Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Matemaatika valemid - sarnased materjalid

paral, teljega, püstprisma, püramiid, silinder, koonus, ruutvõrrand, intress, punktiga, trigonomeetria, sihivektoriga, üldvõrrand, ristuv, geomeetriline, piirväärtus, tuletis, eksponentfunktsioon, logaritmfunkstioon, arcsin, arccos
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

a, a 0 18. Intervallide meetod a = - a, a < 0 19. Murdvõrratused (Pascali kolmnurk) 20. Võrratussüsteemid 4. Murru vabastamine irratsionaalsusest 21. Absoluutväärtust sisaldavad 5. Ligikaudne arvutamine võrratused/võrranid x = a ( ± a ) 22. Trigonomeetria sin 2 + cos 2 = 1 6. Suhteline e. relatiivne viga a sin S = tan = a cos 7. Võrrandid ja võrratused(lineaar, ruut, 1 1 + tan 2 =

Matemaatika
1299 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

3 3 3 3 3 2 3 3 2 a - b = ( a ) - ( b ) = ( a - b ) ( a + ab + b ) 3 3 3 3 3 3 3 2 3 3 2 a a + b b = ( a ) + ( b ) = ( a + b ) ( a - ab + b ) 3 3 a a - b b = ( a ) - ( b ) = ( a - b ) ( a + ab + b ) 3 3 2.5 Ruutvõrrand Mittetäielikud ruutvõrrandid c ax 2 + c = 0 x1,2 = ± - ( a 0) a b ax 2 + bx = 0 x1 = 0, x2 = - ( a 0 ) a Täielikud ruutvõrrandid -b ± b 2 - 4ac

Matemaatika
1099 allalaadimist
thumbnail
19
doc

Matemaatika valemid.

· Lineaarvõrrand ­ ax + b = 0 x=- a 2 p p x 2 + px + q = 0 x 1;2 = - ± -q 2 2 x 1 + x 2 = -p ja x 1 x 2 = q ( Viete´i valemid) · Ruutvõrrand ­ - b ± b 2 - 4ac ax 2 + bx + c = 0 x 1;2 = 2a ax + bx + c = a ( x - x 1 )( x - x 2 ) ( ruutkolmliikme tegureiks lahutamine ) 2 P( x ) · Murdvõrrand ­ = 0 P( x ) = 0 ja Q( x ) 0

Matemaatika
807 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

a  b   a    b    a  b   a  ab  b  3 3 3 3 3 3 3 2 3 3 2 a a  b b   a    b    a  b   a  ab  b  3 3 a a  b b   a    b    a  b   a  ab  b  3 3 2.5 Ruutvõrrand Mittetäielikud ruutvõrrandid c ax 2  c  0  x1,2     a  0 a b ax 2  bx  0  x1  0, x2    a  0 a Täielikud ruutvõrrandid

Algebra I
61 allalaadimist
thumbnail
12
docx

Matemaatika 11.klass valemid

Valemid, teoreemid, seosed, tunnused, tingimused MATEMAATIKA EKSAMIL XI KLASSIS 1) a2-b2 = (a+b)(a-b) 2) a3 + b3=(a+b)(a2-ab+b2) 3) a3 - b3=(a-b)(a2+ab+b2) 4) (a+b)3 =a3+3a2b+3ab2+b3 5) (a-b)3 =a3-3a2b+3ab2-b3 −b ± √ b2−4 ac 2 6) a) lahenda ax + bx+c =0 2a b) tegurda : ax2 + bx+c= a( x− x1 )( x−x 2) c) tegurda ax3 + bx2+ax+b= x2(ax+b)+ax+b = (ax+b)(x2+1) 7) lim  an  bn   lim an  lim bn n  n  n  8) lim  an  bn   lim an  lim bn n  n  n  9) lim  anbn   lim an  lim bn n  n  n  an 10) lim  lim an  lim bn n  bn n  n  11) Korrutise tuletise sõnastus ja valem (u * v ) ´ = Korrutise tuletis võrdub esimese teguri tu

Matemaatika
18 allalaadimist
thumbnail
4
doc

Gümnaasiumi I astme valemid

a na 18. Jagatise juur n = n b b 19. Juure aste ( a ) = a n m n m 20. Juure juur m n a = mn a . 21. Astendaja 0 a 0 = 1 , kui a 0 -n 1 22. Negatiivne astendaja a = n a m 23. Murruline astendaja a n = n a m RUUTVÕRRAND 24. Taandatud ruutvõrrand x2 + px+q = 0. 2 p p 25. Võrrandi x2 + px + q = 0 lahend on valem x1; 2 = - ± -q . 2 2 26. Taandamata ruutvõrrand ax 2 + bx + c = 0 , a 1 - b ± b 2 - 4ac 27

Matemaatika
661 allalaadimist
thumbnail
4
doc

Valemid

a na 18. Jagatise juur n = n b b 19. Juure aste ( a ) = a n m n m 20. Juure juur m n a = mn a . 21. Astendaja 0 a 0 = 1 , kui a 0 -n 1 22. Negatiivne astendaja a = n a m 23. Murruline astendaja a n = n a m RUUTVÕRRAND 24. Taandatud ruutvõrrand x2 + px+q = 0. 2 p p 25. Võrrandi x2 + px + q = 0 lahend on valem x1; 2 = - ± -q . 2 2 26. Taandamata ruutvõrrand ax 2 + bx + c = 0 , a 1 - b ± b 2 - 4ac 27

Matemaatika
15 allalaadimist
thumbnail
3
doc

Gümnaasiumi valemid

Matemaatika 11. klassi valemid Astendamise abivalemid am n a an a a =a m n m +n (a m ) n = a mn ( ab) n = a n b n n = a m -n = n a b b n p Liitprotsendiline kasvamine (kahanemine): L = A 1 + , kus L on 100 lõppväärtus, A - algväärtus, p - kasvamise protsent, n - kasvutsüklite arv. Logaritmide omadused: log a c = b a b = c a loga c = x lo

Matemaatika
833 allalaadimist
thumbnail
6
doc

11. klassi materjal matemaatikas

Aritmeetiline jada-Jada, mille iga liige alates teisest on võrdne eelneva liikme ja selle jada jaoks mingi kindla arvu summaga nimetatakse aritmeetiliseks jadaks. Seda kindlat arvu nimetatakse aritmeetilise arvu jadaks ja tähistatakse tähega d. an=a1+(n-1)d an+1=an+d » an+1-an=d sn= a1+an/2 x n või sn=2a1+(n-1)d/2 Geomeetriline jada- Jada, mille iga liige alates teisest on võrdne eelneva liikme ja antud jada jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks. Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q n-1 n an=a1 x q q=an+1/n sn=a1(q -1)/q-1 Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q Arvu ,,A" nimetatakse jada ,,an" tõkestamatul kasvamisel ja tähistatakse sümboliga liman=A n lim1/n=0 Piirväärtus n (tõkestamatul kasvamisel) läheneb nullile. n Piirväärtust

Matemaatika
501 allalaadimist
thumbnail
9
doc

INTEGREERIMISE VALEMID

DIFERENTSEERIMISE ja INTEGREERIMISE VALEMID y dy Tuletis y = lim = = f ( x) x 0 x dx Integraal f ( x)dx = F ( x) +c , kus d [ F ( x) + c ] = f ( x)dx Diferentseerimise reeglid Diferentseerimise reeglid Integreerimise reeglid Lihtfunktsioon y=(x) Liitfunktsioon y=(u), u=(x) (u +v)'=u'+v', kus u,v=(x) (ux +vx)'=ux'+ vx' (u + v)dx = u dx + v dx (u ­ v)'=u'­ v' (ux ­ vx)'=ux'­ vx' (u ­ v)dx = u dx ­ v dx ( u·v ) ' = u'v + v'u (ux·vx)'=ux'v+ vx'u u dv = uv ­ v du ( C·u ) ' = C u' ( C·ux ) ' = C ux' Cu dx= C u dx (u·v·w)' = u'vw + v'uw + w'uv u u x

Matemaatiline analüüs
109 allalaadimist
thumbnail
9
doc

Diferentseerimise ja integreerimise valemid

DIFERENTSEERIMISE ja INTEGREERIMISE VALEMID y dy Tuletis y = lim = = f ( x) x 0 x dx Integraal f ( x)dx = F ( x) +c , kus d [ F ( x) + c ] = f ( x)dx Diferentseerimise reeglid Diferentseerimise reeglid Integreerimise reeglid Lihtfunktsioon y=(x) Liitfunktsioon y=(u), u=(x) (u +v)'=u'+v', kus u,v=(x) (ux +vx)'=ux'+ vx' (u + v)dx = u dx + v dx (u ­ v)'=u'­ v' (ux ­ vx)'=ux'­ vx' (u ­ v)dx = u dx ­ v dx ( u·v ) ' = u'v + v'u (ux·vx)'=ux'v+ vx'u u dv = uv ­ v du ( C·u ) ' = C u' ( C·ux ) ' = C ux' Cu dx= C u dx (u·v·w)' = u'vw + v'uw + w'uv u u x

Diferentsiaal-ja...
86 allalaadimist
thumbnail
3
doc

Matemaatika valemid

S=abc/4R, kus R on välisringjoone raadius Trapets S=a2*sin S=(a+b/2)*h S=0,5* d1*d2 Rööpkülik Sarnased kolmnurgad d12+d22=2(a2+b2) / S=ah / S= a*b*sin S1/S2=k2 (k=sarnasustegur) Silinder Sk = 2rh; St = Sk+2Sp=2rh+2r2 =2r(h+r); Sp = r2; V = r2h Koonus Sk = rm; St = Sp+Sk=r2+rm=r(r+m);V = 1/3r2h Kera S = 4r2; V = 4/3r3 Rööpkülik S=a*h Romb S=d1*d2 2 Trapets S=a+b*h 2 Püströöp Sk=P*H; P=2(a+b); Sp=a*h; St=Sk+2Sp;V=Sp*H tahukas

Matemaatika
1753 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

7 Vastus: k   ja   90  60,3  150,3 4 Näide. Leiame sirge võrrandi, kui sirge tõusunurk on 45° ja sirge läbib punkti A(3; 4). k  tan 45  1 ja b = 4, seega sirge võrrand on y = x + 4. © Allar Veelmaa 2014 27 10. klass Viljandi Täiskasvanute Gümnaasium KAHE PUNKTIGA MÄÄRATUD SIRGE VÕRRAND Sirge läbib punkte A(x1; y1) ja B(x2; y2) ning punkt P(x; y) on sirge suvaline punkt. Kuna punktid A, B ja P asuvad ühel ja samal sirgel, siis on   vektorid AB ja AP kollineaarsed vektorid ning kehtib võrdus x  x1 x  x1  2 y  y1 y2  y1 See on kahe punktiga määratud sirge võrrand. Näide. Leiame sirge võrrandi, kui A(–3; –5) ja B(4; 3).

Matemaatika
79 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

....................................................................... 12 Võrrandid................................................................................................................................12 Võrrandi samaväärsus.............................................................................................................13 Lineaarvõrrand........................................................................................................................13 Ruutvõrrand............................................................................................................................13 Viete teoreem......................................................................................................................14 Biruutvõrrand..........................................................................................................................14 Murdvõrrand.............................................................................

Matemaatika
1453 allalaadimist
thumbnail
2
docx

Valemileht 10.klass

KORRUTAMISE ABIVALEMID (a+b)(a-b)=a²-b² - ruutude vahe valem (a+b)²=a²+2ab+b² - summa ruudu valem (a-b)²=a²-2ab+b² - vahe ruudu valem a³+b³=(a+b)(a² -ab+b²) - kuupide summa valem a³-b³=(a-b)(a² +ab+b²) - kuupide vahe valem (a+b)³=a³+3a²b+3ab²+b³ - summa kuubi valem (a-b)³=a³-3a²b+3ab²-b³ - vahe kuubi valem RUUTVÕRRAND x2 + px + q = 0 - taandatud ruutvõrand ; lahend ax2 + bx + c = 0 ­ taandamata ruutvõrrand ; lahend x1 + x2 = -p ; x1 · x2 = q - viete valemid. Kus x1 ja x2 on taandatud ruutvõrrandi lahendid. ax2 + bx + c ( ruutkolmliikme lahutamine teguriteks) : ax2 + bx + c = a(x-x1)(x-x2). x1 ja x2 ruutvõrrandi lahendid. DETERMINANDID = a ·d - c·b. = aei + cdh +bfg ­ gec ­ ahf ­dbi. TRIGONOMEETRIA PÕHISEOSED sin2 + cos2 = 1 1 + cot2 a = tan = tan a cot a =1 1+ tan2 a = TÄIENDUSNURGA VALEMID sin (90 - a) =cos a cos (90 - a) = sin a

Matemaatika
533 allalaadimist
thumbnail
2
pdf

Matemaatika valemid

Viete`i teoreem -a (-b) = ab = , - lähisnurgad x2+px+q=0; x1+x2= - p; x1x2=q -a : b = a : (-b) = - a : b b d y=ax2 + c a>0 -a : (-b) = a : b ad=bc Trigonomeetria Romb P = 4a S = ah 30° 45° 60° sin= cos = cos(90o - ) d2 d d

Algebra I
142 allalaadimist
thumbnail
2
docx

Matemaatiline analüüs I abivalemid

TULETISED Tuletiste põhiomadused: ' csin=0x+cos 2( c=const ) 2 x ( cu )' =c ( u )' , kus c=const Tähtsad piirväärtused: INTEGRAALID x =1 ' Newton-Leibniz: sinb x tan x sin ¿ =cos x x dx lim =1 lim =1 ∫ ' 0 dx=C x =1 2 1 ∫ x ¿ α dx=

Matemaatiline analüüs 1
8 allalaadimist
thumbnail
4
pdf

MATEMAATIKA GÜMNAASIUMI (GEOMEETRIA, PLANIMEETRIA, STEREOMEETRAIA) JA PÕHIKOOLI EKSAMIKS KÕIK VAJALIKUD VALEMID

Viete`i teoreem -a ⋅ (-b) = a⋅b = α,β - lähisnurgad x2+px+q=0; x1+x2= - p; x1x2=q -a : b = a : (-b) = - a : b b d y=ax2 + c a>0 -a : (-b) = a : b ad=bc Trigonomeetria Romb P = 4a S = ah α 30° 45° 60° sinα= cos β = cos(90o − α ) d2 d ⋅d

Matemaatika
871 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

1. Funktsioon: Funktsiooni mõiste. Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Funktsioone tähistatakse tavaliselt tähtedega f; g; u; v; ; jne. Olgu antud funktsioon f mille argumendiks on x ja s~oltuvaks muutujaks y. Muutuja y väärtust milleks funktsioon f kujutab argumendi x nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega, me võime kirjutada seose y = f(x) ; (1.1) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Mõnikord kasutatakse funktsiooni ja sõltuva muutuja tähistamiseks ühte ja sama sümbolit. Sellisel juhul seos (1.1) omab kuju y = y(x). Argumendi x muutumispiir

Matemaatiline analüüs
598 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

YMM3731 Matemaatiline analu¨u¨s I 2007/08 ~o.-a. su¨gissemestril 3,5 AP 4 2-0-2 E S Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: [email protected] K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul

Matemaatiline analüüs
808 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

Funktsioon. Määramispiirkond, väärtuste hulk. Pöördfunktsioon. Seaduspärasust või teisendust, mis igale X elemendile x seab vastavuse ühe hulga Y elemendi y nim. argumendi x funktsiooniks ja kirjutatakse y=f(x) Funktsiooni y=f(x) määramispiirkonnaks on kõigi nende argumendi x väärtuste hulk, mille korral funktsioon omab mõtet ja on lõpliku väärtusega. Funktsiooni väärtuste hulgaks nim. nende väärtuste hulka, mida funktsioon omandab, kui läbib kogu määramispiirkonna. Tingimused, mis peavad olema täidetud elementaarfunktsioonide kaudu esitatud reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x l

Matemaatiline analüüs
179 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

Funktsioon. Määramispiirkond, väärtuste hulk. Pöördfunktsioon. Seaduspärasust või teisendust, mis igale X elemendile x seab vastavuse ühe hulga Y elemendi y nim. argumendi x funktsiooniks ja kirjutatakse y=f(x) Funktsiooni y=f(x) määramispiirkonnaks on kõigi nende argumendi x väärtuste hulk, mille korral funktsioon omab mõtet ja on lõpliku väärtusega. Funktsiooni väärtuste hulgaks nim. nende väärtuste hulka, mida funktsioon omandab, kui läbib kogu määramispiirkonna. Tingimused, mis peavad olema täidetud elementaarfunktsioonide kaudu esitatud reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x l

Matemaatiline analüüs
11 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

A C 39. Sirge üldvõrrand Ax + By + C = 0, kus sirge tõus k = ­ ja algordinaat b = ­ B B 40. Sirge üldvõrrandi uurimine: a) C = 0 , sirge läbib koordinaatide alguspunkti Ax+By=0 b) B = 0 , sirge on paralleelne y ­ teljega Ax+C=0 x=a c) A = 0 , sirge on paralleelne x ­ teljega By+C=0 y=b d) B = C = 0 , y ­ telje võrrand x=0 e) A = C = 0 , x ­ telje võrrand y=0 2 x y b 41. Sirge võrrand telglõikudes + = 1 kus sirge tõus k = ­ a b a

Analüütiline geomeetria
140 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

A C 39. Sirge üldvõrrand Ax + By + C = 0, kus sirge tõus k = ­ ja algordinaat b = ­ B B 40. Sirge üldvõrrandi uurimine: a) C = 0 , sirge läbib koordinaatide alguspunkti Ax+By=0 b) B = 0 , sirge on paralleelne y ­ teljega Ax+C=0 x=a c) A = 0 , sirge on paralleelne x ­ teljega By+C=0 y=b d) B = C = 0 , y ­ telje võrrand x=0 e) A = C = 0 , x ­ telje võrrand y=0 2 x y b 41. Sirge võrrand telglõikudes + = 1 kus sirge tõus k = ­ a b a

Analüütiline geomeetria
39 allalaadimist
thumbnail
21
pdf

Funktsiooni tuletis (jätk) loeng 6

Funktsiooni tuletis (jätk) - + sin - sin = 2 sin cos 2 2 Funktsiooni y = sin x tuletis Teoreem: Funktsiooni y = sin x tuletis on cos x. x + x - x x + x + x Tõestus: y = sin( x + x) - sin x = 2 sin cos 2 2 x x = 2 sin cos x + 2 2 x x x 2 sin cos x + sin y 2 2 2 cos x + x = = x x x 2 2 1 x

Matemaatika
70 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II. Olgu f ` (x1) = 0. Kui f ` '(x1) < 0 siis on funktsio

Matemaatiline analüüs
350 allalaadimist
thumbnail
33
doc

Matemaatika riigieksam

2 C-2 Leia kõik argumendi x väärtused, mille korral funktsioonide y = log 0, 5 ( 0,25 +1.25 x ) ja 2 3+x - 36 y= erinevad teineteisest vähem kui 6 võrra. 7 C-3 Leia võimalikud väärtused, mida võib omandada võrrandi ( ) x 2 + 4 x + k 2 - 5k + 10 = 0 erinevata lahendite korrutis. C-4 Püstprisma ABCA1B1C1 põhitahuks on täisnurkne kolmnurk kaatetitega AB = 5 ja BC = 12. Prisma kõrgus on 15. Leia püramiidi ruumala kui püramiidi tipp on punktis C1 ja ülejäänud tipud servade BC, BB1 ja A1B1 keskpunktides. C-5 Olgu parameeter a , mille korral on täidetud tingimus x12 + x 22 16 ja x1 ja x2 on võrrandi x 2 - 2ax + 2 - a = 0 erinevad lahendid. Leia x13 + x 23 võimalike väärtuste hulk. Vastused:

Matemaatika
526 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsioonid. . . . . . . . .

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsio

Matemaatika
42 allalaadimist
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

Seega, kui x ; , siis y 1. 6 6 14 15 III Kujutame joonisel plekitahvli ja kanname sellele antud suurused d ( d 3,6 dm) ja ( 56,3 ). Kui plekitahvel keevitatakse toruks mööda pikemat külge NK ML , siis tekib silinder, mille kõrguseks (h) on plekitahvli pikem külg ja põhja ümbermõõt (C) võrdub plekitahvli lühema külje KL pikkusega. N M d h C K L a) Vaatleme täisnurkset kolmnurka KLM ning leiame lõikude ML ja KL pikkused: ML ML sin sin 56,3 ML 3,6 sin 56,3 2,995 , KM 3,6

Algebra ja Analüütiline...
780 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

Sisujuht 16. Esimest liiki katkevuspunkt - niisugust katkevuspunkti, kus funktsioonil f on olemas ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. .....

Matemaatika
118 allalaadimist
thumbnail
12
pdf

2009. aasta matemaatika riigieksami ülesanded ja lahendused

Mustandid säilitatakse koolis. Hindamiskomisjon ei loe ega hinda hariliku pliiatsiga kirjutatud lahendusi ega mustandipaberile kirjutatut. Nõutavad teadmised ja oskused Matemaatika riigieksam ei ole 12. klassi lõpueksam, vaid kogu koolimatemaatika põhiteadmiste ja ­oskuste omandatust kontrolliv eksam. Eksamiülesannete koostamisel eeldatakse, et eksaminand on (minimaalselt) läbinud järgmised ainekursused: 1. Reaalarvud. Võrrandid ja võrratused. 2. Trigonomeetria. 3. Vektor tasandil. Joone võrrand. 4. Funktsioonid I, II. 5. Funktsiooni piirväärtus ja tuletis. 6. Tõenäosusteooria ja kirjeldav statistika. 7. Stereomeetria. Riigieksamiülesannete koostamisel lähtutakse riiklikus õppekavas esitatud nõuetest (vt ,,Põhikooli ja gümnaasiumi riiklik õppekava"; http://www.riigiteataja.ee/ert/act.jsp?id=174787 ). Eksamiülesannete lahenduste näiteid (2008/2009 õ-a riigieksami põhjal)

Matemaatika
1273 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun