Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Funktsioonid ja nende uurimine - sarnased materjalid

andmill2, planet, sõltuvus, maksimumkoht, xmax, xmin, uurimine, positiivsuspiirkond, negatiivsuspiirkond, kasvamisvahemikud, kahanemisvahemikud, lineaarfunktsioon, ruutfunktsioon, eksponentfunktsioon, logaritmfunktsioon
thumbnail
3
doc

Funktsioonid ja nende graafikud

pöördfunktsioon; astme-, eksponent-, logaritm- ja trigonomeetrilised funktsioonid. Põhioskused Võrdeline jaotamine; funktsioonide garaafikute skitseerimine ja lugemine; funktsiooni nullkohtade, määramis-, muutumis-, positiivsus-, negatiivsuspiirkondade, kasvamis- ja kahenemisvahemike leidmine võrrandite ja võrratuste lahendamise teel; pöördfunktsioon, selle määramis- ja muutumispiirkonna leidmine ning graafiku skitseerimine. Valemid Võrdeline sõltuvus ­ y = ax a Pöördvõrdeline sõltuvus ­ y x Diferentseeruva funktsiooni uurimine Nullkohtade hulk ­ X0 : f x 0 funktsiooni f(x) nullkohtade x1; x2; x3 leidmine Positiivsuspiirkond ­ X : f x 0 Negatiivsuspiirkond ­ X : f x 0

Matemaatika
44 allalaadimist
thumbnail
19
doc

Matemaatika valemid.

y0 = 2 · Ringjoon ­ (x ­ a)2 + (y ­ b)2 = r2 Kui a = b = 0, siis x2 + y2 = r2 · Parabool ­ y = ax2 + bx + c D = b2 ­ 4ac Kui a < 0 ja D > 0, siis avaneb parabool allapoole. Kui a > 0 ja D > 0, siis parabool avaneb ülespoole. 4. Funktsioonid ja nende graafikud Valemid · Võrdeline sõltuvus ­ y = ax a · Pöördvõrdeline sõltuvus ­ y= x Diferentseeruva funktsiooni uurimine · Nullkohtade hulk ­ X0 : f ( x) = 0 funktsiooni f(x) nullkohtade x1; x2; x3 leidmine · Positiivsuspiirkond ­ X : f ( x) > 0 + · Negatiivsuspiirkond ­ X - : f ( x) < 0

Matemaatika
807 allalaadimist
thumbnail
6
doc

11. klassi materjal matemaatikas

Aritmeetiline jada-Jada, mille iga liige alates teisest on võrdne eelneva liikme ja selle jada jaoks mingi kindla arvu summaga nimetatakse aritmeetiliseks jadaks. Seda kindlat arvu nimetatakse aritmeetilise arvu jadaks ja tähistatakse tähega d. an=a1+(n-1)d an+1=an+d » an+1-an=d sn= a1+an/2 x n või sn=2a1+(n-1)d/2 Geomeetriline jada- Jada, mille iga liige alates teisest on võrdne eelneva liikme ja antud jada jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks. Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q n-1 n an=a1 x q q=an+1/n sn=a1(q -1)/q-1 Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q Arvu ,,A" nimetatakse jada ,,an" tõkestamatul kasvamisel ja tähistatakse sümboliga liman=A n lim1/n=0 Piirväärtus n (tõkestamatul kasvamisel) läheneb nullile. n Piirväärtust

Matemaatika
501 allalaadimist
thumbnail
12
doc

Funktsioonide lahendamine

miinimumpunkt ning kasvamis- ja kahanemisvahemikud. 3. Joonisel on antud ruutfunktsiooni y = f(x) ja funktsiooni y = ex graafikud. Leidke a) Ruutfunktsiooni y = f(x) määrav valem; b) Punkti A koordinaadid; c) Funktsiooni y = f(x) nullkohad ja haripunkti koordinaadid; d) Funktsiooni y = ex väärtus kohal, mis vastab funktsiooni y = f(x) absoluutväärtuselt vähimale nullkohale; e) Antud funktsioonide ühine positiivsuspiirkond. 4. (1998) Heinakuhja telglõige on piiratud joonega y = 1 ­ x2 ja sirgega y = 0. Kuhjale toetub koonusekujuline katus, mille telglõike tipunurk on täisnurk. Leidke kuhja tipu ning katuse tipu vaheline kaugus. 5. (1998) Leidke funktsiooni y = x3 -4x2 ­ 3x -2 kasvamis- ja kahanemisvahemikud, maksimum- ja miinimumkoht. 6. (1998) On antud funktsioon f(x) = x2 ­ 2 ln x + 3. 1 1) Leidke f e 2 .

Matemaatika
62 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3 10. klass Viljandi Täiskasvanute Gümnaasium REAALARVUDE PIIRKONNAD Kuna erinevates õpikutes kasutatakse reaalarvude piirkondade märkimiseks erinevaid tähistusi, siis oleks kasulik teada mõlemat varianti. Nimetus Tingimus Esimene

Matemaatika
79 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

ehk y = f g ( x ) . u = g ( x ) Funktsiooni y = f ( x ) 1) nullkohtade leidmiseks lahendatakse võrrand f ( x ) = 0 ; 2) positiivsuspiirkonna X + leidmiseks lahendatakse võrratus f ( x ) > 0 ; 3) negatiivsuspiirkonna X - leidmiseks lahendatakse võrratus f ( x ) < 0 . 4.2 Elementaarfunktsioonid 1. Konstantne funktsioon y = c (joon. 1). 23 2. Võrdeline sõltuvus (joon. 1): y = kx , k = tan , 0 < , paaritu funktsioon. Määramispiirkond X = . 3. Lineaarfunktsioon (joon. 1): y = kx + b , k = tan , 0 < , ei paaris ega paaritu, kui b 0 . X = . y Joon. 1 4. Pöördvõrdeline sõltuvus (joon. 2): a y = , graafikuks on võrdhaarne hüperbool, asümptootideks on koordinaatteljed, x paaritu funktsioon. X = ( - ; 0 ) U ( 0 ; ) .

Matemaatika
1099 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

 u  g  x  Funktsiooni y  f  x  1) nullkohtade leidmiseks lahendatakse võrrand f  x   0 ; 2) positiivsuspiirkonna X  leidmiseks lahendatakse võrratus f  x   0 ; 3) negatiivsuspiirkonna X  leidmiseks lahendatakse võrratus f  x   0 . 4.2 Elementaarfunktsioonid 1. Konstantne funktsioon y  c (joon. 1). 23 2. Võrdeline sõltuvus (joon. 1): y  kx , k  tan  , 0     , paaritu funktsioon. Määramispiirkond X  ¡ . 3. Lineaarfunktsioon (joon. 1): y  kx  b , k  tan  , 0     , ei paaris ega paaritu, kui b  0 . X  ¡ . y Joon. 1 4. Pöördvõrdeline sõltuvus (joon. 2): a y  , graafikuks on võrdhaarne hüperbool, asümptootideks on koordinaatteljed,

Algebra I
61 allalaadimist
thumbnail
14
ppt

Funktsiooni uurimine skeemi järgi

· Kui f(x + T) = f(t), siis funktsioon on perioodiline perioodiga T · Kui f.-n y = f(x) on perioodiline perioodiga T, siis funktsiooni y = af(kx+b) periood onT k tavaliselt tunnuseks, et funktsiooni valemis leidub kas sin, cos või tan Nullkohad on need x väärtused, mille puhul funktsiooni väärtus on 0 (graafik läbib x-telge või puutub seda) f(x) = 0 X0 = {x| f(x) = 0} Positiivsuspiirkond - muutuja x väärtuste hulk, kus funktsiooni väärtused on positiivsed f(x)>0 Negatiivsuspiirkond - muutuja x väärtuste hulk, kus funktsiooni väärtused on negatiivsed f(x)<0 X + = {x| f(x) > 0} X - = {x| f(x) < 0} Kui funktsiooni y = f(x) kasvamine läheb x suurenedes kohal xe kahanemiseks või funktsiooni y = f(x) kahanemine läheb x suurenedes kohal xe kasvamiseks, siis on

Matemaatika
25 allalaadimist
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

1 väärtuste korral, kus f ( x) 0 . Jooniselt näeme, et y 0 , kui x või x 3 ja y 0 , kui 3 1 x 3. 3 1 Seega funktsiooni y x3 5x 2 3 x 7 kasvamisvahemikud on ( ; ) ja (3; ) ; 3 1 kahanemisvahemik on ( ; 3) . 3 2) Lõigul 2; 4) omandab kuupfunktsioon vähima väärtuse kas lõigu 2; 4) otspunktides või

Algebra ja Analüütiline...
780 allalaadimist
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

y - y1 11. klass k = tan = 2 x 2 - x1 50. Trigonomeetria 42. Punkti ja tõusuga määratud sirge. Tõusu ja 51. Kaldnurkse kolmnurga lahendamine algordinaadiga määratud sirge võrrand Vt. Punkt 31,32,33 Y - y1 = k ( X - x1 ) 52. Funktsioonid 53. Võrdeline sõltuvus y = kx + b y = ax , kus x 0 ja a 0 43. Kahe punktiga määratud sirge võrrand Graafik on sirge: X - x1 Y - y1 -läbib kooridnaatide alguspunkti = x 2 - x1 y 2 - y1 -kui võrdetegur a>0, siis sirge asub I,III 44. Sirge võrrandi koostamine telglüikude abil veerandis

Matemaatika
1299 allalaadimist
thumbnail
7
doc

Riigieksami lahendused II

Kahanemisvahemik: X : y < 0 3x 2 - 8x - 3 < 0 1 X = - ; 3 3 2) Leiame ekstreemumkohad: y´ = 0 1 3 x 2 - 8 x - 3 = 0 x1 = 3; x2 = - . 3 Määrame ekstreemumkoha liigi teise tuletise järgi. Teine tuletis oli f ( x ) = 6 x - 8 . 1 1 1 f - = 6 - - 8 = -2 - 8 = -10 < 0, siis x = - on maksimumkoht 3 3 3 f ( 3) = 6 3 - 8 = 18 - 8 = 10 > 0, siis x = 3 on miinimumkoht 1 1 ;- ( 3; Vastus: X =- ); X =- ; 3 ; miinimumkoht on 3 ja maksimumkoht on -1/3. 3 3 4. (15p) Müügil on 8 helikassetti valitud muusikaga. On teada, et 25% neist on defektiga. Maire ostis 3 kassetti.

Matemaatika
369 allalaadimist
thumbnail
27
ppt

Funktsioonid ja nende graafikud

Näide Ringi pindala sõltuvust raadiusest kirjeldab funktsioon S = r 2 , kus sõltumatuks muutujaks e. argumendiks on raadius r. Selle funktsiooni määramispiirkonnaks on mittenegatiivsete reaalarvude hulk. Funktsiooni määramispiirkonna osahulgad Funktsiooni nullkohad on määramispiirkonna osahulk, mille korral funktsiooni väärtus on null: X0 = {x | x X , f ( x) = 0} Funktsiooni positiivsuspiirkond on määramispiirkonna osahulk, mille korral funktsiooni väärtus on positiivne: X+ = {x | x X, f ( x ) > 0} Funktsiooni negatiivsuspiirkond on määramispiirkonna osahulk, mille korral funktsiooni väärtus on negatiivne: X- = {x | x X, f ( x ) < 0} . Ülesanded 1. Leidke funktsiooni määramispiirkond x 2x

Matemaatika
136 allalaadimist
thumbnail
10
docx

11. klass kordamine EKSAMIKS vastustega

Vastus: 1) -15, 15 a3 -4a , x3 +3ax2 + (3a2 -4)x , 2) f(-x) = -f(x) 3) X+ = (-2; 0) U ( 2; ) X- = ( - ; -2 ) U ( 0 ; 2 ) b) Joonisel on esitatud funktsiooni graafik. Leidke funktsiooni graafikult 1) nullkohad 2) positiivsus- ja negatiivsuspiirkond 3) kasvamis- ja kahanemisvahemikud 4) maksimum- ja miinimumpunkti koordinaadid Vastus: 1) x1= -1,6 x2 = 3,1 2) X+= ( - ; - 1,5 ) U ( 3,1 ; )

Matemaatika
105 allalaadimist
thumbnail
1
odt

Funktsioonid I

Astmefunktsiooniks nimetatakse funktsioone, f(x) = f(-x) Igal kasvaval ja kahaneval funktsioonil on mida esitab valem Y= X^a Paaritufunktsioon olemas pöördfunktsioon -f(x) = f(-x) Võrdeline sõltuvus (sirge) X määramis piirkond y=ax X0 nullkoht X+ positiivsuspiirkond Funktsi X- negatiivsuspiirkond Pöördvõrdeline sõltuvus (hüperbool)

Matemaatika
20 allalaadimist
thumbnail
3
pdf

Funktsiooni uurimine

o Ruutjuur o Logaritm o Nulliga jagamine X = ... 2. Nullkohad f(x) = 0, leian x väärtused, kui nimetaja ei võrdu nulliga. X0 = ... 3. Paaris või paaritu Paaris, kui f(-x) = f(x). Paaritu, kui f(-x) = -f(x) f(-x) leidmiseks asendada funktsiooni avaldises kõik x --> -x. -f(x) jaoks panna avaldise ette märk ­ paaris / paaritu 4. Positiivsus- ja negatiivsuspiirkonnad Positiivsuspiirkond on, kui f(x) > 0. Kui murd, siis lugeja/nimetaja>0 lugeja*nimetaja>0. Leian nullkohad, kannan x-teljele. Kui f(x) ees kordaja on positiivne, alustame abijoone tõmbamist ülevalt paremalt, kui negatiivne kordaja, siis korrutada miinusega. Abijoon läbib punkti, kui seda nullkohta on paaritu arv kordi, ja ,,põrkab", kui seda nullkohta on paaris arv kordi. Kui ,,põrkab", siis ei ole piirkonda kaasa arvatud.

Matemaatiline analüüs
101 allalaadimist
thumbnail
30
pdf

Funktsioon loeng 2

arctan x ln( x + 1 - x ) 2 e 26 Liitfunktsioon Näide Sageli ei sõltu funktsioon oma argumendist mitte otseselt, vaid kaudselt. Näide. Selge taeva korral sõltub päikesekiirguse intensiivsus I päikese kõrgusnurgast h, see aga omakorda sõltub ajast t, nii et päikesekiirguse intensiivsus on ka aja t funktsioon. I sõltuvus ajast t pole aga otsene, vaid kaudne; vahendavaks muutujaks suuruste t ja I vahel on nurk h: I = F (h), h = (t ), nii et I = F [ (t )]. See tähendab, et kiirguse intensiivsus I on aja t liitfunktsioon. Funktsiooni F argumentfunktsiooniks on (t ) . 28 Liitfunktsiooni definitsioon Kui y on muutuja u funktsioon: y = f (u) ja u on omakorda

Matemaatika
56 allalaadimist
thumbnail
2
rtf

Mõisted suuliseks arvestuseks matemaatikas

hulk. *Näide: funktsiooni f (x) määramispiirkond on R {0}. Funktsiooni muutumispiirkond Y ­ sõltumatu muutuja y väärtuste ehk funktsiooni väärtuste hulk. *Näide: funktsiooni f (x) = x(2) muutumispiirkond on kõigi mittenegatiivsete reaalarvude hulk. 11. Funktsiooni nullkohad ­ argumendi väärtused, mille korral funktsiooni väärtus on 0, nimetatakse nullkohtadeks. Funktsiooni nullkohtade leidmiseks tuleb määrata need x väärtused, kus f (x) = 0. Funktsiooni positiivsuspiirkond ­ funktsiooni positiivsuspiirkonna moodustavad argumendi need väärtused, mille korral funktsiooni väärtus on positiivne. Funktsiooni positiivsuspiirkonna leidmiseks tuleb määrata need x väärtused, kus f (x) > 0. Funktsiooni negatiivsuspiirkond ­ funktsiooni negatiivsuspiirkonna moodustavad argumendi need väärtused, mille korral funktsiooni väärtus on negatiivne. Funktsiooni negatiivsuspiirkonna leidmiseks tuleb määrata need x väärtused, kus f (x) < 0. 12

Matemaatika
4 allalaadimist
thumbnail
22
docx

Matemaatika eksami kordamine KEVAD 2015

f) y = log x-1 x2 1 1 y  3x  2   x 9  x 2 h) y = ln( x2 -x -2 ) g) Vastused: a) ( 2 ;3 ] b) [-8,5 ; 1] c) (   ; 0 ) U (0 ; 1) d) ( 4 ; 6 ) e) [2 ;  ) f) (1 ; 2) U (2 ;  ) g) [-2/3 ; 0 ) U ( 0 ; 3 ) h)  ; 1   2;   2.Funktsiooni uurimine tuletise abil a) Leidke funktsiooni y = x3 - 4x2 -3x -2 kasvamis- ja kahenemisvahemikud, maksimum- ja miinimumkoht. Vastus: Kasvab x<-1/3, x>3 ; kahaneb -1/3 < x <3 max .koht - 1/3 ; min. koht 3. b) Antud on funktsiooni y = x3 -5x2 +3x - 11 1) Leidke selle funktsiooni kasvamis- ja kahanemisvahemikud 2) Leidke selle funktsiooni vähim väärtus lõigul [ 0 ; 5 ] 3) Skitseeri funktsiooni graafik lõigul [ 0 ; 5 ] .

Matemaatika
179 allalaadimist
thumbnail
35
pdf

Funktsiooni uurimine loeng 7

Sirge y = mx + b on funktsiooni f graafiku parempoolne kaldasümptoot siis ja ainult siis, kui f ( x) m = lim , b = lim ( f ( x) - mx). x+ x x+ Sirge y = mx + b on funktsiooni f graafiku vasakpoolne kaldasümptoot siis ja ainult siis, kui f ( x) m = lim , b = lim ( f ( x) - mx). x - x x - 21 Funktsiooni uurimine Uurime funktsiooni f ( x) = 3 x 3 - 6 x 2 1) määramispiirkond X = (- ; + ) 2) katkevuspunktid Funktsioon on kõikjal pidev, katkevuspunktid puuduvad. 3) nullkohad Nullkohtade leidmiseks lahendame võrrandi f (x) = 0 3 x3 - 6x 2 = 0 x3 - 6 x 2 = 0 x 2 ( x - 6) = 0 x1, 2 = 0 ; x3 = 6 X 0 = {0;6} 4) paaris, paaritu või perioodiline Ei paaris, paaritu, ega perioodiline. 22

Matemaatika
54 allalaadimist
thumbnail
1
doc

Matemaatika funktsioonid I

väärtuste suurenedes funktsiooni vastavad väärtused vähenevad: kui x1f(x2). Funktsiooni nullkohtadeks nim argumendi väärtusi, mille korral funktsiooni väärtus on 0. Funktsiooni positiivsuspiirkonna moodustavad argumendi need väärtused, mille korral funktsiooni väärtus on positiivne. Funktsiooni negatiivsuspiirkonna moodustavad argumendi need väärtused, mille korral funktsiooni väärtus on negatiivne. Funktsiooni uurimine: X, Y, X0, X+, X-, X´, X`, Xe, Xmax, Xmin. Paarisfunktsiooniks nimetatakse funktsiooni, kui iga x korral funktsiooni määramispiirkonnast kehtib võrdus f(-x)=f(x). Paarituks funktsiooniks nimetatakse funktsiooni, kui iga x korral selle funktsiooni määramispiirkonnast kehtib võrdus f(-x)=-f(x).

Matemaatika
71 allalaadimist
thumbnail
9
doc

INTEGREERIMISE VALEMID

DIFERENTSEERIMISE ja INTEGREERIMISE VALEMID y dy Tuletis y = lim = = f ( x) x 0 x dx Integraal f ( x)dx = F ( x) +c , kus d [ F ( x) + c ] = f ( x)dx Diferentseerimise reeglid Diferentseerimise reeglid Integreerimise reeglid Lihtfunktsioon y=(x) Liitfunktsioon y=(u), u=(x) (u +v)'=u'+v', kus u,v=(x) (ux +vx)'=ux'+ vx' (u + v)dx = u dx + v dx (u ­ v)'=u'­ v' (ux ­ vx)'=ux'­ vx' (u ­ v)dx = u dx ­ v dx ( u·v ) ' = u'v + v'u (ux·vx)'=ux'v+ vx'u u dv = uv ­ v du ( C·u ) ' = C u' ( C·ux ) ' = C ux' Cu dx= C u dx (u·v·w)' = u'vw + v'uw + w'uv u u x

Matemaatiline analüüs
109 allalaadimist
thumbnail
9
doc

Diferentseerimise ja integreerimise valemid

DIFERENTSEERIMISE ja INTEGREERIMISE VALEMID y dy Tuletis y = lim = = f ( x) x 0 x dx Integraal f ( x)dx = F ( x) +c , kus d [ F ( x) + c ] = f ( x)dx Diferentseerimise reeglid Diferentseerimise reeglid Integreerimise reeglid Lihtfunktsioon y=(x) Liitfunktsioon y=(u), u=(x) (u +v)'=u'+v', kus u,v=(x) (ux +vx)'=ux'+ vx' (u + v)dx = u dx + v dx (u ­ v)'=u'­ v' (ux ­ vx)'=ux'­ vx' (u ­ v)dx = u dx ­ v dx ( u·v ) ' = u'v + v'u (ux·vx)'=ux'v+ vx'u u dv = uv ­ v du ( C·u ) ' = C u' ( C·ux ) ' = C ux' Cu dx= C u dx (u·v·w)' = u'vw + v'uw + w'uv u u x

Diferentsiaal-ja...
86 allalaadimist
thumbnail
1
docx

Algebra mõisted

harust, harud lähenevad telgedele, kusjuures kunagi ei puutu telge. 3. Funktsiooni: 4. Määramispiirkond ­ x-i väärtuste hulk ehk argumentide hulk, mille korral on võimalik arvutada funktsiooni (y) väärtust. 5. Muutumispiirkond ­ funktsiooni (y-i)väärtuste hulk. 6. Nullkohad ­ nim. neid argumendiväärtuseid, mille korral funktsiooni väärtus on 0. Xa=f(a)=0 jooniselt x-i väärtused, mille korral graafil puutub või lõikab x-telge. 7. Positiivsuspiirkond ­ argumentide väärtuste hulk, mille korral funktsiooni väärtus on positiivne. 8. Negatiivsuspiirkond ­ argumentide väärtuste hulk, mille korral funktsiooni väärtus on negatiivne. 9. Kasvamine ­ funktsioon y=(f) on kasvav, kui argumendi väärtuste (x-i) kasvades funktsiooni väärtused (y) kasvavad. 10.Kahanemine ­ funktsioon y=(f) on kahanev, kui argumendi väärtuste (x-i) kasvades funktsiooni (y) väärtused kahanevad. 11

Algebra I
14 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

YMM3731 Matemaatiline analu¨u¨s I 2007/08 ~o.-a. su¨gissemestril 3,5 AP 4 2-0-2 E S Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: [email protected] K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul

Matemaatiline analüüs
808 allalaadimist
thumbnail
7
doc

Matemaatika riigieksam

V ( d) = 3d 2- = ( 6d 2 ) - d 3 = 12d - d 2 . 4 4 4 Leiame ruumalafunktsiooni ekstreemumkohad: V´= 0 9 12d - d 2 = 0 - 9d 2 + 48d = 0 3d 2 - 16d = 0 d ( 3d - 16 ) = 0 4 16 d1 = 0 ei sobi ja d 2 = . 3 16 Kontrollime teise tuletise abil, kas d 2 = on maksimumkoht. V´´(d) = 12 ­ 4,5d; 3 16 16 16 V = 12 - 4,5 < 0 d = on maksimumkoht. 3 3 3 Kasutatud kirjandus www.ekk.edu.ee Tööd asuvad keskkonnas www.kool.ee 23.05.1998 a matemaatika riigieksam Lehe haldamist toetavad Topauto ja meelespea.net

Matemaatika
550 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

Sisujuht 16. Esimest liiki katkevuspunkt - niisugust katkevuspunkti, kus funktsioonil f on olemas ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. .....

Matemaatika
118 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsioonid. . . . . . . . .

Matemaatiline analüüs
47 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsio

Matemaatika
42 allalaadimist
thumbnail
12
docx

Matemaatika 11.klass valemid

Valemid, teoreemid, seosed, tunnused, tingimused MATEMAATIKA EKSAMIL XI KLASSIS 1) a2-b2 = (a+b)(a-b) 2) a3 + b3=(a+b)(a2-ab+b2) 3) a3 - b3=(a-b)(a2+ab+b2) 4) (a+b)3 =a3+3a2b+3ab2+b3 5) (a-b)3 =a3-3a2b+3ab2-b3 −b ± √ b2−4 ac 2 6) a) lahenda ax + bx+c =0 2a b) tegurda : ax2 + bx+c= a( x− x1 )( x−x 2) c) tegurda ax3 + bx2+ax+b= x2(ax+b)+ax+b = (ax+b)(x2+1) 7) lim  an  bn   lim an  lim bn n  n  n  8) lim  an  bn   lim an  lim bn n  n  n  9) lim  anbn   lim an  lim bn n  n  n  an 10) lim  lim an  lim bn n  bn n  n  11) Korrutise tuletise sõnastus ja valem (u * v ) ´ = Korrutise tuletis võrdub esimese teguri tu

Matemaatika
18 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . 51 5.6 Nähtuskäigu kiirus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.7 Kõrgemat järku tuletis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.8 Joone puutuja ja normaali võrrandid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.9 Funktsiooni diferentsiaal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6 Funktsiooni uurimine 59 6.1 Diferentsiaalarvutuse keskväärtusteoreemid . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2 L'Hospital'i reegel piirväärtuse arvutamiseks . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3 Funktsiooni kasvamine ja kahanemine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.4 Funktsiooni ekstreemumid . . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suva

Matemaatiline analüüs
484 allalaadimist
thumbnail
11
docx

Kordamisküsimusi 1. teema kohta - Teooriatöö I

Kordamisküsimusi 1. teema kohta 1. Mis on arvtelg? (lk 2) Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. 2. Defineerida reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Omadused: 1. | − a| = |a| 2. |ab| = |a| |b| 3. |a + b| ≤ |a| + |b| 4. |a − b| ≥ | |a| − |b| | 3. Millist hulka nimetatakse tõkestatuks? (lk 3) Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (c, d) nii, et A ⊂ (c, d). Tõkestatud hulgad on näiteks kõik lõplikud vahemikud (a, b), lõigud [a, b] ja poollõigud [a, b), (a, b] 4. Milline suurus on jääv ja milline suurus on muutuv? Mida nimetatakse muutuva suuruse muutumispiirkonnaks? (lk 3) Suurus

Matemaatika analüüs i
8 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs II

Mitmemõõtmelise ruumi mõiste Def: On antud n reaalarvu x1...xn ja nende järjestatud jada (x1...xn)(-punkt) ­ seda nim n- mõõtmelise ruumi punktiks. Rn={(x1,...,xn) | xi R, i=1,...,n}, P(x1,...,xn) ­ punkt koordinaatidega xi n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarv�

Matemaatiline analüüs 2
336 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun