Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Füüsika põhimõisted - sarnased materjalid

punktmass, const, nurkkiirus, impulsimoment, vektor, koordinaat, moodul, resultant, inertsimoment, ajavahemikus, projektsioon, nurkkiirendus, impulss, resultantjõu, grad, siseenergia, kohavektor, nihe, asukohta, projektsioonid, valemitega, normaalkiirendus, telgede, 1rad, mehaaniline, amplituud, lainefunktsioon, termodünaamika, entroopia, põhimõisted
thumbnail
24
pdf

Füüsika 1 eksam

Sissejuhatus Erinevad ühikud rad rad 1 2 = 1Hz 1 = Hz s s 2 Vektorid r F - vektor r F ja F - vektori moodul Fx - vektori projektsioon mingile suunale, võib olla pos / neg. r Fx = F cos Vektor ristkoordinaadistikus Ükskõik millist vektorit võib esitada tema projektsioonide summana: r r r r F = Fx i + Fy j + Fz k , millest vektori moodul: F = Fx2 + Fy2 + Fz2 Kinemaatika Kiirus Keskmine kiirus Kiirus on raadiusvektori esimene tuletis aja t2 järgi. s v dt s v = - võimalik leida ühtlase liikumise kiirust vk = = t1 t t t

Füüsika
193 allalaadimist
thumbnail
9
doc

Füüsika I kordamiskonspekt

Kiirus Puntki asukoha ruumis määrab raadiusvektor r. Aja ja raadiusvektori juurdekasvu abil saame r moodustada suhte . Antud juhul sõltuvad vektori moodul ja suund ajavahemiku t t suurusest.. Kui seda vähendada, siis väheneb ka r. St et t nullile lähenemisel nullile läheneb antud suhe teatud piirväärtusele, mida nimetatakse liikumise kiiruseks- r dr v = lim . Kiirust võib määrata ka raadiusvektori tuletisena aja järgi- v = . Kiirus on t 0 t dt

Füüsika
423 allalaadimist
thumbnail
34
docx

Füüsika eksami konspekt

Füsa eksami konspekt 1, Liikumise kirjeldamine Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Trajektoori saab korrektselt kasutada ainult punktmassi korral. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajavahemiku suhtega (kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis). Kiirendus on kiiruse muutus ajaühikus. (Kiirendusvektor lahutub kiirenevalt liikuva

Füüsika
44 allalaadimist
thumbnail
15
doc

Füüsika I eksami piletid

Tasakaaluting. avaldub võrrandina: p2S=p1S+ghS. Jaganud võrrandi kõik liikmed S-ga saame p2=p1+gh. Seega on rõhkude vahe kahel eri nivool arvuliselt võrdne nende nivoode vahele jääva ühikulise ristlõikega vertikaalse vedelikusamba kaaluga. ARCHIMEDESE SEADUS: Üleslükkejõu suuruse ja suuna määramiseks asendame keha tahkestatud vedeliku või gaasiga. Et see tahkestatud osa jääb tasakaalu, siis peab sellele mõjuva raskusjõu tasakaalustama tema pinnale mõjuvate rõhumisjõudude resultant. Samasugused pindjõud mõjuvad ka kehale endale ning nende resultant annabki üleslükkejõu. (joon.1) §37. Mittekokkusurutava vedeliku pidevuse võrrand. Ajavahemiku t lõiget S läbinud vedeliku ruumala Sv t, ajaühikus lõiget läbinud vedeliku ruumala on aga Sv. Oletame, et voolutoru on nii peenike, et selle igas lõikes võib kiirust konst. pidada. Kui vedelik ei ole kokkusurutav, s.o. tema tihedus on kõikjal ühesugune ning muutuda ei saa, siis vedeliku

Füüsika
1097 allalaadimist
thumbnail
30
docx

Füüsika eksam vastustega: liikumine

Füüsika eksam 1. Liikumise kiirendamine. Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Trajektoori saab korrektselt kasutada ainult punktmassi korral. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajagavahemiku suhtega(kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis)  Kiirendus on kiiruse muutus ajaühikus

Füüsika
45 allalaadimist
thumbnail
18
docx

Füüsika Eksam

1. Kinemaatika põhimõisteid (käsitleb liikumist ja liikumisoleku muutusi ilma nende muutuste põhjusi lahkamata.) Punktmass - idealiseeritud objekt, mille puhul keha mass loetakse koondatuks ühte ruumipunkti. Keha võib vaadelda punktmassina, kui selle mõõtmed on antud ülesande kontekstis tühiselt väikesed. Punktmassi kinemaatiline võrrand ⃗r =⃗r (t) . Taustsüsteem- kehade süsteem, mille suhtes kehade kinemaatikat vaadeldakse. keha asukoht- Keha asukoha määramiseks on vajalik taustsüsteem (taustkeha ja koordinaatteljed )

Füüsika
17 allalaadimist
thumbnail
29
doc

Füüsika kokkuvõttev konspekt

Sellise liikumise puhul on hetkkiirus võrdne *Trajektoor on keha kui punktmassi liikumistee. Trajektoori kuju järgi eristatakse sirgjoonelist, ringjoonelist ja keskmise kiirusega. kõverjoonelist liikumist. Kõverjooneline liikumine taandub ringjoonelisele. Keha liikumise tegelik tee on trajektoor. Trajektoori mõistel on mõtet ainult Nihe on vektor, mis ühendab klassikalises füüsikas. masspunkti poolt Liikumise kirjeldamine peab toimuma ajas ajavahemiku ja ruumis.Ruumis määratakse keha asukoht jooksul läbitud alg- taustsüsteemi suhtes.Taustsüsteemis kehtib ja lõpp-punkte. Sirgliikumisel s =l Newtoni 1 seadus.Iga taustsüsteemi,mis

Füüsika
405 allalaadimist
thumbnail
10
doc

Füüsika eksamiks

skalaarseostega,sest on tegemist sirgjoonelise liikumisega.Järelikult on ajaühikus läbitud teepikkus võrdne kiirusega ühtlasel sirgliikumisel: V=S/t Ja aja t jooksul läbitud teepikkus on siis vastavalt S=Vt. SI süsteemis on kiiruse mõõtühikuks m/s. 1.1.3.Ühtlaselt muutuv sirgliikumine Olgu t ajavahemik,mille jooksul kiirus muutus V¯,siis kiirendus a¯=lim V¯/t=dV¯/dt ja differentsiaalne kiiruse muut vastavalt dV¯=a¯dt Kui kiirendus on const. ja liikumine sirgjooneline ,siis kiirus,ajahetkel t. Tähistame algkiiruse vastavalt V0¯,siis olgu kiirusvektori moodul: V¯=adt=at Tähistame algkiiruse vastavalt V0,siis kiirus ajahetkel t,ühtlaselt kiireneval liikumisel: V=V0+at Ühtlaselt aeglustuva liikumise puhul on kiiruse muut negatiivne kiirendus ka negatiivne ning kiirus ajahetkel t vastavalt V=V0-at Kuna elementaarne ds¯=V¯dt,siis juhul a=const on teepikkus ühtlaselt muutuval sirgliikumisel S¯=V¯dt=V0¯dt+a¯tdt=V0¯t+at²/2

Füüsika
799 allalaadimist
thumbnail
12
docx

Kogu keskkooli füüsikat valdav konspekt

sirgjoonelise liikumisega.Järelikult on ajaühikus läbitud teepikkus võrdne kiirusega ühtlasel sirgliikumisel: V=S/t Ja aja t jooksul läbitud teepikkus on siis vastavalt S=Vt. SI süsteemis on kiiruse mõõtühikuks m/s. 1.1.3.Ühtlaselt muutuv sirgliikumine Olgu t ajavahemik,mille jooksul kiirus muutus V,siis kiirendus a=lim V/t=dV/dt ja differentsiaalne kiiruse muut vastavalt dV=adt Kui kiirendus on const. ja liikumine sirgjooneline ,siis kiirus,ajahetkel t. Tähistame algkiiruse vastavalt V0,siis olgu kiirusvektori moodul: V=adt=at Tähistame algkiiruse vastavalt V0,siis kiirus ajahetkel t,ühtlaselt kiireneval liikumisel: V=V0+at Ühtlaselt aeglustuva liikumise puhul on kiiruse muut negatiivne kiirendus ka negatiivne ning kiirus ajahetkel t vastavalt V=V0at Kuna elementaarne ds=Vdt,siis juhul a=const on teepikkus ühtlaselt muutuval sirgliikumisel S=Vdt=V0dt+atdt=V0t+at²/2

Füüsika
20 allalaadimist
thumbnail
66
docx

Füüsika I konspekt

vektoreid on rohkem kui kaks, on otstarbekam liita neid hulknurga reegli järgi v=v1+v2+v3 Vektorite lahutamine: ühe vektori lahutamine teisest on samaväärne vastandvektori liitmisega. Vastandvektoriteks nimetatakse ühesuguse pikkusega, kuid vastassuunalisi vektoreid. 1 Korrutamine skalaariga: vektori v korrutamine skalaariga a saame tulemuseks uue vektori, mille moodul on a korda v moodulist, suund aga säilib, kui a on positiivne, ning on sellega vastupidine, kui a on negatiivne. Skalaarkorrutis: vektorite a ja b skalaarkorrutiseks nimetatakse nende vektorite pikkuste ja vektorite vahelise nurga koosinuse korrutist. a*b=|a|*|b|*cos α Vektorkorrutis: vektorite a ja b vektorkorrutiseks nimetatakse vektorit a x b. a x b=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1) Projektsioonid ja nende seos mooduliga: Vektori projektsioon tuleb

Füüsika
72 allalaadimist
thumbnail
12
doc

MEHAANIKA JA MOLEKULAARFÜÜSIKA, PÕHIMÕISTED NING SEADUSED

Liikumine on keha asukoha muutumine teise keha suhtes. Teist keha nimetatakse sel juhul taustkehaks. Avaldist, mis suvalisel ajahetkel määrab vaadeldava keha kauguse taustkehast (koordinaadi x), nimetatakse liikumisvõrrandiks x = x(t). Taustsüsteem = taustkeha + koordinaadistik + ajamõõtja. Punktmass on keha, mille mõõtmed võib antud ülesande juures arvestamata jätta. Sel juhul võib vaadelda keha massi koondununa ühte punkti. Punktmass - see on keha kui tervik. Trajektoor on keha (punktmassi) liikumistee. Trajektoori kuju järgi eristatakse sirgjoonelist, ringjoonelist ja kõverjoonelist liikumist. Kõverjooneline liikumine taandub ringjoonelisele. Kulgliikumise korral liiguvad keha kõik punktid ühtemoodi. Pöördliikumise korral leidub kehas punkte, mis ise ei liigu. Need punktid moodustavad pöörlemistelje. Pöörlemistelje ümber liiguvad keha kõik teised punktid mööda ringjooni.

Füüsika
152 allalaadimist
thumbnail
24
docx

MEHAANIKA JA MOLEKULAARFÜÜSIKA

Liikumine on keha asukoha muutumine teise keha suhtes. Teist keha nimetatakse sel juhul taustkehaks. Avaldist, mis suvalisel ajahetkel määrab vaadeldava keha kauguse taustkehast (koordinaadi x), nimetatakse liikumisvõrrandiks x = x(t). Taustsüsteem = taustkeha + koordinaadistik + ajamõõtja. Punktmass on keha, mille mõõtmed võib antud ülesande juures arvestamata jätta. Sel juhul võib vaadelda keha massi koondununa ühte punkti. Punktmass - see on keha kui tervik. Trajektoor on keha (punktmassi) liikumistee. Trajektoori kuju järgi eristatakse sirgjoonelist, ringjoonelist ja kõverjoonelist liikumist. Kõverjooneline liikumine taandub ringjoonelisele. Kulgliikumise korral liiguvad keha kõik punktid ühtemoodi. Pöördliikumise korral leidub kehas punkte, mis ise ei liigu. Need punktid moodustavad pöörlemistelje. Pöörlemistelje ümber liiguvad keha kõik teised punktid mööda ringjooni.

Aineehitus
6 allalaadimist
thumbnail
1
doc

Dünaamika

Punktmasside Punktmasside süsteemi liikumisel jääb tema arvestata. Üldjuhul kasutame raskuskeset. Diferentsiaalv-de lahendamisele peab süsteemiline moment mingi punkti O suhtes on meh en konstantseks. Dün seisu kohalt Newtoni I eelnema:1.Peab olema joonis seadmetest, millel võrdne süsteemi kõigi puntide liikumishulkade seadus(inertsiseadus): punktmass on paigal või toimivaid F-e, a-si tahetakse uurida. 2.Peab peale momentide geomeetrilise summaga jätkab ühtlast sirgjoonelist liikumist, kui talle kandma koordinaatteljestiku 3.Kanname peale (Lo=m*vi*ri mõjuvate jõudude resuldant on 0. Punktmassi a kõik aktiivsed F ehk välisF-d 4.Arvutame välja Rööpliikumine Lz=m*vc*h (h-kaugus tsentrist) erineb 0st vaid siis, kui punktmassile on reaktsiooniF-d 5

Abimehanismid
73 allalaadimist
thumbnail
29
doc

Füüsika

suuruselt võrdsed ja suunalt vastupidised. 1.2.1. Newtoni seadused: I seadus- inertsi seadus- Iga keha püsib paigal või on ühtlases sirgjoonelises liikumises, seni, kuni teiste kehaade mõju ei sunni teda seda liikumisolekut muutma. II seadus- jõu ja kiirenduse vaheline seos. Rakendades kehale, massiga m, jõudu F saab ta kiirenduse a=F/m. Ringliikumine omab alati normaalkiirendust- m=F/a= const, sest mass on konstantne. III seadus- Kaks keha mõjutavad teineteistsuuruselt võrdsete ja vastassuunaliste jõududega F12= - F21 Jõu mõõtühikuks SI- süsteemis on njuuton (N) SI- s kasutame kg, m, s (need on põhiühikud) 2 1.2.2. Raskusjõud ja keha kaal: F=Gm1m2/r2 G=6,67*10-11 Nm2kg-2 Raskusjõud on gravitatsioonijõu avaldumise vorm, Maa külgetõmbejõud

Füüsika
354 allalaadimist
thumbnail
13
doc

Mehaanika ja soojus

Impulsiseaduse sõnastus - ainepunkti impulsi tuletis aja järgi on võrdne punktile mõjuvate jõudude resultandiga. Viimane valem on tähelepanuväärne ka selle poolest, et ta kehtib ka relativistlikus mehaanikas. Relatiivsusteooria järgi on keha mass tema kiiruse funktsioon ­ kiiruse suurenedes mass kasvab (see kehtib suurte kiiruste korral). Korrutades viimast võrrandit dt-ga => dp=Fdt, pärast integreerimist => p 2-p1=dp=t1t2Fdt. Erijuhul, kui F=const, annab valem ajavahemikus toimunud inpulsi juurdekasvu: p 2-p1=F Impulsi jäävuse seadus - suletud süsteemi kuuluvate kehade impulsside geomeetriline summa on nende kehade igasuguse vastasmõju korral jääv. Seadus kehtib kõikide kehade ja osakeste kohta, alustades elementaarosakestest ja aatomitest ning lõpetades planeetide ja tähtedega. Seaduse kehtivuse tingimuseks on taustsüsteemi inertsiaalsus. Impulsi jäävuse seadus ­ kui süsteemile mõjuvate välisjõudude summa on null, on süsteemi kehade

Füüsika
95 allalaadimist
thumbnail
52
pdf

Füüsika eksamiks kordamine

Vana teooria on uue teooria piirjuhtum. Nii on omavahel seotud erinevad valdkonnad. Puudub kindel piir valdkondade vahel. 3) Mis on mudel füüsikas? Tooge kaks näidet kursusest. Füüsikaline mudel on keha või nähtuse kirjeldamise lihtsustatud vahend, mis on varustatud matemaatilise tõlgendusega. füüsikaline mudel võimaldab kirjeldada füüsikalise objekti või nähtuse antud hetkel vajalikke omadusi lihtsustatult. Näited: punktmass, ideaalse gaasi mudel. 4) Mis on mateeria ja millised on tema osad? Mateeria on kõik meid ümbritsev loodus. Mateeria esineb aine ja välja kujul. 5) Mis on ruum ja aeg? Ruum ja aeg on mateeria ja selle liikumise eksisteerimise ja iseloomustamise keskkond. 6) Mida tähendab aja ja ruumi homogeensus? Ruumi homogeensus: iga punkt ruumis on füüsikaliselt samaväärne. Aja homogeensus: vabade objektide jaoks on kõik ajahetked samaväärsed.

Füüsika
18 allalaadimist
thumbnail
5
docx

Füüsika I kt1 kordamine - Mehaaniline liikumine

Mehaaniline liikumine Taustsüsteem. Koordinaadid. Raadiusvektor. Tehted vektoritega. Liikumisvõrrand. Trajektoor. Kulg- ja pöördliikumine. Nihe ja teepikkus. Nurknihe. Ainepunkt-mõnikord võib liikumise uurimisel jätta kehade mõõtmed arvestamata: siis kui need on palju väiksemad kõikidest teistest mõõtmetest, millega antud ülesandes on tegemist. Ainepunkti asukoha ruumis saab määrata raadiusvektori r abil. Punkti liikumisel muutub vektor r üldjuhul nii suuruse kui ka suuna poolest. Taustsüsteem- taustkeha, sellega seotud koordinaadistik ja aja arvestamise alghetk mood. taustsüsteemi. Koordinaadid ­ Keha koordinaadid võimaldavad määrata tema asukohta ruumis. Liikumise kirjeldamisel tuleb arvestada ka aega. Raadiusvektor- Punkti raadiusvektoriks nimetat. koordinaatide alguspunktist antud punkti tõmmatud vektorit . Raadiusvektor r määrab üheselt punkti asukoha ruumis. Vektoriks nim. sellest liiki suurust nagu nihe, s. o

Füüsika
276 allalaadimist
thumbnail
414
pdf

TTÜ üldfüüsika konspekt

5.1 Impulss 5.1a Impulsi jäävuse seadus. 5.1b Masskeskme liikumise teoreem 5.1c Reaktiivliikumine (iseseisvalt) 5.2 Töö, võimsus, kasutegur 5.3 Energia, selle liigid 5.3 Energia jäävuse seadus 5.4 Konservatiivsed jõud. Potentsiaalse energia gradient 5.5 Põrge 5.5a Absoluutselt mitteelastne põrge 5.5b Absoluutselt elastne põrge 6. PÖÖRDLIIKUMISE DÜNAAMIKA 6.1 Jõumoment 6.1a Newtoni III seaduse analoog pöördliikumisel. 6.2 Impulsimoment 6.3 Impulsimomendi jäävuse seadus. 6.4 Inertsimoment 6.5 Pöördliikumise dünaamika põhivõrrand 6.6 Steineri lause 6.7 Mõningate lihtsamate kehade inertsimomentide arvutamine 6.7a Homogeense varda inertsimoment varda keskpunkti suhtes. 6.7b Ketta inertsimoment tema sümmeetriatelje suhtes 6.8 Pöörleva keha kineetiline energia. 7. VÕNKUMISED 7.1 Tasakaalu liigid 7.2 Sumbuvvõnkumine 7.2 Harmooniline võnkumine. 7.2a Matemaatiline pendel 7

Füüsika
177 allalaadimist
thumbnail
20
pdf

Füüsika eksam

Füüsika eksam 1. Liikumise kiirendamine. Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajagavahemiku suhtega(kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis)  Kiirendus on kiiruse muutus ajaühikus. Kiirendus näitab keha kiiruse muutumist ajaühikus (Kiirendusvektor lahutub

Füüsika
91 allalaadimist
thumbnail
5
docx

Füüsika eksamikordamine

samasihilise kiirusega. Realiseerub olukorras, kus keha liigub muutumatu jõu toimel (näiteks vabalangemine raskusjõu väljas. , kus akiirendus, vkiirus, taeg. Peale integreerimist saame , kus v0keha algkiirus ajahetkel t=0 Vastavalt kiiruse definitsioonile , seda uuesti integreerides saadakse teada koordinaadi sõltuvus ajast , kus x koordinaat 3)Kõverjoonelise liikumise kiirendus: Kõverjoone lõikusid saab aproksimeerida ringjoone lõiguga: , kus suvaline vektor, |a| moodul ja ühikvektor. , kus an normaalkiirendus, kus a tangensiaalne kiirendus, ­ nurkkiirendus 4)Ringliikumine , kus (nüü)sagedus (täispöörded ajaühikus), T ­ periood (ühe täisringi tegemise aeg) , kus ­ nurkkiirus , ­ pöördenurk , kus ­ nurkkiirendus Juhul, kui 5)Newtoni seadused Klassikalise dünaamika aluseks on kolm Newtoni poolt formuleeritud seadust. NEWTONI I SEADUS: Kui kehale ei mõju mingeid jõudusid, siis keha liigub ühtlaselt. On olemas taustsüsteem, mida

Füüsika
487 allalaadimist
thumbnail
69
docx

FÜÜSIKA 1 eksami vastused

Üldmõisted 1 Vektor ­ suurus, mis omavad arvväärtust ja suunda. Mudeliks on geomeetriline vektor, mis on esitatav suunatud lõiguna. Vektoril on algus- ehk rakenduspunkt ja lõpp-punkt. Näiteks jõud, kiirus ja nihe. Skalaarid ­ suurus, mis omab arvväärust aga mitte suunda. Mudeliks on reaalarv! Näiteks temperatuur, rõhk ja mass. 2 Tehted vektoritega ­vektoreid a ja b saab liita geomeetriliselt, kui esimese vektori lõpp-punkt ja teise vektori alguspunkt asuvad samas kohas. Liidetavate järjekord ei ole oluline. Kahe vektori lahutamise

Füüsika
108 allalaadimist
thumbnail
11
docx

Mehaanika eksam

millel on ühine mõjusirge. 5. Jäigastamise aksioom. . Deformeeruva keha tasakaal ei muutu, kui lugeda ta deformeerunud olekus absoluutselt jäigaks 6. Jõu projektsioonid tasandil: Fx ja Fy on jõuprojektsioonid - skaalarid. Fx =Fcos a Fy =Fcos b Jõu ristkomponendid on vektorid: Fi =Fx i ja Fj =Fy j, kus i ja j on telgede ühikvektorid, Fx2 + Fy2 Ristkomponentide kaudu jõud avaldub kujul: F= Fi+Fj = Fxi+Fyj ja jõu moodul F= 7. Jõu komponendid ja projektsioonid ruumis Fx =Fcos a Fy =Fcos b Fz =Fcos g Jõu ristkomponendid: Fi =Fx i, Fj =Fy j, Fk =Fz k. Siin i, j, k on telgede ühikvektorid. Fx2 + Fy2 + Fz2 Jõud avaldub kujul: F= Fi+Fj+ Fk = Fxi+Fyj+ Fzk ja jõu moodul F= 8. Koonduvaks nimetatakse jõusüsteemi, mille jõudude mõjusirged lõikuvad ühes punktis Teoreem: resultandi projektsioon koordinaatteljel võrdub liidetavate vektorite projektsioonide algebralise

Füüsika ii
76 allalaadimist
thumbnail
45
doc

Teooriaküsimused ja vastused

Kordamisküsimused Staatika, kinemaatika ja dünaamika 1. Mida nimetatakse jõuks? Jõud on vektoriaalne suurus, mis väljendab ühe materjaalse keha mehaanikalist toimet teisele kehale ja mille tulemuseks on kehade liikumise muutus või keha osakeste vastastikuse asendi muutus ehk deformatsioon. Jõu iseloomustamiseks peab tal olema rakenduspunkt, suund ja moodul. 2. Mis on jõu mõjusirge? Jõu mõjusirge on sirge, mille peal jõu vektor asetseb. 3. Mida nimetatakse absoluutselt jäigaks kehaks? Absoluutselt jäigaks kehaks nimetatakse sellist keha, mille mis tahes kahe punkti vaheline kaugus jääb alati muutumatuks. 4. Millal võib kahte jõusüsteemi nimetada ekvivalentseteks?' Kahte jõusüsteemi võib nimetada ekvivalentseks, kui ühe jõusüsteemi võib asendada teisega nii, et keha liikumises või paigalseisus midagi ei muutu. 5

Insenerimehaanika
358 allalaadimist
thumbnail
50
docx

Füüsika eksamiks kordamine

vektorid on risti, siis võime öelda, et skalaarkorrutis on 0. ⃗ ⃗ Vektorkorrutis: |a⃗ × b|=¿ ⃗a∨∙∨b∨sinα Vektorid on võrdsed, kui suund ja siht on sama. Samasihilised võivad olla erisuunalised. 2. Mis on taustsüsteem, kohavektor, nihkevektor? Kuidas nad on omavahel seotud? Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mis on tõmmatud koordinaatide alguspunktist antud punkti (r). Nihkevektor on liikumise alg-punktist liikumise lõpp- punkti tõmmatud vektor (∆r). ⃗ ∆ r =⃗ r 2−⃗ r1 3. Mis on kiirus, hetkkiirus, keskmine kiirus? Millal nad on hetkkiirus ja keskmine kiirus võrdsed? (Põhjendada)

Füüsika
77 allalaadimist
thumbnail
37
pdf

FÜÜSIKA I PÕHIVARA

Tehted vektoritega: 1. Vektori korrutamine skaalariga. av = av 2. Vektorite liitmine. v = v1 + v2 3.Vektorite skalaarne korrutamine. Kahe vektori skalaarkorrutiseks nimetatakse skalaari , mis on võrdne nende vektorite moodulite ja nendevahelise nurga koosinuse korrutisega. ( v1 v2 ) = v1· v2 = v1 v2 cos , kusjuures v1· v2 = v2· v1 4. Vektorite vektoriaalne korrutamine. Kahe vektori vektorkorrutis on vektor , mille moodul on võrdne vektorite moodulite ja nendevahelise nurga siinuse korrutisega , siht on risti tasandiga , milles asuvad korrutatavad vektorid ja suund on määratud parema käe kruvi reegliga . [v1 v2] = v1 × v2 = v1 v2 sin , kusjuures [v1 v2 ] = ­ [v2 v1 ] 4 SI süsteem. (Systeme Internationale) * Pikkus (m)

Füüsika
19 allalaadimist
thumbnail
15
doc

Jäävusseadused

Konstantse jõu korral võrdub jõuimpulss lihtsalt kehale mõjuva resultantjõu ja mõjumisaja korrutisega. Saadud valemid (5.4) ja (5.5) on antud vektorkujul ja neid ei saa seetõttu ülesannete lahendamisel kasutada. Seega tuleb nad avaldada ka komponentkujul. Konstantse resultantjõu korral valem (5.4) esitub komponentides p x = p 0 x + Fres , x t . (5.6) Valemi (5.5) komponentkujule viimiseks kasutame asjaolu, et resultantjõu vektor avaldub Fres = i Fres , x + j Fres , y + k Fres , z . Vastavalt Newton-Leibnitzi valemile summa integraal võrdub integraalide summaga, järelikult võime integreerida kõiki liidetavaid eraldi. Algimpulssi p 0 lõppimpulssi p samuti komponentideks lahutades saame näiteks impulsi x-komponendi jaoks t p x = p 0 x + Fres , x dt . 0

Füüsika
238 allalaadimist
thumbnail
16
odt

Füüsika kordamisküsimused ja vastused

Pöörlemine on liikumine, mille korral keha kõikide punktide trajektoorideks on ringjooned. Keha liikumise trajektooriks on ringjoon. On alati kiirendusega liikumine. Ühtlase ringliikumise korral, kiiruse väärtus ei muutu, muutub ainult kiiruse suund. Pöördenurk Pöördenurk on punktmassi tiirlemine ümber oma telje. Tähis: (fii) Ühik: rad (radiaan) Põhivalem: =s/r , kus s on kaare pikkus ja r on raadius Nurkkiirus Nurkkiirus on füüsikaline suurus, mis näitab raadiuse pöördenurka ajaühiku kohta. , kus (fii) on pöördenurk ja t on aeg. Mõõtühik: rad/s (radiaani sekundis). Joonkiirus Joonkiirus on füüsikaline suurus, mis näitab läbitud kaarepikkust ajaühiku kohta. = * r, kus kus (oomega) on nurkkiirus ja r on trajektoori raadius. Mõõtühik: m/s (meetrit sekundis) Nurkkiirus ja joonkiirus v on omavahel seotud: v=*r Nurkkiirendus

Füüsika
40 allalaadimist
thumbnail
11
doc

Füüsika eksam

7. Ühtlaselt muutuv liikumine- konstantse kiirendusega liikumist nimetatakse ühtlaseks muutuvaks (kiirenevaks või aeglustuvaks) liikumiseks. a=const 8. Kiirendus- suurus mis iseloomustab keha kiiruse muutumist ajaühikus. a=v/t a<0aeglustuv, a=0 ühtlane, a>0kiirenev Raskuskiirendus: g=9,81 m/s2 Kesktõmbekiirendus (normaalkiirendus) väljendab ringliikumisel kiiruse suuna muutumist ajas. a n = v2/R = 2R -nurkkiirus Nurkkiirendus näitab, kui palju muutub keha nurkkiirus ajaühikus. = ( - 0) / t (rad/sek2) Kiiruse suuruse muutumist näitab tangentsiaalkiirendus. at = r 9. Pöörlemine on ringliikumisega sarnane liikumine, pöörlemisel on aga keskpunkt keha sees. Pöörlemise all mõistetakse jäiga, liikumise käigus mitte deformeeruva keha asendi muutus. = /t ­ raadiuse pöördenurk t ­ selle moodustamiseks kujunud ajavahemik = v/r (nurkkiirus) [rad/s] v= R (joonkiirus) [m/s] = t -nurkkiirus -pöördenurk = ot ± t2/2 10

Füüsika
393 allalaadimist
thumbnail
5
doc

Eksami spikker

poolt. Seda arvu nim antud füüsikalise suuruse väärtuseks.Neid suurusi aga skalaarideks.Mõnede suuruste määramisel on lisaks väärtusele vaja näidata ka suunda (ntx jõud ,kiirus,moment).Selliseid füüs suurusi nim vektoriteks.Tehted:a)vektori * skalaariga av = av b)v liitm v=v1+v2 c)kahe vektori skalaarkorrutis on skalaar, mis on võrdne nende vektorite moodulite ja nendevahelise nurga koosinuse korrutisega. d)2 vektori vektorkorrutis on vektor,mille moodul on võrdne vektorite moodulite ja nendevahelise nurga sin korrutisega,siht on risti tasandiga,milles asuvad korrutatavad vektorid ja suund on määratud parema käe kruvi reegliga. 2.Ühtlaselt muutuv kulgliigumine-Ühtlaselt muutuva kulgliikumise korral on konstandiks kiirendus (a=const);Vt=V0+at;S=V0t+at2/2; v= 2as . Vt tegelik kiirus , v - kiirus, a kiirendus, t - aeg, s ­ pindala.Kulgliikumisel jääb iga kehaga jäigalt ühendatud sirge paralleelseks iseendaga

Füüsika
505 allalaadimist
thumbnail
4
doc

Gravitatsiooniseadus ja võnkumine

Seega rõhk kõrgusel x1  A cos t m1m2 v v    gh  p  const h+dh on p+dp, kusjuures dh pos. väärusele Kehade korral tuleb kehad jagada ainepunktideks. Vastavalt valemile tõmbuvad x2  A cos(   )t f  n 

Füüsika
10 allalaadimist
thumbnail
10
docx

KINEMAATIKA ALUSED

skalaarseostega,sest on tegemist sirgjoonelise liikumisega.Järelikult on ajaühikus läbitud teepikkus võrdne kiirusega ühtlasel sirgliikumisel: V=S/t Ja aja t jooksul läbitud teepikkus on siis vastavalt S=Vt. SI süsteemis on kiiruse mõõtühikuks m/s. Ühtlane ringliikumine - Ühtlase ringliikumise korral on nii joonkiirus kui nurkkiirus konstantsed.ω-nurkkiirus ω=φ’ ω=φ/t f-sagedus T-periood f=l/T=ω/2Π V=Rω an=v2/R an- normaalkiirendus. Ühtlaselt muutuv ringliikumine - Nurkkiirus pole konstantne sellepärast et on olemas nurkkiirendus ,mille vektor on nurkkiiruse vektoriga samasuunaline e aksiaalvektor. a τ =εR DÜNAAMIKA ALUSED Dünaamika pôhisuurused -(Newton): 1.(inertsi seadus) masspunkt, millele ei mõju jõude, püsib paigal või liigub ühtlaselt sirgjooneliselt. 2.(määrab jõu F ja kiirenduse a vahelise sõltuvuse) masspunktile mõjuv jõud annab temale jõuga samasuunalise kiirenduse, mis on suuruselt võrdeline jõuga. A=F/m 3. (mõju ja

Füüsika
9 allalaadimist
thumbnail
25
doc

Termodünaamika õppematerjal

Alljärgnevalt esitatav käib val-davalt ideaalse gaasi kohta. Kõige üldisemalt määratakse gaasi olek kolme olekupara-meetriga: absoluutne temperatuur T, rõhk p ja ruumala V (mõnikord kasutatakse eriruumala Vo - massiühiku ruumala). Ideaalse gaasi seadused Neid seadusi on kolm ja kõik nad on saadud empiiriliselt. (1) Boyle - Mariotte'i seadus. Jääval temperatuuril on antud gaasimassi rõhu ja ruum- ala korrutis konstantne: pV = const. (1) (tingimusel, et T = const.). (2) Charles'i seadus. Antud gaasikoguse temperatuuri tõstmisel ühe kraadi (1 oC) võrra konstantsel ruumalal kasvab tema rõhk po (0oC juures) = 1/273 võrra: p = po ( 1 + t ). (2) (3) Gay-Lussac'i seadus. Konstantsel rõhul temperatuuri tõstmisel ühe kraadi võrra paisuvad kõik gaasid = 1/273 võrra sellest ruumalast Vo , mis oli gaasil 0 0C juures.

172 allalaadimist
thumbnail
4
docx

Skalaarid ja vektorid

1.Skalaarid ja vektorid - Suurused (ntx aeg ,mass,inertsmom),mis on määratud üheainsa arvu poolt. Seda arvu 3.Ühtlaselt muutuv ringliikumine - Nurkkiirus pole konstantne sellepärast et on olemas nurkkiirendus ,mille nim antud füüsikalise suuruse väärtuseks.Neid suurusi aga skalaarideks.Mõnede suuruste määramisel on lisaks väärtusele vaja näidata ka suunda (ntx jõud ,kiirus,moment).Selliseid füüs suurusi nim vektoriteks.Tehted: a) vektori * skalaariga av-=av-- b)v liitm v=v1+v2 c)kahe vektori skalaarkorrutis on skalaar, mis on võrdne nende

Füüsika
7 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun