 2. Kindla sündmuse suhteline 17. Binoomjaotusega juhuslik suurus, selle kindla sündmuse K tõenäosus P(K)=1. Ülejäänud sagedus on 1 3. Võimatu sündmuse suhteline sagedus on jaotustabel, keskväärtus (tõestusega) ja dispersioon sündmused on juhuslikud sündmused. (tõestusega) Sündmuse A toimumise arv X kirjeldatud 0 4. Sündmuse A vastandsündmuse suhteline sagedus on 2. Tehted sündmustega

Tõenäosus
117 allalaadimist
thumbnail
34
doc

TÕENÄOSUSTEOORIA

b 1  cdx = 1, millest cb – ca = 1 ja c = a ba . Seega tihedusfunktsioon avaldub kujul:  0, kuix  a  1 f(x) =  , kui a≤x≤b.  ba  0, kuix  a Graafiliselt on ühtlase jaotusega jaotusfunktsioon esitatav kujul: 2.5 Juhusliku suuruse keskväärtus Juhuslik suurus on täielikult iseloomustatud tema jaotus- või tihedusfunktsiooniga. Lisaks kasutatakse aga juhuslike suuruste mitmete oluliste külgede esiletoomiseks täiendavalt arvkarakteristikuid. Üks olulisemaid on keskväärtus, mille ümbergrupeeruvad juhusliku suuruse võimalikud väärtused. Diskreetse juhusliku suuruse keskväärtus ehk matemaatiline ootus n avaldub kujul: EX = x i 1 i pi .

Tõenäosus
46 allalaadimist
thumbnail
3
docx

Tõenäosus

juhusliku suuruse kõikvõimalikud väärtused ja nende omandamise tõenäosused. 14. Juhusliku suuruse keskväärtuse ja dispersiooni omadused. Juhusliku suuruse keskväärtuseks (matemaatiliseks ootuseks) nimetatakse arvu, mis on määratud eeskirjaga Keskväärtuse omadused: Olgu a ja b suvalised konstandid, siis E(aX+b)= aEX+b. Olgu X ja Y suvalised juhuslikud suurused, siis E(X+Y) = EX+EY. Dispersioon on juhusliku suuruse keskväärtuse suhtes arvutatud hälbe ruudu keskväärtus. See on arv, mis kirjeldab juhusliku suuruse hajutatust tema keskväärtuse suhtes. Dispersiooni omadused: Konstandi dispersioon on null. D(aX + b) = a2DX 15. Binoom-, Poissoni-, ühtlase- ja normaaljaotuse keskväärtused ja dispersioonid. Katsetes esineb kahesuse element, kus tulemuseks on soodsatest sündmustest moodustuv diskreetne tõenäosusjaotus, mida nim binoomjaotuseks . Keskväärtus ja dispersioon

Tõenäosusteooria
145 allalaadimist
thumbnail
20
doc

RAKENDUSLIK SÜSTEEMITEOORIA 2012

Tõenäosus, et juhuslik suurus satub vahemikku x...x+x: p(x < X < x+x) = F(x+x) ­ F(x). Jagame selle tõenäosuse vahemiku pikkusega x ja ja lähendame x nullile. Jaotusfunktsiooni tuletist nimetatakse jaotustiheduseks ja tähistatakse f(x). Juhusliku suuruse mingisse vahemikku sattumise tõenäosus leitakse f(x) abil nii: p( < X < ) = f(x)dx Juhuslikue suuruste arvkarakteristikud: Asendikarakteristikud : matemaatiline ootus ehk keskväärtus diskreetsel suurusel: mx=E[X] = M[X] = i=1nxipi pideval suurusel : E[X] = -x*f(x)dx Keskväärtus ja mood ; Mediaan ­ juhusliku suuruse mediaan on tema väärtus Me, mille puhul p(X Me), st et ühesugune tõenäosus on sellel, kas juhuslik suurus osutub suuremaks või väiksemaks kui Me. Momendid: Algmoment diskreetsel suurusel: x,s=s[X]=i=1nxispi pideval suurusel: s[X] = -xs*f(x)dx Keskmoment (tsentraal ­ ehk tsentraalne moment)

