Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Mehaanika eksam - sarnased materjalid

fres, aksioom, jõupaar, moodul, teoreem, punktmass, masspunkt, jõusüsteem, resultandi, summaga, projektsioon, poolus, resultant, pooluse, impulss, vektorid, inertsmoment, projektsioonid, tasandis, peavektor, taustsüsteem, trajektoor, inertsjõud, alembert, asendada, vektorit, momentide, teljel, nurkkiirus, tsenter, liikumishulga, sisejõud, koordinaat
thumbnail
45
doc

Teooriaküsimused ja vastused

Kordamisküsimused Staatika, kinemaatika ja dünaamika 1. Mida nimetatakse jõuks? Jõud on vektoriaalne suurus, mis väljendab ühe materjaalse keha mehaanikalist toimet teisele kehale ja mille tulemuseks on kehade liikumise muutus või keha osakeste vastastikuse asendi muutus ehk deformatsioon. Jõu iseloomustamiseks peab tal olema rakenduspunkt, suund ja moodul. 2. Mis on jõu mõjusirge? Jõu mõjusirge on sirge, mille peal jõu vektor asetseb. 3. Mida nimetatakse absoluutselt jäigaks kehaks? Absoluutselt jäigaks kehaks nimetatakse sellist keha, mille mis tahes kahe punkti vaheline kaugus jääb alati muutumatuks. 4. Millal võib kahte jõusüsteemi nimetada ekvivalentseteks?' Kahte jõusüsteemi võib nimetada ekvivalentseks, kui ühe jõusüsteemi võib asendada teisega nii, et keha liikumises või paigalseisus midagi ei muutu. 5

Insenerimehaanika
358 allalaadimist
thumbnail
22
doc

Staatika, kinemaatika ja dünaamika

16. Kuhu on suunatud reaktsioonjõud sfäärilise liigendi korral ruumis? Sfäärilise liigendi reaktsioonil võib olla ruumis mistahes suund. 17. Kuidas tuleb joonisele märkida sideme reaktsioonid juhul kui tala on seina müüritud? Talaga risti seina suunas. 18. Kuidas tuleb joonisele märkida sideme reaktsioonid sfäärilise liigendi korral ruumis? S 19. Kuidas tuleb joonisele märkida sideme reaktsioonid silindrilise liigendi korral ruumis? S 20. Sõnastada staatika I aksioom (tasakaalu aksioom). Jäigale kehale rakendatud jõud on tasakaalus siis ja ainult siis, kui need jõud on moodulilt võrdsed, suunalt vastupidised ning nende mõjusirged kattuvad. 21. Sõnastada staatika II aksioom (superpositsiooni aksioom). Jõusüsteemi mõju jäigale kehale ei muutu, kui sinna lisada või ära võtta tasakaalus jõusüsteem. 22. Millise järelduse võib teha staatika esimesest ja teisest aksioomist?

Insenerigraafika
69 allalaadimist
thumbnail
22
doc

Eksamiküsimused

16. Kuhu on suunatud reaktsioonjõud sfäärilise liigendi korral ruumis? Sfäärilise liigendi reaktsioonil võib olla ruumis mistahes suund. 17. Kuidas tuleb joonisele märkida sideme reaktsioonid juhul kui tala on seina müüritud? Talaga risti seina suunas. 18. Kuidas tuleb joonisele märkida sideme reaktsioonid sfäärilise liigendi korral ruumis? S 19. Kuidas tuleb joonisele märkida sideme reaktsioonid silindrilise liigendi korral ruumis? S 20. Sõnastada staatika I aksioom (tasakaalu aksioom). Jäigale kehale rakendatud jõud on tasakaalus siis ja ainult siis, kui need jõud on moodulilt võrdsed, suunalt vastupidised ning nende mõjusirged kattuvad. 21. Sõnastada staatika II aksioom (superpositsiooni aksioom). Jõusüsteemi mõju jäigale kehale ei muutu, kui sinna lisada või ära võtta tasakaalus jõusüsteem. 22. Millise järelduse võib teha staatika esimesest ja teisest aksioomist?

Insenerimehaanika
216 allalaadimist
thumbnail
9
docx

Insenerimehaanika eksami küsimuste vastused

SI-süsteem kasutab 7 füüsikalist suurust põhisuurustena (põhiühikud), ülejäänud ühikud tuletatud. *põhiühikud mehaanikas: a) Pikkus [L] =m b) Mass [M]= kg c) Aeg [T]= s d) Jõud [F]= kg*m/s2 , Njuuton on jõud, mis kehale massiga 1kg annab kiirenduse 1 m/s2. 3. Jõud (moodul, mõjusuund, rakenduspunkt). Jõud - DEF: Suurust, mis on kehade vastastikuse toime mõõduks, nimetatakse jõuks. Jõud on vektoriaalne suurus, tal on a) moodul b) mõjusuund c) rakenduspunkt * Kahte jõudu loeme samaväärseiks ainult siis, kui neil on sama tugevus (moodul), mõjusuund ja rakenduspunkt. 4. Staatika aksioomid: a) Tasakaalu aksioom - Kaks absoluutselt jäigale kehale rakendatud jõudu on tasakaalus siis ja ainult siis, kui nad on võrdvastupidised ja mõjuvad piki sama sirget. b) Superpositsiooni aksioom - Tasakaalus olevate jõudude lisamine või ärajätmine ei mõjuta jäiga keha tasakaalu või liikumist.

Insenerimehaanika
123 allalaadimist
thumbnail
3
docx

Tehniline mehaanika I

Jõud- suurus, mis on kehade vastastikuse mõju mõõduks. Tähis F, ühik njuuton N. Kirjeldamiseks on vaja anda tema rakenduspunkt, suund ,moodul . Rakenduspunkt ja suund koos määravad jõu mõjusirge. Ekvivalentsed ehk samaväärsed on need jõud, millel on sama rakenduspunkt, suund ja moodul. Jõusüsteemi moodustavad mitu ühele ja samale kehale rakendatavat jõudu. Kui üht jõusüsteemi saab asendada teisega, ilma et keha seisund muutuks, siis on tegemist ekvivalentse jõusüsteemiga. Kui jõusüsteemiga on ekvivalentne ainult üks jõud , siis nimetatakse seda jõudu resultandiks Fres, mida on võimalik leida näiteks rööpkülikuaksioomi korduval kasutamisel.. Tasakaalu all mõistetakse mehaanikas keha paigalseisu teiste kehade suhtes.

Tehniline mehaanika
399 allalaadimist
thumbnail
8
doc

Kordamisküsimused: Staatika ja Kinemaatika

Punkti, kus tala seinast väljub, märgitakse x-ja y-telje sihilised komponendid ja moment, mis takistab tala pöörlemist. · Kuidas tuleb joonisele märkida sideme reaktsioonid sfäärilise liigendi korral ruumis? Kõigi kolme koordinaattelje suunas. · Kuidas tuleb joonisele märkida sideme reaktsioonid silindrilise liigendi korral ruumis? Sellised sideme reaktsioonid tuleb märkida risti liigendi teljega ja risti omavahel. · Sõnastada staatika I aksioom (tasakaalu aksioom). Kaks absoluutselt jäigale kehale mõjuvat jõudu on tasakaalus siis ja ainult siis, kui nende mõjusirge ühtib, suund on täpselt vastupidine ja nende moodulid on võrdsed. F 1= ­F2 (vektorite puhul) F1=F2 (jõudude moodulite puhul) · Sõnastada staatika II aksioom (superpositsiooni aksioom). Jõusüsteemi mõju jäigale kehale ei muutu, kui sinna lisada või ära võtta tasakaalus jõusüsteem.

Staatika kinemaatika
281 allalaadimist
thumbnail
9
doc

Eksamiküsimuste(staatika) vastused

alati vastupidine sellele suunale, kus liikumine on takistatud. 13.Kuhu on suunatud sideme reaktsioonjõud? sideme reaktsiooni suund - on alati vastupidine sellele suunale, kuhu side ei luba kehal liikuda 14.Kuhu on suunatud reaktsioonjõud sfäärilise liigendi korral ruumis? sfäärilise liigendi korral - on reaktsioonijõud ruumis mistahes suunaline 15.Kuidas tuleb joonisele märkida sideme reaktsioonid juhul kui tala on seina müüritud? joonis 16.Sõnastada staatika I aksioom (tasakaalu aksioom). Kaks absoluutselt jäigale kehale rakendatud jõudu on tasakaalus siis ja ainult siis, kui nad on võrdvastupidised ja mõjuvad piki sama sirget. 17.Sõnastada staatika II aksioom (superpositsiooni aksioom). Tasakaalus olevate jõudude lisamine või ärajätmine ei mõjuta jäiga keha tasakaalu või liikumist. 18.Millise järelduse võib teha staatika esimesest ja teisest aksioomist?

Insenerimehaanika
118 allalaadimist
thumbnail
14
doc

Dünaamika eksamiküsimuste vastused

Kordamisküsimused Dünaamika eksamiks 1. Sõnastada dünaamika I aksioom. I aksioom. Inertsiseadus. Punktmass, millele ei mõju jõudusid, säilitab oma paigalseisu või ühtlase sirgjoonelise liikumise seni, kuni talle rakendatud jõud ei sunni teda seda olekut muutma. Masspunkti kiirendus erineb nullist ainult siis, kui sellele punktile on rakendatud mingi jõud. 2. Sõnastada dünaamika II aksioom. Kirjutada ka valem. II aksioom. Dünaamika põhiseadus. Punktmassi kiirendus on mõjuva jõuga võrdeline ja samasuunaline, võrde-teguriks on punkti mass. F= ma (P=mg) 3. Sõnastada dünaamika III aksioom. III aksioom. Mõju ja vastumõju seadus. Kaks masspunkti mõjuvad teineteisele jõududega, mis on moodulilt võrdsed ja suunalt vastupidised, nende mõjusirged kattuvad. F1 = F2 ning F1=- F2 Seejuures tuleb silmas pidada seda, et need jõud on rakendatud erinevatele kehadele 4

Dünaamika
278 allalaadimist
thumbnail
2
docx

Rakendusmehaanika konspekt

2. Tasakaaluaksioom: Tasakaaluaksioom. Kaks absoluutselt jäigale kehale rakendatud jõudu on tasakaalus siis ja ainult siis, kui nad on samal sirgel ja võrdvastupidised. 3. Superpositsiooniaksioom Tasakaalus olevate jõusüsteemide lisamine või eemaldamine ei mõjuta jäiga keha tasakaalu või liikumist. Ei kehti deformeeruva keha juhul (miks?). Järeldus: jäiga keha tasakaal ei muutu, kui kanda jõu rakenduspunkt piki mõjusirget üle keha mistahes teise punkti. 4. Jõurööpküliku aksioom: Kui keha mingis punktis on rakendatud kaks jõudu, siis neid saab keha seisundit muutmata asendada resultandiga, mis võrdub nende geomeetrilise summaga. Aksioom kehtib ka deformeeruva keha juhul. 5. Mõju ja vastumõju aksioom: Kaks keha mõjutavad teineteist võrdvastupidiste jõududega, millel on ühine mõjusirge. 6. Koonduv jõusüsteem: Koonduvaks nimetatakse jõusüsteemi, mille jõudude mõjusirged lõikuvad ühes punktis

Füüsika
228 allalaadimist
thumbnail
3
doc

Kt. materjal 2

Koonduv jõusüsteem, Koonduvaks nimetatakse jõusüsteemi, mille jõudude mõjusirged lõikuvad ühes punktis. Ülesannete lahendamiseks tuleb süsteem taandad lihtsamale kujule ja leida tasakaalutingimused. Taandamise aluseks on teoreem: koonduv jõusüsteem on ekvivalentne resultandiga, mis läbib jõudude mõjusirgete lõikepunkti. Superpositsiooniaksioomi järeldusena võib jõusüsteemis olevad jõud üle kanda nenede mõjusirgete lõikepunkti ja seejärel jõurööpküliku abil asendada nendega ekvivalentse resultandiga Fres. Võib ka joonestada jõukolmnurga (joon2), kus liidetavad jõud kujutatakse teineteise järel, resultant on suunatud esimese vektori algusest teise lõppu.

Tehniline mehaanika
252 allalaadimist
thumbnail
3
doc

Füüsika eksami spikker

võrdub suuruselt ja suunalt antud jõududele ehitatud rööptahuka diagonaaliga. Telje suhtes võetud jõumoment: jõu momendiks P telje z suhtes nim telje risttasapinnale võetud jõu projektsiooni ja õla korrutist, võetuna + vüi ­ märgiga. Jõu moment võrdub nulliga kui 1) jõud P on teljega paralleelne, sest sii on jõu projektsioon telje risttasapinnale võrdne nulliga 2)kui jõu mõjusirge lõikub teljega, sest ülg on võrdne 0. Paralleeljõudude tasakaaluv: Z=0 X=0 Y=0 Varignoni teoreem: kui js taandub resultandiks, siis selle resultandi moment mingi telje suhtes võrdub süsteemi kõigi jõudude momentide algebralise summaga sama telje suhtes. Paralleeljõudede kese: punkti C nim parall keskmeks. Parall keskmel on omadus, et kui pöörata ühes suunas kõigi jõudude mõjusirgeid õudude rakenduspunktide ümber ühe ja sama nurga võrra siis resultandi mõjusirge pöördub paralleeljõudude keskme ümber sama nurga võrra.10. jäiga keha raskuskeskme koordinaatide

Füüsika
188 allalaadimist
thumbnail
5
docx

Teoreetilise mehaanika eksamiküsimused

7. Jõu moment telje suhtes Jõu moment telje suhtes on skalaarne suurus, mis on võrdne selle telje mistahes punkti suhtes võetud momendi projektsiooniga sellel teljel. Jõu moment telje suhtes on skalaarne suurus, mis on võrdne selle teljega ristuval tasapinnal võetud jõu projektsiooni momendi mooduliga tasapinna ja telje lõikepunkti suhtes võetava vastava märgiga. Jõu moment telje suhtes on võrdne nulliga, kui jõu mõjusirge on teljega paralleelne. 8. Varignoni teoreem resultandi momendi kohta telje suhtes Kui jõusüsteem taandub resultandiks, siis selle resultantne moment mingi telje suhtes on võrdne süsteemi kõikide jõudude momentide algebralise summaga sama telje suhtes. Mx(F)=sigma i=1...n Mxi jne 9. Veerehõõrdejõud ja veerehõõrdemoment Horisontaalsele pinnale asetatud silindri veeretamiseks peame rakendama rõhtsuunalist jõudu. Silindri poolt temale veeretamiseks avaldatud takistust nim veerehõõrdeks. Veerehõõrde

Abimehanismid
162 allalaadimist
thumbnail
6
doc

Rakendusmehhaanika

Staatika aktsioomid: a) Tasakaalu aktsioom-kehale,millele mõjuvad kaks jõudu on tasakaalus parajasti siis,kui need jõud mõjuvad ühel sirgel ja on võrdvastupidised. b) Ekvivalentsuse aktsioom-tasakaalus oleva süsteemi lisamine või eemaldamine ei muuda jõusüsteem olekut. c) Jõurööpkülik-Keha seisundit muutmata võib kaks tema mingis punktis rakendatud Jõudu asendada resultandiga, mis võrdub jõudude geomeetrilise summaga. d) Mõju ja vastumõju aksioom ehk Newtoni III seadus-kaks keha mõjutavad üksteist jõududega,mis on vastupidised samal sirgel. 6. Seose mõiste ja liigid (sile pind, niit, varras, silindriline sarniir). Keha, mille liikumist takistavad teised kehad, on seotud ehk mittevaba keha. Igasugust liikumise tõket on tavaks nimetada sidemeks ehk seoseks. Jäik keha hõõrdevabal pinnal, sile pind ­ keha ja pinna kontaktpunkt saab mööda pinda vabalt

Füüsika loodus- ja...
55 allalaadimist
thumbnail
8
docx

Teoreetiline mehaanika

Jõu moment punkti suhtes võrdub nulliga kui jõu mõjusirge läbib momentide tsentrit ses siis õlg sõrduks nulliga. Jõu moment telje suhtes ­ jõu momendiks telje suhtes nim telje risttasapinnale võetud jõu prjekstsiooni ja õla korrutist võetuna pluss või miinumärgiga. Pluss märk võetakse sel juhul kui vaatleja silmitsedes tasapinda telje pos suunast näeb jõu proj. pöörlevana telje ümber päripäeva; miinus märk võetakse juhul kui on näha pöörlemine vastupäeva. Varignoni teoreem resultantide momendi kohta telje suhtes ­ kui jõusüsteem taandub resultandiks siis selle resultandi moment mingi telje suhtes võrdub süsteemi kõigi jõudude momentide algebralise summaga sama telje suhtes. veerehõõrdejõu ja veerehõõrdemoment ­ sislindri poolt tema veeretamisele avaldatud takistust nim veerehõõrdeks. Veerehõõrde põhjuseks on asjaolu et veereva keha raskuse all aluspind mõnevõrra deformeerub. Keha alla tekib väike lhk millest see keha tuleb välja tõmmata

Abimehanismid
35 allalaadimist
thumbnail
4
docx

Teoreetiline mehaanika

Jõu moment punkti suhtes võrdub nulliga kui jõu mõjusirge läbib momentide tsentrit ses siis õlg sõrduks nulliga. Jõu moment telje suhtes ­ jõu momendiks telje suhtes nim telje risttasapinnale võetud jõu prjekstsiooni ja õla korrutist võetuna pluss või miinumärgiga. Pluss märk võetakse sel juhul kui vaatleja silmitsedes tasapinda telje pos suunast näeb jõu proj. pöörlevana telje ümber päripäeva; miinus märk võetakse juhul kui on näha pöörlemine vastupäeva. Varignoni teoreem resultantide momendi kohta telje suhtes ­ kui jõusüsteem taandub resultandiks siis selle resultandi moment mingi telje suhtes võrdub süsteemi kõigi jõudude momentide algebralise summaga sama telje suhtes. veerehõõrdejõu ja veerehõõrdemoment ­ sislindri poolt tema veeretamisele avaldatud takistust nim veerehõõrdeks. Veerehõõrde põhjuseks on asjaolu et veereva keha raskuse all aluspind mõnevõrra deformeerub. Keha alla tekib väike lhk millest see keha tuleb välja tõmmata

Teoreetiline mehaanika
768 allalaadimist
thumbnail
18
doc

Insenerimehaanika-Loenguid ja harjutusi dünaamikast

teoses "Loodusfilosoofia matemaatilised alused" (1687) esitas dünaamika kolm põhiseadust ja nende alusel punkti dünaamika süstemaatilise põhikursuse. Samuti kuulub Newtonile ülemaailmse gravitatsiooniseaduse avastamise au. Esimesena kasutas inertsmomendi mõistet üks suurimaid XVII sajandi teadlasi Christian Huygens (1629-1695) seoses uurimustega füüsikalise pendli alalt. Huygensi nimega on seotud ka paralleelsete telgede teoreem, millele tänapäevase kuju andis F. Steiner (1849-1901). Nimetuse "inertsmoment" võttis kasutusele L. Euler (1707-1783), temale võlgneme ka peainertstelgede mõiste (1765). Inertsellipsoidi tõi mehaanikasse L. Poinsot' 1834. aastal. L. Eulerit loetakse jäiga keha mehaanika rajajaks. Ta vaatles esimesena jäika keha koosnevana üliväikestest masspunktidest, mis on omavahel ühendatud liikumatult. Ta esitas esmakordselt

Insenerimehaanika
85 allalaadimist
thumbnail
10
docx

Kordamisküsimused - staatika

Näited: kerge varras, rullikute paar, liigend Kuidas tuleb joonisele märkida sideme reaktsioonid juhul kui tala on seina müüritud (joonis!)? Xa, Ya, M ­ Kahe vektori ja momendiga. Kuidas tuleb joonisele märkida sideme reaktsioonid sfäärilise liigendi korral ruumis (joonis!)? Xa, Ya, Za ­ kolme vektoriga. Kuidas tuleb joonisele märkida sideme reaktsioonid silindrilise liigendi korral ruumis (joonis!)? Xa, Ya ­ kahe vektoriga. Sõnastada staatika I aksioom (tasakaalu aksioom). Kaks absoluutselt jäigale kehale rakendatud jõudu on tasakaalus siis ja ainult siis, kui nad on võrdvastupidised ja mõjuvad piki sama sirget. Sõnastada staatika II aksioom (superpositsiooni aksioom). Tasakaalus olevate jõudude lisamine või ärajätmine ei mõjuta jäiga keha tasakaalu või liikumist. Millise järelduse võib teha staatika esimesest ja teisest aksioomist? Absoluutselt jäigale kehale võib tasakaalus olevaid jõude mis on võrdvastupidised

Lineaaralgebra
32 allalaadimist
thumbnail
7
doc

Teoreetiline mehhaanika

Nende jõudude kogumit nim. jõudude süsteemiks. Jõu suurus määratakse tema võrdlemise jõuga mis on võetud ühikuks. Jõu mõõt ühikuks SI- süsteemis on Njuuton(N). Kaks jõusüsteemi on ekvivalentsed, kui nad mõjuvad kehale ühtviisi. Aksioom- väide mille tõesuses ei kahelda. 1.Tasakaalu aksioom- kaks absoluutselt jäigale kehale rakendatud jõudu on tasakaalus siis ja ainult siis, kui nad on võrdvastupidised ja mõjuvad pikki sama sirget. See aksioom määrab ära lihtsama tasakaalus jõusüsteemi. Keha, millele mõjub üksainus jõud, ei saa olla tasakaalus. See aksioom kehtib absoluutselt jäiga keha korral, sest deformatsiooni korral nihkuvad rakenduspunktid. 2.Superpositsiooni aksioom- tasakaalus olevate jõudude lisamine või ära jätmine ei mõjuta jäiga keha tasakaalu või liikumist. Esimesest ja teisest aksioomist võib järeldada, et jäiga keha tasakaal ja liikumine ei muutu.

Teoreetiline mehaanika
556 allalaadimist
thumbnail
4
pdf

Füüsika põhimõisted

G G dr suurused. Kiirus on punkti kohavektori tuletis aja järgi v = . Kiiruse projektsioonid dt dx dy dz ja moodul v = vx + v y + vz . 2 2 2 avalduvad valemitega v x = , vy = , vz = dt dt dt ds Kiiruse moodul on samuti määratud valemiga v = ja ühtlasel liikumisel lisaks ka dt õige lihtsalt v = s t

Füüsika
100 allalaadimist
thumbnail
15
doc

Jäävusseadused

JÄÄVUSSEADUSED 5.1 Impulss Keha impulsiks ehk liikumishulgaks nimetatakse tema massi ja kiiruse korrutist. p = mv . (5.1) Olgu mingil kehal algselt impulss p 0 . Mõjugu sellele kehale nüüd ajavahemiku t vältel resultantjõud F . Oletame alguses, et see jõud ajas ei muutu. Vastavalt Newtoni teisele seadusele saab keha selle jõu mõjul kiirenduse Fres a= . m (5.2) Siis omandab keha liikumiskiirus väärtuse Fres v = v 0 + at = v 0 + t . m (5.3) Korrutame saadud valemit keha massiga. Impulsi definitsiooni (5.1) arvestades saame p = p 0 + Fres t . (5.4) Seega ­ keha impulss muutub temale mõjuvate jõudude toimel. Impulsi muut on seda suurem, mida suurem resultantjõud mõjub kehale ja mida kauem aega see mõjub.

Füüsika
238 allalaadimist
thumbnail
9
doc

Füüsika I kordamiskonspekt

Kiirus Puntki asukoha ruumis määrab raadiusvektor r. Aja ja raadiusvektori juurdekasvu abil saame r moodustada suhte . Antud juhul sõltuvad vektori moodul ja suund ajavahemiku t t suurusest.. Kui seda vähendada, siis väheneb ka r. St et t nullile lähenemisel nullile läheneb antud suhe teatud piirväärtusele, mida nimetatakse liikumise kiiruseks- r dr v = lim . Kiirust võib määrata ka raadiusvektori tuletisena aja järgi- v = . Kiirus on t 0 t dt

Füüsika
423 allalaadimist
thumbnail
1
doc

Dünaamika

Punktmasside Punktmasside süsteemi liikumisel jääb tema arvestata. Üldjuhul kasutame raskuskeset. Diferentsiaalv-de lahendamisele peab süsteemiline moment mingi punkti O suhtes on meh en konstantseks. Dün seisu kohalt Newtoni I eelnema:1.Peab olema joonis seadmetest, millel võrdne süsteemi kõigi puntide liikumishulkade seadus(inertsiseadus): punktmass on paigal või toimivaid F-e, a-si tahetakse uurida. 2.Peab peale momentide geomeetrilise summaga jätkab ühtlast sirgjoonelist liikumist, kui talle kandma koordinaatteljestiku 3.Kanname peale (Lo=m*vi*ri mõjuvate jõudude resuldant on 0. Punktmassi a kõik aktiivsed F ehk välisF-d 4.Arvutame välja Rööpliikumine Lz=m*vc*h (h-kaugus tsentrist) erineb 0st vaid siis, kui punktmassile on reaktsiooniF-d 5

Abimehanismid
73 allalaadimist
thumbnail
414
pdf

TTÜ üldfüüsika konspekt

3. Punktmassi dünaamika 3.1. Inerts. Newtoni I seadus. Mass. Tihedus. 3.2 Jõu mõiste. Newtoni II ja III seadus 3.3 Inertsijõud 4. Jõudude liigid 4.1 Gravitatsioonijõud 4.1a Esimene kosmiline kiirus. 4.2 Hõõrdejõud 4.2a Keha kaldpinnal püsimise tingimus. 4.2b Liikumine kurvidel 4.3 Elastsusjõud 4.3a Keha kaal 5 JÄÄVUSSEADUSED 5.1 Impulss 5.1a Impulsi jäävuse seadus. 5.1b Masskeskme liikumise teoreem 5.1c Reaktiivliikumine (iseseisvalt) 5.2 Töö, võimsus, kasutegur 5.3 Energia, selle liigid 5.3 Energia jäävuse seadus 5.4 Konservatiivsed jõud. Potentsiaalse energia gradient 5.5 Põrge 5.5a Absoluutselt mitteelastne põrge 5.5b Absoluutselt elastne põrge 6. PÖÖRDLIIKUMISE DÜNAAMIKA 6.1 Jõumoment 6.1a Newtoni III seaduse analoog pöördliikumisel. 6.2 Impulsimoment 6.3 Impulsimomendi jäävuse seadus. 6.4 Inertsimoment 6

Füüsika
178 allalaadimist
thumbnail
10
doc

Füüsika eksamiks

teepikkus võrdne kiirusega ühtlasel sirgliikumisel: V=S/t Ja aja t jooksul läbitud teepikkus on siis vastavalt S=Vt. SI süsteemis on kiiruse mõõtühikuks m/s. 1.1.3.Ühtlaselt muutuv sirgliikumine Olgu t ajavahemik,mille jooksul kiirus muutus V¯,siis kiirendus a¯=lim V¯/t=dV¯/dt ja differentsiaalne kiiruse muut vastavalt dV¯=a¯dt Kui kiirendus on const. ja liikumine sirgjooneline ,siis kiirus,ajahetkel t. Tähistame algkiiruse vastavalt V0¯,siis olgu kiirusvektori moodul: V¯=adt=at Tähistame algkiiruse vastavalt V0,siis kiirus ajahetkel t,ühtlaselt kiireneval liikumisel: V=V0+at Ühtlaselt aeglustuva liikumise puhul on kiiruse muut negatiivne kiirendus ka negatiivne ning kiirus ajahetkel t vastavalt V=V0-at Kuna elementaarne ds¯=V¯dt,siis juhul a=const on teepikkus ühtlaselt muutuval sirgliikumisel S¯=V¯dt=V0¯dt+a¯tdt=V0¯t+at²/2 Juhul V0¯=0 on S=a¯t²/2 1.1.4.Ühtlaselt muutuv ringliikumine

Füüsika
799 allalaadimist
thumbnail
12
docx

Kogu keskkooli füüsikat valdav konspekt

V=S/t Ja aja t jooksul läbitud teepikkus on siis vastavalt S=Vt. SI süsteemis on kiiruse mõõtühikuks m/s. 1.1.3.Ühtlaselt muutuv sirgliikumine Olgu t ajavahemik,mille jooksul kiirus muutus V,siis kiirendus a=lim V/t=dV/dt ja differentsiaalne kiiruse muut vastavalt dV=adt Kui kiirendus on const. ja liikumine sirgjooneline ,siis kiirus,ajahetkel t. Tähistame algkiiruse vastavalt V0,siis olgu kiirusvektori moodul: V=adt=at Tähistame algkiiruse vastavalt V0,siis kiirus ajahetkel t,ühtlaselt kiireneval liikumisel: V=V0+at Ühtlaselt aeglustuva liikumise puhul on kiiruse muut negatiivne kiirendus ka negatiivne ning kiirus ajahetkel t vastavalt V=V0at Kuna elementaarne ds=Vdt,siis juhul a=const on teepikkus ühtlaselt muutuval sirgliikumisel S=Vdt=V0dt+atdt=V0t+at²/2 Juhul V0=0 on S=at²/2 1.1.4.Ühtlaselt muutuv ringliikumine

Füüsika
20 allalaadimist
thumbnail
14
doc

Pöördliikumise dünaamika

kehtib l = r ja valemid (6.1) ja (6.2) jäävad samuti jõusse. Kui kangile ei mõju muid jõumomente peale nimetatud M O , siis see hakkab mõjutama kangi pöörlemist ümber punkti O läbiva telje, mis on risti nii jõuga F kui ka kangi endaga. Järelikult peab pöörlemistelg olema suunatud lehe tasandiga risti. Seda arvestades defineeritakse jõumomendi vektor M O , mille moodul arvutatakse valemist (6.3) ja mis on suunatud piki pöörlemistelge. Tema täpsem suund määratakse kruvi reegliga ­ kui jõud F mõjutab pöörlemist ümber punkti O kruvi pöördliikumise sihis, siis tema moment punkti O suhtes on suunatud kruvi kulgliikumise sihis. MO r

Füüsika
201 allalaadimist
thumbnail
118
doc

TEOREETILINE MEHAANIKA

1. põhiülesanne: jäigale kehale mõjuva jõusüsteemi taandamine lihtsamale kujule, 2. põhiülesanne: jäigale kehale mõjuva jõusüsteemi tasakaalutingimuste määramine. Milleks on vaja jõusüsteeme taandada? Asi on selles, et jäigale kehale võib olla rakendatud kümneid, või isegi sadu jõudusid. Sellist jõusüsteemi on väga tülikas uurida ja lahendada. Seepärast võetaksegi kätte ja taandatakse jõusüsteem (kasutades selleks mingit valitud tsentrit) nii, et asendatakse esialgne keeruline jõusüsteem ekvivalentselt palju, palju lihtsamaga, seda on juba väga lihtne uurida. Ekvivalentne asendus tähendab seda, et uuel, palju lihtsamal jõusüsteemil on jäigale kehale täpselt sama mõju, mis esialgsel keerulisel süsteemil. Seega on jõusüsteemi taandamine lihtsamale kujule väga vajalik ja sageli esilekerkiv ülesanne.

Füüsika
77 allalaadimist
thumbnail
10
docx

Jäävusseadused

vC = rC = i =1 n = i =1 M m i i =1 , v kus i on i-nda punktmassi kiirus. Masskeskme kiirendus kui tema kohavektori teine ajaline tuletis n n n r m i i m a i i Fres,i aC = rC = n i =1 = i =1 = i =1 M M mi i =1 . (5.15) Fres ,i Siin on i-ndale punktmassile mõjuv resultantjõud. Järelikult saame vahetulemusena, et punktmasside süsteemi masskeskme kiirendus võrdub kõikidele

Füüsika
17 allalaadimist
thumbnail
24
pdf

Füüsika 1 eksam

Sissejuhatus Erinevad ühikud rad rad 1 2 = 1Hz 1 = Hz s s 2 Vektorid r F - vektor r F ja F - vektori moodul Fx - vektori projektsioon mingile suunale, võib olla pos / neg. r Fx = F cos Vektor ristkoordinaadistikus Ükskõik millist vektorit võib esitada tema projektsioonide summana: r r r r F = Fx i + Fy j + Fz k , millest vektori moodul: F = Fx2 + Fy2 + Fz2 Kinemaatika Kiirus Keskmine kiirus Kiirus on raadiusvektori esimene tuletis aja t2 järgi. s v dt s v = - võimalik leida ühtlase liikumise kiirust vk = = t1 t t t

Füüsika
193 allalaadimist
thumbnail
15
docx

Masinatehnika eksam 2010/2011

Kahe samasuunalise paralleeljõu süsteemi resultant on nende jõududega parallelne ning selle moodul võrdne liidetavate jõudude moodulite summaga. Resultandi mõjusirge jaotab liidetavate jõudude rakenduspunktide vahelise kauguse seesmiselt osadeks , mis on pöördvõrdelised nende jõudude moodulitega R = F1 + F2 AC F2 AC BC AB = ; = = BC F1 F2 F1 R Kahe erineva mooduliga vastassuunalisel paralleeljõul on resultant, mis on nende jõududega paralleelne , kusjuures selle moodul võrduv liidetavate moodulite vahega. Resultandi mõjusirge jaotab liidetavate jõudude rakenduspunktide vahelise kauguse väliselt osadeks, mis on pöördvõrdelised nende jõudude moodulitega. 1 R = F1 - F2 AC F2 AC BC AB = ; = = BC F1 F2 F1 R 6. Mis on jõupaar? Jõupaari moodustavad 2 võrdse mooduliga, praleelsest ja vastasuunalist jõudu, mis asuvad teineteisest kaugusel l. F1 = - F2 F1 IIF2

Masinatehnika
225 allalaadimist
thumbnail
29
doc

Füüsika

Kui alus või riputusvahend liigub kiirendusega, siis kaal erineb arvuliselt raskusjõust P=m(g-a) Kui g=a, siis P=0 ­ kaaluta olek 1.2.3. Impulss ja impulsi jäävuse seadus Newtoni II seadus ütleb, et jõud f, kui ta mõjutab keha, massiga m, annab talle kiirenduse a: F=ma Kuna m=const, siis d(mv)/dt= f mv=p(impulss) Impulss ehk liikumishulk Impulss on vektor, mille suund ühtim kiiruse suunaga ja moodul keha massi ja kiiruse korrutisega. Newtoni II seaduse võime kirja panna ka impulsi mõistet kasutades: f=dp/dt Kõik kiiruse keskväärtused defineerime diferentsiaali kaudu. Impulsi muut t=t2-t1 Süsteemi kui terviku impulsi ajaline tuletis on siis võrdeline nulliga. dp/dt=0 Nii oleme tõestanud impulsi jäävuse seaduse: Mehaaniliselt isoleeritud süsteemi impulss on konstantne-

Füüsika
354 allalaadimist
thumbnail
52
doc

D’Alembert’i printsiip

A 7 Variant 11. Vertikaalse telje AB külge on jäigalt kinnitatud varras 1 massiga m1 ja pikkusega l, ning varras 2 massiga m2 ja samuti pikkusega l. Vardad 1 ja 2 on teljega AB risti. Vaadeldaval hetkel on varras 1 paralleelne y-teljega, varras 2 aga x-teljega. Süsteemi paneb paigalseisust pöörlema jõupaar, mille moment M muutub seaduse järgi M = 6 -0,5t (Nm). Leida laagrite A ja B reaktsioonkomponendid hetkel t1 = 4 sekundit, kui AE = EK = KB = l = 50 cm. z B m1 = 10 kg m2 = 14 kg 1 l = 50 cm

Dünaamika
71 allalaadimist
thumbnail
37
pdf

FÜÜSIKA I PÕHIVARA

Tehted vektoritega: 1. Vektori korrutamine skaalariga. av = av 2. Vektorite liitmine. v = v1 + v2 3.Vektorite skalaarne korrutamine. Kahe vektori skalaarkorrutiseks nimetatakse skalaari , mis on võrdne nende vektorite moodulite ja nendevahelise nurga koosinuse korrutisega. ( v1 v2 ) = v1· v2 = v1 v2 cos , kusjuures v1· v2 = v2· v1 4. Vektorite vektoriaalne korrutamine. Kahe vektori vektorkorrutis on vektor , mille moodul on võrdne vektorite moodulite ja nendevahelise nurga siinuse korrutisega , siht on risti tasandiga , milles asuvad korrutatavad vektorid ja suund on määratud parema käe kruvi reegliga . [v1 v2] = v1 × v2 = v1 v2 sin , kusjuures [v1 v2 ] = ­ [v2 v1 ] 4 SI süsteem. (Systeme Internationale) * Pikkus (m)

Füüsika
19 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun