Siinusteoreem c b a Siinusteoreemi saab kasutada siis, kui on antud 1 külg ja tema vastasnurk ning veel mingi külg või veel mingi nurk. Näide Leia jooniselt b väärtus, kui a=6 ; =41° ; =56° c b 56° 41° 6 =180° - ( + ) =180° - (56°+41°) = 180° - 97° = 83° Siinusteoreem
S= p(p-a)(p-b)(p-c) a+b+c p= 2 a 2. Kolmnurga pindala võrdub kahe külje ja nendevahelise nurga siinuse poole korrutisega. ab sin ac sin bc sin S= 2 = 2 = 2 3. Siinusteoreem: a b c sin = sin = sin 4. Koosinusteoreem: Kolmnurga ühe külje ruut on võrdne ülejäänud külgede ruutude summaga, millest on lahutatud samade külgede ja nendevahelise nurga koosinuse kahekordne korrutis. a2 = b2 + c2 2bc cos b2 = a2 + c2 2ac cos c2 = a2 + b2 2ab cos 5. Pea Meeles! Kui kolmnurga lahendamisel on tarvis leida kaks või kolm nurka, siis tuleb esmalt arvutada
Kolmnurga lahendamine Antud Üks külg ja 2 nurka Kaks külge ja neist ühe 2 külge ja külgedevaheline Kolm külge vastasnurk nurk Siinusteoreem Siinusteoreem Koosinusteoreem Koosinusteoreem 180 180 Siinusteoreem Siinusteoreem Lahendamine 180 180 2 lahendit, kui antud
tan + + 15. 16. Nurgaradiaan on kesknurk, mis toetub raadiuse pikkusele kaarele. 17. Seos kraadimõõdu ja radiaanmõõdu vahel on 180º= rad 18. Vektorite a ja b skalaarkorrutiseks a · b nim. nenede vektorite pikkuste ning vektoritevahelise nurga koosinuse korrutist. 19. Vektorite ristiseisu tunnus: kaks nullvektorist erinevat vektorit on risti siis ja ainult siis, kui nenede skalaarkorrutis on null 20. Siinusteoreem: a/sin = b/sin = c/sin 21. Koosinusteoreem: a2=b2-c2-2bccos, b2=a2+c2-accos, c2=a2+b2-2abcos 22. Kolmnurga pindala: S=ab· sin/2, S=ac·sin/2, S=cb· sin/2 23. Kahe nurga summa ja vahe sin sin(+)= sincos+cossin, sin(-)=sincos-cossin 24. Kahe nurga summa ja vahe cos cos(+)=coscos-sinsin, cos(-)=coscos+sinsin 25. Kahe nurga summa ja vahe tan tan(+)=tan+tan/1-tantan, tan(-)=tan-tan/1+tantan 26. Kahekordse nurga tan: tan2 = 2tan /1 -tan2 27. Kahekordse nurga sin: sin2 = 2sincos 28
Romb Rööpkülik Trapets Täisnurkne kolmnurk Sirge tasandil Siinusteoreem Vektor Silinder Püstprisma Kolmnurka pindala Koonus Korrapärane püramiid Aritmeetiline jada Geomeetriline jada Kera Hääbuv geomeetriline jada Liitprotsent
Trigonomeetria valemid Täisnurkse kolmnurga teravnurga siinus, koosinus, tangens ja kootangens: Põhiseosed: Täiendusnurga valemid: Mõningate nurkade trigonomeetriliste funktsioonide väärtused: 0 1 1 0 0 1 - - 1 0 Iga nurk x esitub kujul: Negatiivse nurga trigonomeetrilised funktsioonid: Nurga radiaanmõõt: Kolmnurga pindala: Siinusteoreem: Koosinusteoreem: Kahe nurga summa ja vahe: Kahekordse nurga siinus, koosinus ja tangens:
Valem sõnades: täisnurkses kolmnurgas hüpotenuusi (c) ruut võrdub kaatetite (a ja b) ruutude summaga. koosinusteoreem Kolmnurga ühe külje ruut on võrdne ülejäänud külgede ruutude summaga, millest on lahutatud samade külgede ja nendevahelise nurga koosinuse kahekordne korrutis Pythagorase teoreem on koosinusteoreemi erijuht täisnurksete kolmnurkade jaoks. Siinusteoreem on seos kolmnurga külgede ja nurkade vahel. Selle järgi on kolmnurga suurima külje vastas ka suurim nurk. Täpsemalt öeldes on kolmnurga kõigi külgede suhe vastasnurga siinusesse konstantne ning selle kaudu saab leida kolmnurga ümberringjoone raadiuse R. Siinusteoreemi kasutatakse kolmnurga arvutamiseks, kui on teada üks külg, selle vastasnurk ja veel kas üks külg või üks nurk. Juhul, kui on teada kaks külge ja ühe külje vastasnurk, tuleb eelnevalt veenduda ka selles, kas otsitav nurk on teravnurk või nürinurk (näite...
Matemaatika valemid VÕRRANDID JA VÕRRATUSED ruutvõrrand murdvõrrand nimetaja ei võrdu nulliga! vajadusel leian ühise nimetaja kontroll! juurvõrrand võtan mõlemad pooled ruutu trigonomeetriline võrrand - logaritm eksponentfunktsioon ja eksponentvõrrandid 1. eksponentvõrrand 2. eksponentvõrrand 3. kolmeliikmeline eksponentvõrrand ehk logaritmfunktsioon ja logaritmvõrrand logaritmfunktsioon: logaritmvõrrandite lahendusvõtted: 1. potentseerimine 2. asendusvõte 3. logaritmi definitsiooni kasutamine võrrandisüsteem ja võrratussüsteem liitmis- või asendusvõte! GEOMEETRIA Tasandilised kujundid kolmnurk Heroni valem: r – siseringjoone raadius täisnurkne kolmnurk koosinusteoreem siinusteoreem R – ümberringjoone raadius ruut ristkülik rööpkülik trapets romb ringjoon, ring,...
Aritmeetiline jada: an = a1+(n-1)d d = an-an-1 Sn = Geomeetriline jada: an = a1qn-1 Sn = Hääbuv jada: S = Trigonomeetria: sin 2 2 2 = sin +cos = 1 1+tan = sin2 = 2cossin cos2 = 2cos2-1 tan2 = siinusteoreem: (ümberringjoone raadius) koosinusteoreem: a2=b2+c2-bccos erikülgne kolmnurk: S= n Põhivõrrandid: sinx= a x=(-1) +180n, n Z cox= a x=+360n, n Z tanx= a x= +180n, n Z Kaare pikkus: l= Sektori pindala: S= n Liitintress: c= a(1) a-algväärtus Vektorid: pikkus paralleelsus || ristseis X1X2+Y1Y2= 0 nurk vektorite vahel cos = Sirge võrrand: kahe punktiga tõusu ja algkoordinaadiga y= kx+b (lp y-teljega) tõusu ja punktiga y-y1=k(x-x1) Kahe sirge vastastikused asendid: paralleelsed...
III:- IV:- III: - IV:+ III:+ IV: - · sin= cos(90°-) · sin·sin= -1/2[cos(+)-cos(-)] · cos= sin(90°-) · cos·cos= 1/2[cos(+)+cos(-)] · sin(-x)= -sinx · sin·cos= 1/2[sin(+)+sin(-)] · cos(-x)= cosx · SIINUSTEOREEM: a/sin= b/sin= c/sin= 2R · tan(-x)= -tanx · KOOSINUTEOREEM: · sin2+cos2= 1 · a2= b2+c2-2·b·c·cos · tan= sin/cos · cos= b2+c2-a2/2·b·c · cot= cos/sin= 1/tan · b2= a2+c2-2·a·c·cos · tan·cot= 1 · cos= a2+c2-b2/2·a·c
Funktsioonide väärtused kraadides. Nurkade lahendvalemid. Erinevate funktsioonide graafikute joonised.
Kolmnurga kõrgused lõikuvad ühes punktis. Kolmnurga nurgapoolitajad lõikuvad kõik ühes punktis, mis on kolmnurga siseringjoone keskpunktiks (raadius r on keskpunkti kaugus küljest). Kolmnurga mediaanid (küljepoolitajad) lõikuvad kõik ühes punktis, mis jaotab iga mediaani suhtes 2:1 vastavast tipust arvates. Kolmnurga külgede keskristsirged lõikuvad kõik ühes punktis, mis on kolmnurga ümberringjoone keskpunktiks (raadius R on keskpunkti kaugus kolmnurga tipust). Siinusteoreem: kolmnurga küljed on võrdelised vastasnurkade siinustega ehk a b c = = = 2R . sin sin sin Koosinusteoreem: kolmnurga ühe külje ruut on võrdne ülejäänud külgede ruutude summaga, millest on lahutatud nende külgede kahekordne korrutis samade külgede vahelise nurga koosinusega ehk a 2 = b 2 + c 2 - 2bc cos ,
Külgede keskristsirgete lõikepunkt ümberringjoone keskpunkt, . Kesklõik ühendab kahe külje keskpunkte ja paralleelne kolmanda küljega ning ½ sellest. Siinusteoreem 2 Koosinusteoreem 2 · Pindala valemid , , , , ,
2) a on paaritu arv y = sin x y = cos x y = tan x Perioodide pikkused: y = sin x periood: y = cos x periood: y = tan x periood: TRIGONOMEETRIA 1 + tan2 = 1 + cot2 = sin (+) = sin (-) = cos (+) = cos(-) = tan (+) = tan (-) = sin 2 = cos 2 = tan 2 = sin /2 = cos /2 = tan /2 = Võrrandid: sin x = m x= cos x = m x= tan x = m x= Eukleidese teoreem: Teoreem kõrgusest: Siinusteoreem: 2R = Koosinusteoreem: NB! p pool ümbermõõtu, r siseringjoone raadius, R ümberringjoone raadius Ebatavalised pindala valemid: S = 0,5 bc sin S = pr S = abc/4R NB! Vaata üle ka nt Thalese teoreem JADA Aritmeetiline jada an = Sn = Geomeetriline jada an = Sn = Hääbuva jada summa: Sn = Potentseerimise teoreemid: NB! a^ loga N = N loga Nm = Uuele alusele viimine: loga N = loga N1 · N2 = loga N1 / N2 = KUJUNDID Sektori pindala:
'],' fi i s li'k rr e il,"q rin c. E ii'ira ig u r:- r' !,,. C{ * pr =Y11' .-^{) u -ta ={-: "a )--) SlnA = -. = cos,6' * fi) = eosex ft'=fr h'=Gr- (, ...
Liites võrduste mõlemad pooled: 2cos2(a/2) = 1 + cos a Lahutades: 2sin2(a/2) = 1 - cosa järelikult: cos2 (a/2) = 1 + cos (a/2) sin2a/2) = 1 - cos (a/2) VEKTORID TASANDIL Punktid A(x1;y1) ja B(x2;y2) Vektori koordinaadid on AB=(x2-x1;y2-y1) Vektorid u=(a;b) ja v=(c;d) Summa ja vahe u ±v =(a±c;b±d) Korrutis arvuga r r·u = (ra;rb) Vektori skalaarkorrutis u·v = a·c + b·d ja u· v =|u||v|·cos Vektori pikkus |u|= Kahe punkti vaheline kaugus AB= Nurk vektorite vahel cos= KOLMNURK Siinusteoreem Koosinusteoreem a2=b2+c2 -2bccos; b2=a2 + c2-2accos; c2=a2+b2-2abcos. Kolmurga pindala S= ; S=pr ; S=absin ; S= ; S= ; S= SIRGE VÕRRANDID Üldvõrrand - ax + by=c või ax + by +c =0 x-teljega paralleelne sirge y=a y-teljega paralleelne sirge x=b koordinaattelgede vahelise nurga poolitaja võrrand: I ja III veerand y=x; II ja IV veerand y=-x punktiga A(x1;y1) ja vektoriga v=(sx;sy) määratud sirge = punktidega A(x1;y1) ja B(x2;y2) määratud sirge
sin = cos (90o ) sin = vastas kaatet/hüpotenuus cos = sin (90o ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ) tan = vastas kaatet/lähis kaatet cot =tan (90o ) cot = lähis kaatet/vastas kaatet tan = cot (90o ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos a/sin=b/sin=c/sin=2R S=1/2a*b*sin b2=a2+c2-2ac*cos c2=a2+b2 S=1/2*a*c*sin c2=a2+b2-2ab*cos a2=fc / b2=gc S=1/2*b*c*sin Romb h2=fg / ab=hc
PLANIMEETRIAKURSUSE KORDAMINE GÜMNAASIUMI LÕPUEKSAMIKS. KOLMNURGAD 1. Kolmnurga sisenurkade summa on sirgnurk + + = 180 o 2. Siinusteoreem a b c = = = 2R sin sin sin 2. Koosinusteoreem a 2 = b 2 + c 2 - 2bc cos b 2 = a 2 + c 2 - 2ac cos c 2 = a 2 + b 2 - 2ab cos 4. Pindala valemid. ch ab sin a +b +c S= ; S= ; S = p ( p - a )( p -b)( p -c ) ; p= ;
PLANIMEETRIAKURSUSE KORDAMINE GÜMNAASIUMI LÕPUEKSAMIKS. KOLMNURGAD 1. Kolmnurga sisenurkade summa on sirgnurk 180 o 2. Siinusteoreem a b c 2R sin sin sin 2. Koosinusteoreem a 2 b 2 c 2 2bc cos b 2 a 2 c 2 2ac cos c 2 a 2 b 2 2ab cos 4. Pindala valemid. ch ab sin abc S ; S ; S p ( p a )( p b)( p c) ; p ;
43. Korrutis arvuga r r u = ( ra; rb) 44. Vektorite skalaarkorrutis u v = a c + b d ja u v =u v cos 45. Vektori pikkus u = u1 +u 2 2 2 46. Kah e punkti A( x1 ; y1 ) ja B ( x 2 ; y 2 ) vaheline kaugus AB = ( x 2 - x1 ) 2 + ( y 2 - y1 ) 2 47. Nurk vektorite vahel u v cos = u v KOLMNURK a b c 48. Siinusteoreem sin = sin = sin = 2 R 49. Koosinusteoreem a 2 = b 2 + c 2 - 2bc cos b 2 = a 2 + c 2 - 2ac cos c 2 = a 2 + b 2 - 2ab cos 50. Kolmnurga pindala 1 1 a 2 sin sin S= ah , S= ab sin , S= , S = pr 2 2 2 sin
PLANIMEETRIA KORDAMINE NELINURGAD RÖÖPKÜLIK Vastasküljed on paralleelsed ja võrdsed Vastasnurgad on võrdsed Diagonaalid poolitavad teineteist Diagonaal jaotab rööpküliku kaheks pindvõrdseks kolmnurgaks Lähisnurkade summa on 180º ( Diagonaalide ruutude summa on võrdne külgede ruutude summaga: d 12 + d 22 = 2 a 2 + b 2 ) Ümbermõõt. P = 2( a + b ) Pindala: S = ah S = a b sin ROMB On võrdsete külgedega rööpkülik, seega on rombil kõik rööpküliku omadused. Lisaks on rombi diagonaalid risti ja poolitavad rombi nurgad, Rombi kõrgused on pikkuselt võrdsed. 1 Rombi diagonaalide lõikepunkt on siseringjoone keskpunkt r = h 2 d 12 + d 22 = 4a 2 Ümbermõõt: P = 4a Pindala: S ...
43. Korrutis arvuga r r u = ( ra; rb) 44. Vektorite skalaarkorrutis u v = a c + b d ja u v =u v cos 45. Vektori pikkus u = u1 +u 2 2 2 46. Kah e punkti A( x1 ; y1 ) ja B ( x 2 ; y 2 ) vaheline kaugus AB = ( x 2 - x1 ) 2 + ( y 2 - y1 ) 2 47. Nurk vektorite vahel u v cos = u v KOLMNURK a b c 48. Siinusteoreem sin = sin = sin = 2 R 49. Koosinusteoreem a 2 = b 2 + c 2 - 2bc cos b 2 = a 2 + c 2 - 2ac cos c 2 = a 2 + b 2 - 2ab cos 50. Kolmnurga pindala 1 1 a 2 sin sin S= ah , S= ab sin , S= , S = pr 2 2 2 sin
sin(180° - )=sin sin cos(180° - )= -cos tan = 2 1 + cos tan(180° - )= -tan 1 - cos cot(180° - )= -cot tan = Kolmas veerand: 2 sin sin(180° + )= -sin 31. Siinusteoreem ab sin cos(180° + )= -cos a b c S= tan(180° + )= tan = = 2 sin sin sin ac sin cot(180° + )= cot S=
....................... 27 Trigonomeetriliste funktsioonide summa ja vahe teisendamine korrutiseks..........................28 Taandamisvalemid..................................................................................................................28 Trigonomeetriliste funktsioonide korrutise teisendamine summaks või vaheks....................29 Kolmnurga pindala valemid................................................................................................... 29 Siinusteoreem......................................................................................................................... 29 Koosinusteoreem.................................................................................................................... 30 IV Vektor tasandil...................................................................................................................... 30 Sissejuhatuseks................................................................................
võrdeline vastava kesknurga suurusega. Seega, kui sektori nurk on ao, leitakse esmalt ühekraadise nurgaga sektori pindala ja siis a korda suurema kesknurgaga sektori pindala. 5.14 Kolmnurga pindala · Kolmnurga pindala võrdub aluse ja sellele joonestatud kõrguse poole korrutisega. · Kolmnurga pindala võrdub kahe külje ja nendevahelise nurga siinuse poole korrutisega · Rööpküliku pindala võrdub kahe külje ja nendevahelise nurga siinuse korrutisega. 5.15 Siinusteoreem Kolmnurga küljed on võrdelised vastasnurkade siinustega 5.16 Koosinusteoreem Kolmnurga ühe külje ruut on võrdne teiste külgede ruutude summaga, millest on lahutatud samade külgede ja nendevahelise nurga koosinuse kahekordne korrutis. 5.17 Kolmnurga lahendamine 5.18 Kahe nurga summa ja vahe sin ja cos 5.19 Kahe nurga summa ja vahe tan 5.20 Kahekordse nurga sin, cos, tan Vektor tasandil Kui A(x1) ja B(x2), siis lõigu AB pikkus on AB=|x1-x2|
f g c h f h h g h a = sin, a = cos, f = tan b = sin, b = cos g = tan Siinus- ja koosinusteoreem. Pindala valemid a b c Siinusteoreem: = = sin sin sin Koosinusteoreem: a2 = b2 + c2 – 2bc cos b2 = a2 + c2 – 2ac cos c2 = a2 + b2 – 2ab cos Pindala valemid abc S = 0,5ah S = 0,5ab sin S = pr S = 4R a2 sin sin
Kolmnurga kõrgused lõikuvad ühes punktis. Kolmnurga nurgapoolitajad lõikuvad kõik ühes punktis, mis on kolmnurga siseringjoone keskpunktiks (raadius r on keskpunkti kaugus küljest). Kolmnurga mediaanid (küljepoolitajad) lõikuvad kõik ühes punktis, mis jaotab iga mediaani suhtes 2:1 vastavast tipust arvates. Kolmnurga külgede keskristsirged lõikuvad kõik ühes punktis, mis on kolmnurga ümberringjoone keskpunktiks (raadius R on keskpunkti kaugus kolmnurga tipust). Siinusteoreem: kolmnurga küljed on võrdelised vastasnurkade siinustega ehk a b c = = = 2R . sin sin sin Koosinusteoreem: kolmnurga ühe külje ruut on võrdne ülejäänud külgede ruutude summaga, millest on lahutatud nende külgede kahekordne korrutis samade külgede vahelise nurga koosinusega ehk a 2 = b 2 + c 2 - 2bc cos ,
Kolmnurga kõrgused lõikuvad ühes punktis. Kolmnurga nurgapoolitajad lõikuvad kõik ühes punktis, mis on kolmnurga siseringjoone keskpunktiks (raadius r on keskpunkti kaugus küljest). Kolmnurga mediaanid (küljepoolitajad) lõikuvad kõik ühes punktis, mis jaotab iga mediaani suhtes 2:1 vastavast tipust arvates. Kolmnurga külgede keskristsirged lõikuvad kõik ühes punktis, mis on kolmnurga ümberringjoone keskpunktiks (raadius R on keskpunkti kaugus kolmnurga tipust). Siinusteoreem: kolmnurga küljed on võrdelised vastasnurkade siinustega ehk a b c 2R . sin sin sin Koosinusteoreem: kolmnurga ühe külje ruut on võrdne ülejäänud külgede ruutude summaga, millest on lahutatud nende külgede kahekordne korrutis samade külgede vahelise nurga koosinusega ehk
..............................329 Täisnurkne kolmnurk ja trigonomeetrilised Teine tuletis, kolmas tuletis jne .................... 331 põhiseosed ...............................................212 Hoo pealt veepommi viskamine* ................. 333 Siinusteoreem .............................................222 Koosinusteoreem ........................................224 integraal ............................................ 340 Trigonomeetria kosmoses: robotkäsi ........... 227 Integreerimine ............................................. 341 Integraal ja üldisemad pindalad ................... 347 trigonomeetria ja perioodilised