Süsteemiteooria
146 allalaadimist
thumbnail
7
doc

Rakendusstatistika eksamiküsimused

x. F(x) = P(Xx). P(x´ X x´´) = F(x´´) - F(x´); 0 F(x) 1; F(x1) F(x2) 6. Tõenäosuse tihedusfunktsioon f(x) ja tema põhiomadused. f(x) = lim P(xXx+x) / x; F(x) = f(x) dx x0 f(x) 0; f ( x ) dx 1 7. Binomiaalne jaotus. PXn =m= Cmn pmqn-m , kus P( F) = 1- p = q ja m = 0, 1, ...., n Sündmuste järgnevus ei= A F A F A, tagasipanekuga skeem 8. Hüpergeomeetriline jaotus PN,M n, m = CmM Cn-mN-M / CnN. Tagasipanekuta skeem 9. Poisson jaotus Pt(X=x) = (axe-a) / x! = fP(x,a) 10. Ühtlane (ristkülik) jaotus f(x) = 1/(b-a)}, kui a x b 11. Normaaljaotus. Normeeritud normaaljaotus 1 1 e x a ; a 0; 1 2 / 2 2 2 f ( x) ( x) ex /2 2 2 12

Rakendusstatistika
13 allalaadimist
thumbnail
4
docx

Tõenäosusteooria

Binoomjaotusega juhusliku suuruse esinevad üksteisest sõltumatult (st P(I on rikkis ja II töötab) = 0,9 * 0,95 + dispersioon on:DX´=pq 5. Poissoni sisuliselt eeldame, et rikaste protsent nii 0,1 * 0,8 = 0,935 jaotusega juhusliku suuruse keskväärtus on:EX=lamda6. Ühtlase hea tervisega kui ka halva tervisega N'ide21. Urnis on 5 punast 3 sinist ja 2 jaotusega juhusliku suuruse dispersioon on: kodanike hulgas on ühesugune). Leida rohelist kuulikest. Urnist võetakse DX=(b-a)*(b-a)/12 tõenäosus, et juhuslikult valitud kodanik üksteise järel kolm kuulikest. Milline on Tõenäosuse geomeetriline tähendus

Tõenäosusteooria
211 allalaadimist
thumbnail
14
docx

Tõenäosusteooria ja Matemaatilise Statistika Kodutöö

Simuleerimine X Olgu meil juhuslik vektor X =( ) Y . Juhuslikud suurused X ja Y on antud juhul tunnused, mis koosnevad 40 objektist. Tunnused X ja Y olgu alljärgnevad: μ,σ X ~ μ lahendaja vanusega aastates ja standardhälve σ = N ¿ ) , kus keskväärtus 2∗lahendaja kinganumber 10 ning Y = aX+U, kus konstant a võrdub lahendaja kinga 0, σ numbriga ning U N ¿ ), kus σ =2∗(lahendaja vanus aastates ) . Ülesanne 1) Leidke lineaarne korrelatsioonikordaja corr(X,Y). 2) Leidke juhuslike suuruste X+Y keskväärtusele 0.95 usaldusintervall. Mis on selle intervalli suurim ja vähim väärtus? Lahendus Ülesanne on lahendatud MS Exceli abil. Lahendaja andmed: X ~ N (21;8

Tõenäosusteooria ja...
161 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kapa Χ χ  hii Λ λ  lambda Ψ ψ  psii Μ μ  müü Ω ω  oomega 4 1. ARITMEETIKA 1.1 Mõningate arvude kõrgemad astmed 24  16 29  512 34  81 44  256 64  1296

Algebra I
60 allalaadimist
thumbnail
5
docx

Põhimõisted rakendusstatistika eksamiks

pöördseoseid. Suurima tõepära meetod: Meetodi aluseks on põhimõte leida sellised jaotuse parameetrite väärtused, et antud konkreetse valimi jaoks oleks suurim just nimelt selle valimi saamise tõenäosus. Vähimruutude meetod: Vähimruutude meetod on tavalisim meetod erinevate juhuslike suuruste seosemudelite parameetrite leidmisel (nt regressioonanalüüsis). Nullhüpotees- kontrollitav väide Alternatiivhüpotees- nullhüpoteesi välistav alternatiivne väide Statistiline hüpotees tekib tavaliselt mingi vaadeldava juhusliku suuruse kohta käiva väite (oletuse, hüpoteesi, ...) formaliseerimisel. esimest liiki viga tekib, kui H0 on õige, ent kontrollil loetakse õigeks (võetakse vastu) H1 (sellise vea tõenäosust tähistatakse ); teist liiki viga tekib, kui H0 pole õige, ent kontrollil loetakse H0 õigeks (võetakse vastu) (sellise vea tõenäosust tähistatakse ). Hüpoteeside kontrolli tavapärased sammud on järgmised:

Rakendusstatistika
539 allalaadimist
thumbnail
20
docx

Tõenäosusteooria ja statistika

1. Üldkogum – ehk populatsiooni all mõeldakse kõiki juhtumeid või situatsioone, mille kohta uurijad soovivad, et nende poolt saadud järeldused või prognoosid kehtiksid. Valim – liikmed tuleb valida juhuslikult, st igal üldkogumi liikmel peab olema võrdne võimalus saada valitud valimisse. Valimimaht – Valimisse valitavate objektide arv. Tunnuste- all mõistetakse liikmeid kirjeldavaid erinevaid omadusi. 2. Statistilise uurimistöö etapid. Mingi probleemi statistilise uurimisel läbitakse 4 tööetappi:  Uuringu ettevalmistamine  Statistiline vaatlus või eksperiment  Vaatlusandmete kokkuvõtte ja esialgne töötlemine

Tõenäosusteooria ja...
154 allalaadimist
thumbnail
46
docx

AGT 1 rakendusstatistika

RAKENDUSSTATISTIKA ARVUTUSGRAAFILINE TÖÖ Osa A 1. Valim mahuga N = 25 jrk ni xi ni * xi ni * 2088, 1 1 2 2 2089,25 49 1909, 2 1 4 4 1910,42 69 1656, 3 1 7 7 1657,17 49 1576, 4 1 8 8 1576,75 09

Rakendusstatistika
33 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

LTMS.00.022 ÜHE MUUTUJA MATEMAATILINE ANALÜÜS Loengukursus Tartu Ülikooli loodus- ja täppisteaduste valdkonna üliõpilastele 2019./2020. õppeaasta Toivo Leiger Joonised: Ksenia Niglas Pisitäiendused 2016–20: Märt Põldvere, Natalia Saealle, Indrek Zolk, Urve Kangro 2 Sisukord 1 Reaalarvud 6 1.1 Järjestatud korpused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.1 Korpuse aksioomid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2 Järjestatud korpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.3 Täielik järjestatud korpus . . . . . . . . . . . . .

Algebra I
8 allalaadimist
thumbnail
8
doc

Kõrgema matemaatika kordamisküsimused ja vastused

(protsentides) 43. Piirteoreemide ja suurte arvude seaduste olemus. Oluliselt lihtsustades võib öelda, et nn. piirteoreemid ja nende üks eriliik, suurte arvude x seadused väidavad, et katsete arvu (lõpmatul) kasvamisel lähenevad mõõtmistulemuste jaotused ja arvkarakteristikud teatud teoreetilistele jaotustele ja väärtustele. 44. Üldkogum ja valim. Üldkogum (populatsioon) on kõikide meid huvitavate nähtuste või objektide kogum. Näiteks kõik Võrtsjärves elavad angerjad, kõik teatud katseklaasis olevad bakterid jne. Valim on antud üldkogumist teatud viisil eraldatud objektide kogum (üldkogumi osahulk, statistiline kogum). NB! Selleks, et valimi uurimise alusel teha tõepäraseid järeldusi üldkogumi kohta, peab valimi moodustamisel üldkogumi igal elemendil olema võrdne võimalus (tõenäosus) valimisse sattuda.

Matemaatika
241 allalaadimist
thumbnail
42
docx

Rakendusstatistika arvestusharjutus AGT1 parandatud

Rakendusstatistika arvestusharjutus AGT-1 (Andmete kood: 38 42 36) OSA A 1. Leida keskväärtuse, dispersiooni, standarthälbe, mediaani ja haarde hinnangud Keskväärtus N 1 ´x = N ∑ xi i=1 ´x =53,24 Dispersioon N 1 s x 2= ∑ N−1 i=1 ( x i−´x )2 s x 2 =705,69 Standardhäve s x =√ s x 2 s x =26,56 Mediaan Me=51 Haare R = xmax – xmin = 94 – 9 = 85 2

Rakendusstatistika
66 allalaadimist
thumbnail
15
doc

Tõenäosusteooria

juhusliku suuruse võimalikud väärtused ja nende tõenäosused pi=P(X=xi). Tõenäosusfunktsiooni võib esitada valemina, tabelina, arvupaaridena või graafikuna. Def: Juhusliku suuruse jaotusfunktsiooniks nimetame funktsiooni, mis seab väärtusele x vastavusse tõenäosuse, et X keskväärtus defineeritakse valemiga EX = E ( X ) = pi xi , kus xi tähistab DJS i =1 X väärtust ja pi selle väärtuse tõenäosust. DJS keskväärtus on juhusest sõltumatu suurus. Keskväärtus paikneb DJS väikseima ja suurima väärtuse vahel. 8 DJS dispersiooniks nimetame tema hälbe (keskväärtuse suhtes) ruudu keskväärtust k DX = D ( X ) = E ( X - EX ) 2 . D ( X ) = p

Matemaatika ja statistika
410 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I 1. kollokvium

1* Normi ka kauguse Def. 1o puudu ||f||∞ = sup|f(x)|(x∈X) 5*(Jada definitsioon. Koonduvad jadad , jada piirväärtus. Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile u ∈V Koonduva jada piirväärtuse omadused + tõestus) piirväärtuse ühesuse tõestus.jada Jadaks nimetatakse funktsiooni, mille määramispiirkonnaks on naturaalarvude hulk N seab vastavusse skalaari ¿∨u∨¿ ∈ R , kusjuures on täidetud

Matemaatiline analüüs 1
40 allalaadimist
thumbnail
70
docx

Ökonomeetria kontrolltöö kordamisküsimused 2020

● Juhuslik komponent ehk vealiige (u). 2. Andmetüübid. Ökonomeetriline mudel baseerub arvandmetel: ● Ristandmed (cross-sectional) ● Aegread (time series) ● Paneelandmed (panel data) Andmed saavad olla kas ● Kvalitatiivsed (ei saa mõõta arvudega, nt haridustase) ● Kvantitatiivsed (mõõdetakse arvudega, nt vanus) 3. Valimvaatlused ja parameetri hinnangu mõiste. ● Uuritav objekt on üldkogum ● Andmebaas on üldjuhul valim Järeldusi soovime teha üldkogumi kohta, selleks kasutame valimit. Valimi parameetrite põhjal leitakse üldkogumi parameetrite hinnangud. Valimi põhjal leiame mudeli parameetrite hinnangud. Valim on juhuvalim => hinnang on juhuslik suurus. 4. Punkthinnang, intervallhinnang. Punkthinnang (point estimate) on statistik, mis annab parameetrile ühese väärtuse. Näiteks valimi aritmeetiline keskmine on punkthinnang kogumi keskväärtusele.

Ökonomeetria
52 allalaadimist
thumbnail
44
docx

Rakendusstatistika arvutusgraafiline töö 1 AGT-1

5 100 2,005 3 0,9772 0,0775 1,9375 0,5827 kokku 25 24,43 2,1543 χ 2=2,1543 χ 2 vabadusastmete arv k = m – 1 – r = 5 – 1 – 2 = 2. (r = 2, sest normaaljaotusel on kaks parameetrit) 2 χ kr ( 0,10 ; 2 )=4,605 Et hüpotees vastu võetaks peab χ²kr > χ², antud juhul 4,605 >2,1543, seega hüpoteesi võib vastu võtta ning järeldada, et tegemist on normaaljaotusega. 4.2 Põhikogumi jaotuseks on ühtlane jaotus fikseeritud parameetritega a = 0, b = 100. 2 k ( ni−n'i ) χ =∑ 2 i=1 n'i n'i=n∙ [( ) ( x m −a b−a x −a − m−1

Rakendusstatistika
5 allalaadimist
thumbnail
8
pdf

Matemaatiline analüüs II 2. kollokviumi spikker

1. Mitmemuutuja funktsiooni lokaalsete ekstreemumite mõisted. Statsionaarne punkt. Kriitiline punkt. piirkonna D rajajoon. Eeldame, et piirkonnas D on täidetud tingimus f(x,y)>=g(x,y). Kahekordse integraali 𝑥 = 𝜌 𝑐𝑜𝑠𝜑 Mitmemuutuja funktsiooni lokaalse ekstreemumi tarvilik tingimus. Definitsioon 1. Öeldakse, et kahe omaduse tõttu ∬𝐷[𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)]𝑑𝑥𝑑𝑦 = ∬𝐷 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 − ∬𝐷 𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦. Mõlemad kahekordsed 𝑦 = 𝜌 𝑠𝑖𝑛𝜑 muutuja funktsioonil on punktis P1(x1, y1) lokaalne maksimum, kui sellel punktil leidub niisugune ümbrus tei

Matemaatiline analüüs 2
68 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

C kompleksarvud n! faktoriaal 1 · 2 · · · n 2 0.2. 0.2 Kreeka tähestik alfa beeta , gamma , delta , epsilon dzeeta eeta , teeta i ioota kapa , lambda µ müü nüü , ksii o omikron , pii , roo , sigma tau , üpsilon , , fii hii , psii , oomega 3 PEATÜKK 0. TÄHISTUSED. REAALARVUD 0.3 Reaalarvud Definitsioon 0.1 Tähistame sümboliga N kõigi naturaalarvude hulka, N = {1, 2, 3, . . . } ja sümboliga Z kõigi täisarvude hulka Z = {. . . , -3, -2, -1, 0, 1, 2, 3, . . . }.

Kõrgem matemaatika
94 allalaadimist
thumbnail
10
pdf

ÖKONOMEETRIA loegn 1

· Mõõteskaalad, keskmised (aritmeetiline, mediaan, mood), · Põhiõpik varieerumine. ­ Gujarati, D., Basic Econometrics · Tõenäosus p(A), tinglik tõenäosus p(A|B). · 3. trükk, TTÜ raamatukogus 20 eks · Keskväärtus E(x), dispersioon 2 (x), var(x). · 4. trükk, võimalik leida pdf fail · Jaotusseadused: normaaljaotus, t-jaotus, F-jaotus, 2 ­ jaotus. · Täiendav kirjandus ­ Paas, T. Sissejuhatus ökonomeetriasse. Tartu, 1995. · Valimvaatlused, usalduspiirid. (TTÜ rmtk momendil saadaval 18 eks)

Ökonomeetria
14 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega 4 1. ARITMEETIKA 1.1 Mõningate arvude kõrgemad astmed 24 = 16 29 = 512 34 = 81 44 = 256 64 = 1296

Matemaatika
1099 allalaadimist
thumbnail
54
pdf

Elektrimõõtmiste konspekt

Mõõtetulemus on reaalse katse tulemus. Mõõtetulemuste kogum annab informatsiooni mõõdetud suuruse võimalike väärtuste tõenäosuslikust jaotusest. Sellises käsitluses on mõõteväärtus nagu koordinaat, millega pannakse paika mõõtetulemusele omistatavate väärtuste kese arvteljel. Hinnatava füüsikalise suuruse iseloomustamiseks võime enamasti kasutada aritmeetilist keskväärtust. Oletame et me mõõtsime suuruse X väärtuse n korda, siis aritmeetiline keskväärtus avaldub valemiga 13 Mõõtmisteooria alused n xi x1 x2 xn i 1 x ,

Elektrimõõtmised
65 allalaadimist
thumbnail
96
pdf

ALGEBRA JA GEOMEETRIA

¨ TARTU ULIKOOL MATEMAATIKA-INFORMAATIKA TEADUSKOND Puhta matemaatika instituut Aivo Parring ALGEBRA JA GEOMEETRIA Tartu 2005 SISSEJUHATUS K¨aesolevate m¨arkmete j¨arele tekkis vajadus 2000/01 ˜oppeaastal, kui muudeti tollase matemaatikateaduskonna ˜oppekavasid. Selle tulemusena l¨ ulitati ˜oppekavasse algebra ja anal¨ uu¨tilise geomeetria sissejuhatavaid pea- t¨ukke k¨asitlev aine ”Algebra ja geomeetria”. Vahepeal on elu edasi l¨ainud. Matemaatikateaduskonnast on juba saanud matemaatika-informaatikatea- duskond. Nelja-aastasest bakalaureuse ˜oppest on saamas kolmeaastane bakalaureuse ˜ope. Uue ˜oppekava kohaselt on selle ˜oppeaine maht n¨ uu ¨d 40 tundi loenguid ja sama palju harjutusi

Algebra ja geomeetria
19 allalaadimist
thumbnail
38
docx

Rakendusstatistika AGT-1

(Eeldades üldkogumi normaaljaotust ning võttes olulisuse nivooks α = 0,1) 3.1 H 0 : μ=50 alternatiiviga H 1 : μ ≠ 50 t statistik = |√N ´ s || 25 28,53 | ( x −μ0 ) = √ ( 44,84−50 ) =|−0,9043|≈|−0,90| Studenti funtktsioon: t(0,1;24) = 1,7109 Hüpotees vastab tõele, kuna |t|>t 1−∝ /2 (f ) ja |−0,90| < 1,7109 H0 hüpotees vastu võetud. 2 2 3.2 H 0 : σ =800 alternatiiviga H 0 : σ ≠ 800 s2 ( 2 28,532 χ = 2 N −1 = ) ∙ 24=24,42 χ2 statistiku vasak kriitiline piir: σ0 800 χ 21−∝/2=chiinv ( 0,95 ; 24 )=13,8 χ2 statistiku parem kriitiline piir: χ 2∝/2 =chiinv ( 0,05; 24 )=36,4 Kriitiline piirkond χ2 < 13,848 , χ2 > 36,415

Rakendusstatistika
10 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun