Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Matemaatika valemid - sarnased materjalid

vektor, parabool, ringjoon, joone võrrand, parabooli, punktiga, sirged, topauto, seat, suzuki, müüja, skalaarkorrutis, telg, matemaatika, avaneb, korrutamine, ristseisu, põhioskused, tehete, sooritamine, sihivektoriga, teljega, joonestamine, lineaartehted, üldvõrrand, teravnurk, keskpunkti
thumbnail
40
doc

Keskkooli matemaatika raudvara

...................29 Kolmnurga pindala valemid................................................................................................... 29 Siinusteoreem......................................................................................................................... 29 Koosinusteoreem.................................................................................................................... 30 IV Vektor tasandil...................................................................................................................... 30 Sissejuhatuseks....................................................................................................................... 30 Lõigu pikkus...........................................................................................................................31 Lõigu keskpunkti koordinaadid......................................................

Matemaatika
1453 allalaadimist
thumbnail
2
doc

Vektor tasandil ja sirge võrrandid

X klassi matemaatika V perioodi arvestuse näidisküsimused ja -ülesanded Teemad: Valemid: 1. Vektor tasandil d= ( x2 - x1 ) 2 + ( y 2 - y1 ) 2 - Kahe punkti vaheline kaugus - Mis on vektor? Vektorite liigitus? a1 a 2 - Kollineaarsed vektorid a b , kui = b1 b2 AB = ( x 2 - x1 ; y 2 - y1 ) a = a12 + a 22

Matemaatika
400 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

16. ühikvektorite skalaarkorrutised ii = 1 ji = 0 ki = 0 ij = 0 jj = 1 kj = 0 ik = 0 jk = 0 kk = 1 17. Skalaarkorrutis koordinaatides a b = X1X2 + Y1Y2 + Z1Z2. X 1 X 2 + Y1Y2 + Z 1 Z 2 18. Ühe vektori projektsioon teisel vektoril prb a = X 22 + Y22 + Z 22 19. Vektoria vektorkorrutis vektoriga b on vektor c, mis on määratud järgmiste tingimustega: 1. c = a xb = a b sin , vektori c pikkus võrdub nende vektorite moodulite ja nende vektorite vahelise nurga siinuse korrutisega. 2.Vektori c siht on risti vektoritele a ja b joonestatud rööpküliku tasandiga. ( c a ; c b ) 3.Vektori c suund on selline, et vektorid a, b ja c antud järjekorras moodustaksid parempoolse vektorkolmiku, s.t.

Analüütiline geomeetria
140 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

16. ühikvektorite skalaarkorrutised ii = 1 ji = 0 ki = 0 ij = 0 jj = 1 kj = 0 ik = 0 jk = 0 kk = 1 17. Skalaarkorrutis koordinaatides a b = X1X2 + Y1Y2 + Z1Z2. X 1 X 2 + Y1Y2 + Z 1 Z 2 18. Ühe vektori projektsioon teisel vektoril prb a = X 22 + Y22 + Z 22 19. Vektoria vektorkorrutis vektoriga b on vektor c, mis on määratud järgmiste tingimustega: 1. c = a xb = a b sin , vektori c pikkus võrdub nende vektorite moodulite ja nende vektorite vahelise nurga siinuse korrutisega. 2.Vektori c siht on risti vektoritele a ja b joonestatud rööpküliku tasandiga. ( c a ; c b ) 3.Vektori c suund on selline, et vektorid a, b ja c antud järjekorras moodustaksid parempoolse vektorkolmiku, s.t.

Analüütiline geomeetria
39 allalaadimist
thumbnail
24
doc

ANALÜÜTILINE GEOMEETRIA RUUMIS, VEKTORID

Lineaarteheteks vektoritega on vektorite liitmine, vektorite lahutamine, vektori korrutamine arvuga.    Definitsioon. Vektorite a ja b summaks nimetatakse vektorit c  a  b , mille alguspunkt langeb    kokku vektori a alguspunktiga ja lõpp-punkt vektori b lõpp-punktiga eeldusel, et vektor b on  rakendatud vektori a lõpp-punkti. Kahe vektori korral kehtib rööpküliku reegel. Seda definitsiooni on võimalik üldistada suvalise lõpliku arvu vektorite jaoks.     Definitsioon. Vektorite a ja b vaheks nimetatakse vektorit a  b , mis on võrdne summaga a  b  a   b  .    

Matemaatika
38 allalaadimist
thumbnail
36
pdf

Vektor. Joone võrrand. Analüütiline geomeetria

Kitsas matemaatikas peab kolmanda kursuse lõpetaja oskama selgitada vektori mõistet ja selle koordinaate; liitma ja lahutama vektoreid ning korrutama vektoreid arvuga nii geomeetriliselt kui ka koordinaatkujul; arvutama vektori pikkust; leidma vektorite skalaarkorrutist ning tundma vektorite ristseisu ja kollineaarsuse tunnuseid. Õpilane koostab sirge võrrandi, kui sirge on määratud punkti ja tõusuga, tõusu ja algordinaadiga või kahe punktiga ning määrab sirgete vastastikuse asendi ja leiab vajadusel nende lõikepunkti. Õpilane tunneb ja joonestab sirgeid, paraboole ja ringjooni nende võrrandite järgi ning koostab ringjoone võrrandi keskpunkti ja raadiuse järgi. Samuti peab õpilane oskama leida joonte lõikepunkte, kui üks joontest on sirge, ja lahendama rakendusliku sisuga ülesandeid vektorite ja joonte võrrandite abil. Laias kursuses peab õpilane ­ lisaks eelnevale ­ selgitama ka kahe vektori vahelist nurka,

Matemaatika
38 allalaadimist
thumbnail
19
doc

Matemaatika valemid.

­ üks lahend A 2 B2 A 1 B1 C1 = ­ lahend puudub A 2 B2 C 2 A 1 B1 C1 = = ­ lõpmata palju lahendeid A 2 B2 C 2 3. Vektor tasandil. Joone võrrand · Lineaartehted vektoritega AB = ( x 2 - x 1 , y 2 - y1 ) kui A(x1; y1), B(x2; y2) OA = x 1 i + y1 j või a = ( x 1 ; y1 ), kui A( x 1 ; y1 ), O( 0; 0 ) i = (1; 0 ), j = ( 0; 1)

Matemaatika
807 allalaadimist
thumbnail
5
doc

algebra konspekt

Kui pinna võrrand on esitatav kujul F(x,y,z)=0, kus F(x,y,z) on n-astme polünoom, siis nim pinda n-järku algebraliseks pinnaks. Algebralistest pindadest lihtsaim on esimest järku pind ehk tasand. Sfäär on teist järku pind, sest selle võrrandis esinevad tundmatud on teisel astmel.Võrdust F(x,y)=0 nim joone L võrrandiks antud koordinaatide süsteemis tasandil, kui teda rahuldavad joone L kõikide punktide koordinaadid ja ainult need. Näiteks ringjoon raadiusega r ja keskpunktiga C(a,b) on niisuguste punktide hulk, millised rahuldavad tingimust |CM|=r, kus M(x;y) on ringjoone meelevaldne punkt. Niisuguse ringjoone võrrand on (x-a)² + (y-b)² = r² Joonte parameetrilised võrrandid Joone parameetrilisteks võrranditeks ruumis nim võrandeid kujul x=x(t) y=y(t) z=z(t) kui esimene võrrand esitab x-i t-funktsioonina, teine võrrand esitab y-i ja kolmas z-i muutuja funktsioonina. Muutujat t nim parametriks

Algebra ja Analüütiline...
131 allalaadimist
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

S = pr , p = 2 6) 3 külje ja ümberringjoone abil abc A1x + B1y + C1 = 0 S= L( x 0 ; y 0 ) 4R 34. Vekor tasandil. Joone võrrand. Punkti koordinaadid tasandil A2x + B2 y + C2 = 0 y-telg ­ ordinaat x-telg ­ abstsiss 35. Kahe punkti vaheline kaugus d = ( x 2 - x1 ) + ( y 2 - y1 ) 48. Ringjoone võrrand 2 2 36. Vektor. Tehted vektoritega a b

Matemaatika
1299 allalaadimist
thumbnail
2
docx

Valemileht 10.klass

Vektori pikkus |u|= Kahe punkti vaheline kaugus AB= Nurk vektorite vahel cos= KOLMNURK Siinusteoreem Koosinusteoreem a2=b2+c2 -2bccos; b2=a2 + c2-2accos; c2=a2+b2-2abcos. Kolmurga pindala S= ; S=pr ; S=absin ; S= ; S= ; S= SIRGE VÕRRANDID Üldvõrrand - ax + by=c või ax + by +c =0 x-teljega paralleelne sirge y=a y-teljega paralleelne sirge x=b koordinaattelgede vahelise nurga poolitaja võrrand: I ja III veerand y=x; II ja IV veerand y=-x punktiga A(x1;y1) ja vektoriga v=(sx;sy) määratud sirge = punktidega A(x1;y1) ja B(x2;y2) määratud sirge punktidega A(a;0) ja B(0;b) ehk telglõikudes ,ääratud sirge punktiga A(x1;y1) ja tõusuga k määratud sirge y-y1 =k(x-x1) tõusuga k ja algordinaadiga b määratud sirge y=kx+b nurk sirgete y=k1x+b1 ja y=k2x+b2 vahel tan=||

Matemaatika
533 allalaadimist
thumbnail
4
doc

Gümnaasiumi I astme valemid

S = p ( p - a )( p -b)( p -c ) , S= 4R kus r on kolmnurga siseringjoone raadius ja R ümberringjoone raadius. SIRGE VÕRRANDID 51. Üldvõrrand ax+by=c või ax+by+c = 0. 52. x-teljega paralleelne sirge y=a. 53. y-teljega paralleelne sirge x=b. 54. Koordinaattelgede vahelise nurga poolitaja võrrand: I ja III veerand y=x; II ja IV veerand y= -x. 55. Punktiga A( x1 ; y1 ) ja vektoriga v =( s x ; s y ) määratud sirge x - x1 y - y1 = sx sy 56. Punktidega A( x1 ; y1 ) ja B ( x 2 ; y 2 ) määratud sirge y - y1 x - x1 = y 2 - y1 x 2 - x1 57. Punktidega >A(a;0) ja B(0; b) ehk telgiõikudes määratud sirge x y + =1 a b 58. Punktiga A( x1 ; y1 ) ja tõusuga k määratud sirge y - y1 = k ( x - x1 ) 59. Tõusuga k ja algordinaadiga b määratud sirge y = kx + b 60

Matemaatika
661 allalaadimist
thumbnail
4
doc

Valemid

S = p ( p - a )( p -b)( p -c ) , S= 4R kus r on kolmnurga siseringjoone raadius ja R ümberringjoone raadius. SIRGE VÕRRANDID 51. Üldvõrrand ax+by=c või ax+by+c = 0. 52. x-teljega paralleelne sirge y=a. 53. y-teljega paralleelne sirge x=b. 54. Koordinaattelgede vahelise nurga poolitaja võrrand: I ja III veerand y=x; II ja IV veerand y= -x. 55. Punktiga A( x1 ; y1 ) ja vektoriga v =( s x ; s y ) määratud sirge x - x1 y - y1 = sx sy 56. Punktidega A( x1 ; y1 ) ja B ( x 2 ; y 2 ) määratud sirge y - y1 x - x1 = y 2 - y1 x 2 - x1 57. Punktidega >A(a;0) ja B(0; b) ehk telgiõikudes määratud sirge x y + =1 a b 58. Punktiga A( x1 ; y1 ) ja tõusuga k määratud sirge y - y1 = k ( x - x1 ) 59. Tõusuga k ja algordinaadiga b määratud sirge y = kx + b 60

Matemaatika
15 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

10. klass Viljandi Täiskasvanute Gümnaasium RUUTVÕRRATUSED Võrratust, mis esitub kujul ax2 + bx + c > 0, kus a ≠ 0, nimetatakse ühe muutujaga ruutvõrratuseks. Märgi > asemel võib võrratuses olla ka üks märkidest <, ≥ või ≤. Ruutvõrratusi on üldjuhul mõistlik lahendada järgmise skeemi järgi: a) Lahendame võrrandi ax2 + bx + c = 0 b) Skitseerime parabooli y = ax2 + bx + c c) Leiame jooniselt võrratuse lahendihulga. Vaatleme mõningaid näiteid, lahendame võrratused a) x2 – 2x – 3 > 0 b) x(x + 1) ≥ 0 c) –x2 – 2x > 0 d) x2 + 2x + 3 < 0 e) x2 + 4x + 4 ≥ 0 f) x2 – 4x + 4 < 0 a) b) L   ;1  3;  L   ;1  0;  © Allar Veelmaa 2014

Matemaatika
79 allalaadimist
thumbnail
8
doc

Kõrgema matemaatika kordamisküsimused ja vastused

b = |a||b|, kui a risti b . Avaldis koordinaatides: i j k x1 y1 z1 axb = x1 y1 z1 a b c =x 2 y2 z2 x2 y2 z2 x3 y3 z3 18. Kolme vektori segakorrutis (mõiste, omadused, avaldis koordinaatides). Kolme vektori segakorrutis ­ nim. vektor a skalaarkorrutist vektorkorrutisega bx c Omadused: 1) On arvuline suurus 2) On 0, kui vektorid on komplanaarsed 3) Vôrdub vektoritele ehitatud rööptahuka ruumalaga. Avaldis koordinaatides: (vaata üles puule). 19. Vektorite kollineaarsuse, ristseisu ja komplanaarsuse tunnused. Vektorite kollineaarsuse tunnus: 1) Vektorite vastavate koordinaatide korrutised on vôrdsed 2) Vektorkorrutis on 0 ja kumbki vektor ei ole 0-vektor 3) Skalaarkorrutis vôrdub vektorite pikkuste korrutisega.

Matemaatika
241 allalaadimist
thumbnail
3
odt

Vektor ja Sirge konspekt ja valemid

Vektor Vektor on suunatud sirglõik. Sellist sirglõiku iseloomustavad siht, suund ja pikkus. Siht näitab, kuidas vektor asetseb. Suund näitab, kummale poole on vektor suunatud. Pikkus näitab vektori arvväärtust. Kui vektori alguspunkt on A ja lõpppunkt on B, siis vektorit tähistatakse . Vektorit tohib tähistada ka väiketähega, näiteks Üldiselt mõistetakse matemaatikas vektori all vabavektoreid kui pole öeldud teisiti. Samasihilisteks ehk kollineaarseteks ehk paralleelseteks nimetatakse vektoreid, mis asetsevad ühel ja samal sirgel või paralleelsetel sirgetel

Matemaatika
118 allalaadimist
thumbnail
14
ppt

Sirge tasandil

y (s2) (s1) Tõusva sirge (s1) tõus on positiivne : tan 1 > 0 (0 < < 90°); langeva sirge (s2) tõus on 2 negatiivne: 1 0 x tan 2 < 0 (90 ° < <180°); Kahe punktiga määratud sirge tõus Kui sirgelt on teada kaks punkti A(x1; y1) ja B(x2; y2), siis saab sirge tõusu leida valemiga y2 - y1 k= . x2 - x1 y Näide B Kui sirge läbib punkte A(3; 5) y2 ja B(-7; 0), siis sirge tõusuks y2 - y1 saame A

Matemaatika
31 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

1 4. Pöördvõrdeline sõltuvus (joon. 2): a y = , graafikuks on võrdhaarne hüperbool, asümptootideks on koordinaatteljed, x paaritu funktsioon. X = ( - ; 0 ) U ( 0 ; ) . Joon. 2 5. Ruutfunktsioon: y = x 2 , graafikuks on põhiparabool (joon. 6), paarisfunktsioon. X = . 24 y = ax 2 + bx + c (ka ruutpolünoom), graafikuks on parabool (joon. 3). X = . b x0 = - Haripunkti H koordinaadid: 2a y0 = f ( x0 ) Joon. 3 6. Kuupfunktsioon: y = x 3 , graafikuks on kuupparabool (joon. 7), paaritu funktsioon. X = . Kuuppolünoom y = ax 3 + bx 2 + cx + d (joon. 4, a > 0 ; joon. 5, a < 0 ). X = . Joon

Matemaatika
1099 allalaadimist
thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

Nullvektori suund on määramata. 5. Ühikvektor- Kui vektori pikkus on 1 6. vektorite liitmine-rööpkülikureegel: Vektorite a ja b summaks nimetatakse niisugust vektorit c, mis väljub nende ühisest alguspunktist ja on niisuguse rööpküliku diagonaal, mille külgedeks on liidetavad vektorid. Kolmnurga reegel-vektorite liitmisel viiakse teise liidetava alguspunkt esimese liidetava lõpp-punkti. Vektorite a ja b summaks on vektor mis kulgeb esimese liidetava alguspunktist teise liidetava lõpp-punkti. 7. vektorite lahutamine- Vektorite a ja b vaheks nimetatakse vektorit d, millel on omadus b+d=a. Kahe vektori vahe leidmiseks viikse nad ühisesse alguspunkti ja nende vahe on vektor, mis kulgeb vähendaja lõpp-punktist vähendatava lõpp-punkti. 8. vektori ja reaalarvu korrutis- vektori korrutiseks arvuga nimetatakse vektorit, mille pikkus võrdub arvu absoluutväärtuse ja lähivektori pikkuse

Matemaatiline analüüs 1
124 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

teljeks. Ristkoordinaadistik ruumis: · Kolm ristuvat suunaga arvsirget; · Alguspuntkid ühtivad; · Ühikud on võrdsed. Punkti ristkoordinaadid ruumis - ­ (punkti koordinaatide saamiseks võtame ristprojektsioonid vastavatele telgedele) M(x;y;z) Mx(x), My(y), Mz(z). Seosed punkti rist- ja sfäärkoordinaatide vahel: 1) x 2) y 3) z = sin* 13. Geomeetrilise vektori mõiste, tähistused. Vektorite võrdsus. Kollineaarsed vektorid. Vektor ehk suunatud lõik ­ lõik, millel on määratud suund, siht ja suurus. Täh a=(a1;a2;a3) või AB=(a1;a2;a3). Vektorite võrdsus: vektoreid nim võrdseteks kui nad on kollineaarsed, samasuunalised ja võrdse pikkusega (võivad erineda vaid alguspunktide poolest). Kollineaarsed vektorid: vektorid, mis asuvad ühel ja samal sirgel või paralleelsetel sirgetel (siht on sama, suund ja pikkus võivad olla erinevad). 14. Vektori korrutamine arvuga (geomeetriliselt)

Kõrgem matemaatika
356 allalaadimist
thumbnail
25
doc

Algebra ja geomeetria kordamine

. . , aik} nimetame vektorsüsteemi {a1, a2, . . . , am} alamsüsteemiks. Vektorsüsteemi lineaarne sõltuvus (sõltumatus) ­Vektorsüsteemi {a1, a2, . . . , am} nimetame lineaarselt sõltuvaks (lineaarselt sõltumatuks), kui vektorvõrrandil 1a1+ 2a2 + ... + mam on rohkem kui 1 lahend (on ainult 1 lahend) ?Tulemused lineaarse sõltuvuse kohta väikese elementide arvuga vektorsüsteemides ­ viimane tähendab seda, et kui vektorsüsteemis on 1 vektor, siis l-sõltuv on ainult siis kui see vektor on 0 vektor, kui 2 vektorit, siis l-sõltuv, kui need vektorid on kollineaarsed VEKTORRUUMI BAAS: Vektorruumi baas ­ Vektorsüsteemi {e1, e2, .... , en} nimetatakse vektorruumi V baasiks, kui: 1) see vektorsüsteem on lineaarselt sõltumatu; 2) vektorruumi V iga element on avaldatav selle vektorsüsteemi elementide kaudu. Lõpmatumõõtmeline vektorruum ­ Vektorruumi, millel puuduvad baasid, nimetatakse lõpmatumõõtmeliseks ehk lõpmatudimensionaalseks vektorruumiks

Algebra ja geomeetria
62 allalaadimist
thumbnail
22
doc

Kõrgem matemaatika

vastassuunalised (tähistus a b). Vektorit, mille alguspunkt ühtib selle vektori lõpp-punktiga, nimetatakse nullvektoriks. Kahte vektorit, mis erineved teineteisest vaid suuna poolest, nimetatakse vastandvektoreiks. 14. Vektori korrutamine arvuga (geomeetriliselt). Vektorite liitmine ja lahutamine (geomeetriliselt). vektori korrutamine arvuga: vektori korrutamisel arvuga suureneb tema pikkus võrdeliselt (siht ei muutu). kui kordaja on negatiivne, muutub vektor vastassuunaliseks. Geomeetrilise vektori a korrutiseks arvuga nimetatakse vektorit a, mis rahuldab tingimusi: vektorite liitmine ja lahutamine: Kolmurgareegel ­ liidetavad vektorid ühendada järjest ­ summavektor tõmmata esimese alguspunktist viimase lõppunkti; Rööpküliku reegel ­ liidetavate vektorite alguspunktid on samad, summavektor tuleb tômmata alguspunktist rööpküliku vastasnurka. lahutamine toimub vastandvektori liitmisel. 15

Kõrgem matemaatika
212 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

1 4. Pöördvõrdeline sõltuvus (joon. 2): a y  , graafikuks on võrdhaarne hüperbool, asümptootideks on koordinaatteljed, x paaritu funktsioon. X    ; 0  U  0 ;   . Joon. 2 5. Ruutfunktsioon: y  x 2 , graafikuks on põhiparabool (joon. 6), paarisfunktsioon. X  ¡ . 24 y  ax 2  bx  c (ka ruutpolünoom), graafikuks on parabool (joon. 3). X  ¡ .  b  x0   Haripunkti H koordinaadid:  2a  y0  f  x0   Joon. 3 6. Kuupfunktsioon: y  x 3 , graafikuks on kuupparabool (joon. 7), paaritu funktsioon. X  ¡ . Kuuppolünoom y  ax 3  bx 2  cx  d (joon

Algebra I
60 allalaadimist
thumbnail
12
pdf

Matemaatika eksami teooria 10. klass

6.1 Lõigu keskpunkt Koordinaattasandil asuva lõigu keskpunkti koordinaatideks on lõigu otspunktide samanimeliste koordinaatide aritmeetilised keskmised. 6.2 Lõigu pikkus Olgu lõigu otspunktid A ja B. Projekteerime need punktid x ja y teljele ning tekib täisnurkne kolmnurk ABC. Selles kolmnurgas on AC=|y2-y1| ja BC=|x2-x1|. Tähistades punktide A ja B vahelise kauguse tähega d, saame seose: 6.3 Vektor · Igal sirgel on siht ja paralleelsetel sirgetel on sama siht. Määrates lõigul suuna, saame eri omadusega lõigu, mida nimetatakse vektoriks (suunatud lõik). Märkimisel vektorit kahe tähega tuleb esikohale kirjutada nn vektorialguspunkt ja teisele kohale lõpp-punkt. · Vektoritega esitatakse ka vektoriaalseid suuruseid (nt jõud, kiirus, tuule tugevus). Suurusi, mida saab esitada vaid ühe arvu abil, nt vanus, temp, nimetatakse skalaarideks

Matemaatika
79 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

Need juured saadakse avaldisest z 1/n = r1/n(cos(( + 2k)/n) + isin(( + 2k)/n)) andes arvule k järjest väärtused 0, 1, ..., n-1 3. Korpuse defnitsioon. Skalaari mõiste. Korpuste näiteid. Korpuseks nimetatakse hulka K, kus on kaks tehet, + ja *, mis rahuldavad omadusi 1-9 Skalaariks nimetatakse mis tahes korpuse elemente. Korpuse näiteid: 1. Q, R, C 2. jäägiklassikorpus Zp (p - algarv); Zp {0, 1, ..., p-1} i, j Zp; ij = i+j, kui i+j <= p-1; i+j-p, kui i+j >= p 4. Geomeetriline vektor. Lineaarsed tehted geomeetriliste vektoritega ja nende omadused. Geomeetriline vektor on suunatud lõik tasandil või ruumis. Kahte geomeetrilist vektorit loetakse võrdseiks, kui need vektorid on kollineaarsed ( || ), samasuunalised ( ) ja ühepikkused (|||| = ||||) Lineaarsed tehted geomeetriliste vektoritega: 1. liitmine 2. skalaariga korrutamine (skalaaride hulgaks R). Korrutis rahuldab tingimusi: 1. c || ; 2. c >= 0 <=> c ; c < 0 <=> c ; 3. ||c|| = |c| * ||||;

Lineaaralgebra
197 allalaadimist
thumbnail
1
doc

Sirged ja nendevahelised seosed

Sirge tõusunurgaks nimetatakse nurka (alfa), mis on x-telje positiivse suuna ja sirge vahel. Sirge tõusuks nimetatakse suurust tan(alfa). Sirge algordinaadiks nimetatakse ordinaadi väärtust, kus sirge lõikab y-telge. Sirge võrrand kahe puntki abil: x-x1 / x2-x1 = y-y1 / y2-y1 Sirge võrrand ühe punkti ja sihivektoriga: x-x1 / s1 = y-y1 / s2 Sirge võrrand punkti ja tõusuga: y-y1 = k(x-x1) Sirge võrrand tõusu ja algordinaadiga: y = kx + b Ühel sirgel on lõpmata palju sihivektoreid. Teame järgnevaid sirge määramise viise: kahe punkti abil, punkti ja sihivekotriga, punkti ja tõusuga, tõusu ja algordinaadiga. Sirge on omavahel risti kui nende tõusude korrutis on -1, s.t. k1 * k2 = -1. N: 12x ­ 3y = 0; 2x + 8y ­ 9 = 0 s1(3;12) s2(-8;2) s1*s2=3*(-8)+12*2=0 Sirge üldvõrrand: ax + by + c = 0 => s(prim) = (-b; a) Kahe sirge vastastikused asendid: s: a1x + b1y + c1 = 0 t: a2x + b2y + c2 = 0 I ühtivad: a1/a2=b1/b2=c1/c2 II paralleelsed: a1/a2=b1/b2

Matemaatika
21 allalaadimist
thumbnail
2
docx

Sirged ja tasandid

Sirged ja tasandid Kordamine Sirge kanoonilised võrrandid: Antud on 2 sirge punkti A( x1 ; y1 ; z1 ) ja x - x1 = y - y1 =

Matemaatika
64 allalaadimist
thumbnail
18
ppt

Sirge

A(4;-3) ning sirge tõus on k=-2 y  3  2( x  4) y  2 x  5 Tõusu ja algordinaadiga sirge võrrand y  kx  b y=2x- 3 algordinaat sirge tõus 2 1 Näide. Koosta sirge võrrand, kui sirge läbib y-telge punktis -3 ning sirge tõus on k=4 y  4x  3 y  4x  3 Kahe punktiga määratud sirge võrrand y P(x;y) B(x2;y2) y  y1 x  x1  A(x1;y1) x y2  y1 x2  x1 s y  y1 Lõigu AP tõus on x  x1 y2  y1 y  y1  y2  y1 x2  x1 x  x1 Lõigu AB tõus on x2  x1 Näide.

Matemaatika
6 allalaadimist
thumbnail
7
doc

Kõrgem matemaatika

Süsteemi lahend ei tarvitse olla üheselt määratud, ta võib sõltuda teatud arvust parameetritest. Selliseid nim süsteemi üldlahenditeks. Lahendid, mis saadakse parameetrie fikseerimise teel nim süsteemi erilahenditeks. 4. Kronecker-Capelli teoreem Lineaarne võrrandisüsteem on lahenduv parajasti siis kui süsteemi maatriksi astak võrdub laiendatud maatriksi astakuga. Rank A=rank A/B; r=r' 5. Sirge tasandis, sirge ja tasand ruumis Joone võrrand Vaatleme matemaatilist avaldist, mis sisadab 2 tundmatut F(x;y)=0, saame võrduse. Seda võrdust nim samasuseks kui ta on rahuldatud tundmatude x ja y kõigi väärtuste puhul. Seda võrdust nim võrrandiks kui teda rahuldavad tundmatute teatud väärtused. Kaht tundmatud x ja y sisaldava võrrandiga määratud jooneks nim joont, mille punktide koordinaadid rahuldavad seda võrrandit. Joone võrrandit F(x;y)=0 nim joone ilmutatud võrrandiks

Kõrgem matemaatika
477 allalaadimist
thumbnail
3
doc

Funktsioonid ja nende graafikud

Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 4. Funktsioonid ja nende graafikud Põhiteadmised Võrdeline sõltuvus; pöördvõrdeline sõltuvus; üksühene seos; funktsiooni mõiste; lineaar- ja ruutfunktsioon; funktsiooni määramis- ja muutumispiirkond; funktsiooni nullkohad, positiivsus- ja negatiivsuspiirkonnad; funktsiooni kasvamis- ja kahanemisvahemikud, ekstreemumid; paaris- ja paaritufunktsioon;

Matemaatika
44 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

10. Kompleksarvu mõiste, imaginaarühik, kompleksarvu reaalosa ja imaginaarosa, kompleksarvude võrdsus, kaaskompleksarv. Kompleksarvude liitmise, korrutamise ja jagamise valemid. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvu geomeetriline tõlgendus, Kaaskompleksarvude ja kompleksarvude summa geomeetriline tõlgendus. Trigonomeetrilisel kujul antud kompleksarvude korrutamise, jagamise, astendamise ja juurimise valemid. Juurte arv. 11. Geomeetriline vektor. Vektorite kollineaarsus, vektorite võrdsus. Nullvektor. Kolmnurka ja rööpküliku reegel. Lineaarsed tehted geomeetriliste vektoritega (liitmine ja skalaariga korrutamine). Lineaarsete tehete 8 omadust 12. Aritmeetiline vektor. Lineaarsed tehted aritmeetiliste vektoritega (liitmine ja skalaariga korrutamine). Aritmeetiline ruum. 13. Vektorruumi ja vektori definitsioon. Vektorruumi 5 näidet. Vektorite lineaarne kombinatsioon (näide geomeetriliste vektorite kohta)

Algebra I
198 allalaadimist
thumbnail
28
pdf

Lineaaralgebra ja analüütiline geomeetria konspekt

2016 aasta sügis) Ristkoordinaadid. Kui ruumis on antud ristkoordinaadisüsteem, siis ruumi iga punkt P on üheselt määrastud ristkoordinaatidega x, y, z, kus x on punkti P ristprojektsioon abstsissteljele, y on punkti P ristprojektsioon ordinaatteljele ja z on punkti P ristprojektsioon aplikaateljele. Kirjutame P(x, y, z). Kahe punkti vaheline kaugus. Kui P1(x1, y1, z1), P2(x2, y2, z2) on ruumi punktid, siis kaugus d punktide P1 ja P2 vahel on määratud valemiga Vektori mõiste Vektor on suunatud lõik alguspunktiga punktis A ja lõpp-punktiga punktis B. Nullvektor Eukleidilises ruumis (näiteks tasandil) on nullvektoriks määramata suunaga vektor, mille pikkus on null. Ühikvektor Kui vektori pikkus on 1, siis teda nimetatakse ühikvektoriks. Vektorite liitmine ja lahutamine Lahutamine toimub sama põhimõtte järgi. Reaalarvu ja vektori korrutis. Vektori pikkus Vektori pikkuseks loetakse sellele vektorile vastava sirglõigu AB pikkust

Algebra ja analüütiline...
105 allalaadimist
thumbnail
3
doc

Matemaatika valemid

sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 ­ cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 ­ sin2 cos = sin /tan cos2 ­ 1 = - sin2 cot = cos /sin cot =1/tan sin2 ­ 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ­ ) sin = vastas kaatet/hüpotenuus cos = sin (90o ­ ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ­ ) tan = vastas kaatet/lähis kaatet cot =tan (90o ­ ) cot = lähis kaatet/vastas kaatet tan = cot (90o ­ ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos a/sin=b/sin=c/sin=2R S=1/2a*b*

Matemaatika
1750 allalaadimist
thumbnail
5
doc

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks

Vektori a pikkus on a ja tähistatakse |a| = a. Vektoreid a ja b nimetakse kollineaarseteks (a ||b), kui nad on paralleelsed sama sirgega. Kollineaarsed vektorid on kas samasuunalised a b või vastassuunalised a b. Vektoreid a ja b nimetatakse komplanaarseteks, kui nad on paralleelsed ühe ja sama tasandiga. Vektorid a ja b on võrdsed (on sama suured), a=b, kui nende pikkus on sama ja nad on samasuunalised Vektorite a ja b summa a+b on vektor, mille alguspunkt on a alguspunkt ja lõpp-punkt saadakse b paralleellükkega a lõpp-punkti, siis a+b lõpp-punkt on b lõpp-punkt. Tihti kasutatakse ka rööpküliku reeglit, kus vektorid a ja b pannakse paralleellükkega algama samast punktist. Summa on siis rööpküliku pikem diagonaal. a-b=a+(-b). Seega ahelreelgi järgi tuleks vektorite a ja b vaheks vektor a-b, mis saadakse a lõppu b vastasvektori ­b lisamisega. Rööpküliku reeglite järgi oleks vektorite a ja b vahe neile

Lineaaralgebra
177 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun