Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Arvestustöö hüdraulika - sarnased materjalid

ajam, voolamine, viskoossus, gaas, vooluhulk, voolamise, pneumoajami, hüdrostaatiline, täitur, ideaalgaas, const, elemen, voolukiirus, avast, koormusel, lihtsasti, loogika, mehaaniline, dimensioneerimine, omavahelise, suurenemisel, viskoossust, kuupmeeter, reynoldsi, turbulentsel, moody, vooluhulga, tingmärgid, arvestustöö, komponentidega
thumbnail
2
docx

Hüdraulika ja pneumaatika kordamisküsimused ja vastused

1. Hüdroajami eelised ja puudused – EELISED: Suured jõud väikeste komponentidega; Kulgev ja pöörlev liikumine; Täpne positsioneerimine; Start suurel koormusel; Ülekoormused välditavad; Liikumine sujuv ja reverseeritav; Juhtimine lihtne; Soodne soojusrežiim; Ajam koosneb standardkomponentidest; Elektriliselt mugav juhtida PUUDUSED: Keskkonnaoht; Tundlikkus saastumisele; Torustiku purunemise oht; Tundlikkus temperatuurile – viskoossus; Madal kasutegur; Tsentraalse varustussüsteemi loomine; Kallis; Tavaliselt tegu individuaalse ajamiga 2. Pneumoajami eelised ja puudused – EELISED: Õhk on tasuta; Gaas lihtsasti liigutatav; Temperatuuri tundlikkus

Automatiseerimistehnika
105 allalaadimist
thumbnail
12
pdf

Hüdraulika ja pneumaatika töö kordamine

Küsimused refereeritud osast 1. Torude tugevusarvutus – F= p*l*d ( p- rõhk, l-torupikkus, d-toru sisemine diameeter) 2. Voolupidevus – Muutuva ristlõikepindalaga vedeliku voolus, kus vedeliku kogus ei muutu, on vooluhulk igas ristlõikes konstantne. 𝑞1 = 𝑞2 𝑣1𝐴1 = 𝑣2𝐴2 𝑣1/𝑣2 = 𝐴2/𝐴1 Skeem 1 vihikus. 3. Kirchoffi seadus - Vedeliku voolude ristumiskohta tulevate vooluhulkade summa võrdub sealt lähtuvate vooluhulkade summaga. Skeem 2. 𝑛 𝑘 ∑ 𝑞𝑠 𝑖 − ∑ 𝑞𝑣 𝑗 = 0 𝑖 =1 𝑗=0 4. Viskoossus – vedeliku osakeste omavahelise hõõrdumise e

Pneumaatika ja hüdraulika
101 allalaadimist
thumbnail
15
doc

Hüdraulika I eksam

muutub ruumala kuni 5%. Viskoosus ­ vedeliku omadus takistada oma osakeste liikumist üksteise suhtes. Eristab ideaalseid vedelikke reaalsetest. Ideaalsetes vedelikes viskoossust ei arvutata. Laminaarselt liikuva vedeliku kihtide vahel tekib viskoossust põhjustatud hõõrdejõud, mida kirjeldab I Newtoni valem: , kus - hõõrdepinge erinevate kihtde vahel, - absoluutse viskoossuse tegur ­ dünaamiline viskoossus (Pas), - kiirusgradient, A- kihtide vaheline pindala m2, - kinemaatiline viskoossustegur Mõlemad viskoossused olenevad vedeliku liigist, temperatuurist ja rõhust ning määratakse katseliselt viskosimeetri abil.vedeliku soojenedes viskoosus väheneb, rõhu tõustes suureneb. Kinemaatilist viskoossust saab arvutada J. Poiseulle' valemist. Kui vesi on 18°C siis võiks võtta =10-6 (m2/s). Küllastunud auru rõhk ­ rõhk, mille juures hakkab vesi keema ja muutub auruks

Hüdraulika i
449 allalaadimist
thumbnail
19
pdf

Hüdraulika teoreetilised alused ja Füüsikalised suurused

2.3 Hüdromehaanika Hüdromehaanika on mehaanika haru, mis käsitleb vedelike füüsikalisi omadusi ja käitumist staatilises olekus (hüdrostaatika) ja voolavas olekus (hüdrodünaamika). Erinevus vedelike ja tahkete ainete vahel seisneb selles, et vedelikud ei oma kindlat kuju, vaid võtavad neid ümbritseva anuma kuju. Rõhu ülekandmiseks kasutatakse nii gaase kui vedelikke, millede erinevuseks on see, et surve avaldamisel neile Sele 2.4 - Hüdrostaatiline paradoks muutub gaasi ruumala märksa enam kui vedeliku ruumala. Väliste jõudude poolt tekitatud rõhk Hüdrostaatika Hüdrostaatika seadused on rakendatavad vaid ideaalsete vedelike korral st. vedelik ei oma kaalu, puudub hõõrdejõud ja vedelik ei ole kokkusurutav. Nende seaduste abil saab hinnata ideaalsete (energiakadudeta) süsteemide käitumise üle. Reaalsetes hüdrosüsteemides tekib aga erinevaid

hüdroõpetus
63 allalaadimist
thumbnail
7
docx

Hüdro- ja Pneumoseadmed

1. Hüdroajami mõiste. Tema kasutamist soosivad ja piiravad asjaolud. Hüdroajamiks nimetatakse sellist ajamit, milles energia kandjaks on vedelik. Hüdroajami väljundis muudetakse vedeliku hüdrauliline energia, mida iseloomustavad vedeliku rõhk ja vooluhulk, mehaaniliseks energiaks, mida kasutatakse seadme töös vajalike jõudude ja liikumiste saamiseks. Soosivad asjaolud: · Võimalus saada suuri jõude ja jõumomente suhteliselt väikeste komponentide abil. · Lihtne on saada nii kulgevat kui ka pöörlevat liikumist. · Liikumiste täpne positsioneerimine. · Võime startida suurtel koormustel. · Lihtne vältida ülekoormust.

Hüdraulika ja pneumaatika
147 allalaadimist
thumbnail
5
doc

Hüdraulika, Pneumaatika Arvestustöö Nr. 1 vastused

- hea soojusvahetus. 5. Hüdroajami kasutamist piiravad asjaolud. Hüdroajami puudustena tuleb nimetada: - tuleohtlikus töövedeliku või tema aurude lekkimisel, - töövedeliku tundlikus saastumise suhtes, - temperatuuri ja rõhu mõju töövedeliku viskoossusele, - suhteliselt madal kasutegur. 6. Hüdrostaatilise rõhu mõiste, tema allikad ja omadused. Hüdrostaatiliseks rõhuks nimetatakse rõhku, mis mõjub vedeliku sees. Rõhk vedelikus võib olla esile kutsutud kahel põhjusel: - hüdrostaatiline rõhk on tingitud vedeliku oma kaalust, - hüdrostaatiline rõhk on tingitud vedeliku vabale pinnale mõjuvatest välisjõududest. Hüdrostaatiline rõhk on sellisel juhul arvutatav valemiga: p = hg N/m2, kus p - hüdrostaatiline rõhk vaadeldavas vedeliku punktis, N/m2, h - vaadeldava punkti kaugus vedeliku pinnast vertikaalsuunas, m, - vedeliku tihedus, kg/m3, g - raskuskiirendus, 9,81m/s2. pinnale mõjub välisrõhk, siis rõhk vedeliku sees on selle välisrõhu võrra suurem (joon. 3).

Hüdraulika ja pneumaatika
326 allalaadimist
thumbnail
11
docx

Hüdraulika eksami ja kontrolltöö küsimuste vastused

2. Erinevate energialiikide ja ajamite omavaheline võrdlus (pneumo-, hüdro-, elektriseadmed) 3. Füüsikaliste suuruste tähistus ja mõõtühikud 4. Hüdrostaatika. Hüdrostaatika põhivõrrand. Rõhk. Rõhkude määratlus. Pascal'i seadus. Jõudude ja rõhu muundumine Hüdrostaatika ­ uuritakse vedeliku tasakaalu seadusi (vedelik liikumatu, kokkusurumatu, vedeliku viskoossust ei arvestata) Hüdrostaatilise rõhu omadused: - hüdrostaatiline rõhk mõjub risti pinda - hüdrostaatiline rõhk on kõikides suundades ühesugune (rõhk on skalaarne suurus) p p0 z+ = z0 + =const Hüdrostaatika põhivõrrand ­ seos punkti kõrguse z ja rõhu p vahel samas punktis g g N

Füüsika
92 allalaadimist
thumbnail
23
pdf

Keemiatehnika alused

mingid väga konkreetsed protsessid ehk põhioperatsioonid. Põhimõisted: Põhioperatsioonid on tootmisprotsessi astmed või osad, mis põhinevad sarnastele teaduslikele printsiipidele ja mille teostamiseks kasutatakse ühiseid meetodeid (G. Davis, 1887). Põhioperatsioonide printsiib kujutab endast äsja mainitud tehnoloogilise protsessi jagamist põhioperatsioonideks. Põhioperatsioonideks loetakse järgmiseid protsesse: 1. Fluidumi voolamine käsitleb nii vedelate kui ka gaasiliste ainete voolamist, voolamise tekitamiseks kasutavat tehnikat, samuti selle mõjutamist erinevate objektide poolt. 2. Hüdromehhaaniline separeerimine uurib tahkete, vedelate ja gaasiliste ainete lahutamist teineteisest mehhaaniliste meetoditega, nt. filtrimine, sadenemine, jms. 3. Soojusvahetus uurib (soojusliku) energia ülekandmist ühelt soojuskandjalt teisele,

Keemiatehnika
188 allalaadimist
thumbnail
18
docx

Hüdromehaanika eksam

1J on energia hulk, mis kulub keha liigutamiseks ühe meetri võrra, rakendades sellele jõudu 1 njuuton (N) 1J=1N*m=1kg*m2/s2 4) Mis on füüsikalise suuruse nagu Võimsus mõõtühik, ning kuidas esitada see suurus hüdromehaanika põhiühikute kaudu? Võimsuse mõõtühik on Watt(vatt) (1W). Üks vatt võrdub võimsusega, mille korral tehakse ühes sekundis(s) tööd üks džaul(J) 5.Kuidas muutuvad vee(vedelik) füüsikalised omadus nagu tihedus ja viskoossus kui vedeliku temperatuur muutub? Vesi saavutab oma kõige suurema tiheduse (999,9720kg/m3) +4 kraadi juures . pärast seda hakkab tihedus vähenema .Toatemperatuurist (25’C) ülespoole kuumutamisel samuti tihedus väheneb , ehk toatemperatuurist kuni +4 kraadi on vee tihedus kõige suurem . 25’C --> 4’ C kasvab . Vedeliku temperatuuri suurenedes tema viskoossus väheneb ja vastupidi . 6.Kuidas muutuvad õhu(gaasi füüsikalised omadused nagu tihedus ja viskoossus kui gaasi

Hüdromehaanika
128 allalaadimist
thumbnail
16
doc

Kordamisküsimused

Diastoli ajal langeb rõhk aordis ~80 mmHg-ni, kopsuarteris 8 mmHg-ni. 51. Kuidas leitakse hingamistööd? Ühe hingamise töö (pel+palv) V=A; palv=(kl.F)+(k3.F2). 52. Kuidas leitakse lihase tööd? Avaldub tõste kõrguse (lihase lühenemise) ja koormuse A=FS 53. Mis on rõhk? Ühik. Rõhk on pinnaühiku kohta mõjuv jõud. P=F÷S. Ühik: (1)SI-süsteemis 1N/m2=1Pa; (2)tehniline atmosfäär 1at=1kG/sm2=9,8Pa; (3)füüsikaline atmosfäär(normaalrõhk) 1atm=760mmHg; (4) 1mikrobaar=0,1Pa 54. Hüdrostaatiline ja dünaamiline rõhk ja nende valemid. Hüdrostaatiline rõhk ehk hüdrostaatiline pinge on rõhk, mis mõjub tasakaalu vedelikus. Hüdrostaatilise rõhu defineerimiseks vaadeldakse tasakaalus oleva vedeliku massi m, mis on mõttelise tasapinnaga jaotatud kahte ossa. Neid osi peab hoidma koos mingi jõud F p, see on hüdrostaatiline rõhujõud ehk survejõud. Selle jõu intensiivsust tasapinna A suvalises punktis nimetatakse hüdrostaatiliseks rõhuks (ka hüdrostaatiliseks pingeks)

Füüsika
143 allalaadimist
thumbnail
22
docx

Füüsikalised suurused ja nende etalonid

ruumalas. Kõigis suundades ühe suunaga, ei sõltu anuma kujust. Kasutatakse näiteks: Hüdraulilistel seadmetel nt hüdrauliline tõstuk, pidurid o Archimedes’e seadus (+ valem) Vedelikku (või gaasi) asetatud kehale mõjuv raskusväljas üleslükkejõud Fa on võrdne väljatõrjutud vedelikule mõjuva raskusjõuga. ∑F= F(alumine) + F(ülemine) =0, Fa =mg=ρgV o Vooluhulk (+ valem ja mõõtühik) Vooluhulk Q on seega toru ristlõike pindala S ja voolukiiruse v korrutis Q=Sv, (ühhik: Q=1 m 3/s) o Pidevuse teoreem (+ valem ja joonis) Aine jäävuse seadus. Vedeliku voolamisel muutuva ristlõikega torus on voolamise kiirus pöördvõrdeline toru ristlõike pindalaga. S1v1=S2v2 , Sv=const o Bernoull’i võrrand ja sellest järeldused (+ valem ja joonis) p+(roo x g x h) + (roo x v2 /2) = const staatiline rõhk + potensiaalne energia + kin energia = const

Füüsika
37 allalaadimist
thumbnail
31
docx

KESKKONNAFÜÜSIKA ALUSED

tagajärjel luude hapruse suurenemine koos kalduvusega luumurdude tekkele. Vältimiseks manustada kaltsiumit ja D3-vitamiini. 7. Hüdrodünaamika. · Hüdrodünaamika põhimõisted. o Vedeliku- või gaasi osake ­ kaduvväikeste mõõtmetega, suvalise kujuga, harilkult kujutatakse sfääri- või kuubikujulisena. o Vedeliku- või gaasiosakese hetkeline kiirus ­ sõltub neljast muutjast u(x,y,z,t). o Statsionaarne voolamine ­ ajast sõltumatu voolamine, antud punktis vedelikuosakese kiirus ei muutu ajalisel nihkel. o Trajektoor ­ Osakese poolt tema liikumisel läbitud (kujutatud) joon. o Voolujoon ­ joon hetkel t, mille iga punkti puutujaks on kiirusvektor. o Voolutoru e juga ­ voolujoontega piiratud vedelikuosa. o Ideaalne vedelik ­ kokkusurumatu, puudub sisehõõre. · Joa pidevuse teoreem. o u S = const, u-kiirus, S-voolutoru ristlõige

Keskkonafüüsika
38 allalaadimist
thumbnail
65
doc

AM kordamiskusimused lopueksamiks ( vastused)

hõõrdele . Pumba konstantsel rõhul (p=const = 200) pöörete arvu suurenemisega mehaaniline kasutegur väheneb, sest vooluhulga suurenemisel läbi pumba suureneb vedeliku voolukiirus pumbas ja sellega rõhukaod; Pumba konstantsetel pööretel (n = const = 1500 min-1) rõhu tõusuga mehaaniline kasutegur suureneb, sest ülekantava võimsuse suurenemisel kaod takistustele oluliselt ei muutu. m = Pi / P , kus Pi on pumba indikaatorvõimsus , P on võimsus , mida ajam peab pumbale andma . Pumba indikaatorvõimsus Pi( kW ) , võib leida indikaatordiagrammi järgi või arvutuslikult : Pi = g ( Q + q ) Hteor / 1000 Täiskasutegur = v h m , ehk 10 = Q / ( Q + q ) × H / Hteor × g ( Q + q ) Hteor / 1000 P = Phk / P. Tänapäeva pumpade üldine kasutegur on piirides = 0,6 ...0,9 Pumba ajami võimsus peab olema pumba võimsusest suurem ajamis kulutatava võimsuse võrra . Ajami kasutegur a = P / Pa , kus

Abimehanismid
121 allalaadimist
thumbnail
53
doc

LAEVA ABIMEHHANISMID

olekus, ning suhteline tasakaal ,kus vedelik on liikumatu anuma suhtes ,mis ise liigub. Iga aine osakeste vahel mõjuvad molekulaarjõud. Vedelikus on nad teiste jõududega võrreldes väikesed ja pääsevad mõjule alles siis ,kui vedeliku maht on väga väike . Hüdraulika seaduspärasuste tuletamisel on nad tähtsusetud ja jäetakse arvesse võtmata. Hüdrostaatiliseks rõhuks ehk surveks nimetatakse taskaalus olevas vedelikus mingi mõttelise tasapinnale mõjuva jõu intensiivsust ehk hüdrostaatiline jõud on pinnale jagatud jõud. P= d F / d A Hüdraulilisel rõhul on kaks omadust.: hüdrauliline rõhk mõjub risti pinda ja vedeliku mingis punktis mõjuv hüdrauliline rõhk on kõikides suundades ühesugune. Tasakaalus vedelikul on energiavaru , mille arvel on võimalik teha tööd. See on potensiaalne energia . Tasakaalus vedeliku kaaluühiku kohta tulev ( e.erienergia) potensiaalne energia võrdub vedelikusamba kõrguse kaudu mõõdetud rõhu e.survega .

Abimehanismid
65 allalaadimist
thumbnail
66
docx

Füüsika I konspekt

AERODÜNAAMILINE TÕSTEJÕUD: lennukid püsivad õhus selle tõttu. Kasulik jõud, mis tõstab nt tuulelohe üles. Aerodünaamiline tõstejõud: kuna õhk on voolamisel võlvja profiiliga tiiva esiservast tagaserva poole erinevate teepikkuste tõttu sunnitud tiiva ülapinna kohal liikuma kiiremini kui kandepinna all, siis selliste voolamiskiiruste erinevuse tõttu tekib tiiva ülapinna kohalmadalam õhurõhk kui tiiva - alusel pinnal. 24. SISEHÕÕRDEJÕUD. VISKOOSSUS. LAMINAARNE JA TURBULENTNE VOOLAMINE. REYNOLDSI ARV. STOKESI SEADUS. NEWTONI VALEM SUURTE KIIRUSTE JAOKS. Vedeliku- või gaasikihte saab üksteise suhtes liikuma panna kui tahes väikese jõu abil. Kuid niipea, kui üks vedeliku või gaasikiht hakkab teise suhtes liikuma lõpliku kiirusega, tekivad nende kokkupuutepinnal tangentsiaaljõud, mis takistavad kihtide liikumist teineteise suhtes. Neid jõude nimetatakse sisehõõrdejõududeks

Füüsika
72 allalaadimist
thumbnail
69
docx

FÜÜSIKA 1 eksami vastused

Üldmõisted 1 Vektor ­ suurus, mis omavad arvväärtust ja suunda. Mudeliks on geomeetriline vektor, mis on esitatav suunatud lõiguna. Vektoril on algus- ehk rakenduspunkt ja lõpp-punkt. Näiteks jõud, kiirus ja nihe. Skalaarid ­ suurus, mis omab arvväärust aga mitte suunda. Mudeliks on reaalarv! Näiteks temperatuur, rõhk ja mass. 2 Tehted vektoritega ­vektoreid a ja b saab liita geomeetriliselt, kui esimese vektori lõpp-punkt ja teise vektori alguspunkt asuvad samas kohas. Liidetavate järjekord ei ole oluline. Kahe vektori lahutamise tehte saab asendada lahutatava vektori vastandvektori liitmisega, ehk b asemel tuleb -b. Vektori a komponendid ax ja ay same leida valemitega Vektori pikkuse ehk mooduli saab Pikkuse-nurga saab avaldada tead

Füüsika
108 allalaadimist
thumbnail
26
docx

Toiduainete tehnoloogia põhiprotsessid

mehaanilised protsessid. Esitada iga protsessigrupi kohta liikumapanev jõud, vähemalt 3 kaastegurit / takistust (koos toime selgitamisega) ning 1 oluline protsessi tulemuse näitaja. Hüdrodünaamilised protsessid – jõud: rõhkude vahe; kaastegurid: mõõtmed/voolu ristlõike pind (mida suuremad mõõtmed, seda kiirem), temp (mida kõrgem, seda kiiremad protsessid), viskoossus (mida viskoossem, seda aeglasem), vedelik ja selle omadused/olek; olulisus: voolukiirus. Soojuslikud protsessid – jõud: temperatuuride vahe; kaastegurid: viskoossus (mida viskoossem, seda aeglasem), soojusjuhtivus (mida suurem, seda kiiremad), kihi paksus (mida paksem kiht, seda aeglasem), temperatuur (mida kõrgem, seda kiirem); olulisus: agregaatoleku muutus ja temperatuuride ühtlustumine.

Toit ja toitumine
35 allalaadimist
thumbnail
90
pdf

Soojustehnika eksami küsimused

) ei muutu, kui süsteem mõjutab teda soojuslikul, mehaanilisel või mõnel muul viisil. Termodünaamilise süsteemi üks lihtne näide on gaas balloonis. Süsteemi ja ümbruskeskkonna vaheline piir on ballooni sisepind, ümbruskeskkonna moodustab aga balloon ise koos seda ümbritseva õhuga. Termodünaamiline süsteem võib olla homogeenne või heterogeenne. Homogeenses süsteemis on aine füüsikalis-keemilised omadused kõigis punktides ühesugused. Sellise süsteemi näiteid on gaas, vesi ja jää. Heterogeenseks nimetatakse süsteemi, mille üksikosade füüsikalis-keemilised omadused on erisugused. Seejuures on süsteemi osad üksteisest eraldatud lahutuspinnaga. Heterogeenne süsteem on näiteks vesi ja jää, aur ja vesi, aur ja jää. Termodünaamiline süsteem võib olla kas materiaalselt suletud või materiaalselt avatud. Süsteem on materiaalselt suletud, kui puudub aine juurdevool süsteemi või äravool sellest, sest siis ei

tehnomaterjalid
121 allalaadimist
thumbnail
82
ppt

LAEVA ABIMEHHANISMID

• Esimesed andmed teaduslikust lähenemisest hüdraulikale pärinevad aastast 250 e.m.a. , mil Arhimedes avastas vedelikku asetatud keha tasakaalu seaduse. • 15. sajandist on säilinud itaallase Leonardoda Vinci tööd, mis käsitlevad vee liikumist jõgedes ja kanalites • Tuntumatest teadlastest selles valdkonnas võib nimetada itaallast Galilei (17.sajand), kes uuris kehade ujumist ning tema õpilast Torricellit ,kes määras seaduse vedeliku voolamise kohta avast. Prantslane Pascal avaldas seaduse rõhu edasiandmise kohta vedelikus ning sajandi lõpul avaldas inglane Newton uurimuse vedelike sisehõõrde kohta . • Esimese teadaoleva kolbpumba ehitas roomas juba 190 aastat e. Kr. Ktesibios. Esimene kõverate puitlabadega aksiaalpump arvatakse pärinevat 5.sajandist . Sveitslane Leonhard Euler ( 1707 - 1783) pani aluse labapumpade teooriale ja viitas esimesena kavitatsiooni võimalikkusele

Laevandus
34 allalaadimist
thumbnail
21
docx

Loodusteadused 2017/2018 eksamipileti vastused

Ehk teisiti - jõumoment on see põhjus, mis muudab keha impulsimomenti. 2. Eneseinduktsiooni nähtus esineb juhul, kui juhis induktsiooni elektromotoorjõudu põhjustav magnetvoo muutus on tingitud voolu muutumisest juhis eneses. Juhi induktiivsus on määratav Kus: L ­ induktiivsus [H]; w - pooli keerdude arv; DF ­ magnetvoo muut [Wb]; DI ­ voolutugevuse muut [A]. [A].Juhi induktiivsus näitab magnetvoo muutust, mille tekitab selles juhis ühikuline voolu muutus 3. Viskoossus on vedelike omadus takistada oma osakeste liikumist üksteise suhtes. Ta on vedeliku sisehõõrde mõõt. Viskkoossuse toimet on lihtne ette kujutada laminaarsel voolamisel, kui vedeliku kihid liiguvad üksteise suhtes erineva kiirusega. Nad libisevad üksteise peal ja nende libisemispinnas tekib hõõrdumine, mis püüab takistada nende omavahelist liikumist. Mida suurem on takistav jõud, seda vaevalisem on vedeliku voolamine. Rahvalikult öeldes tegemist on paksu ehk viskoosse vedelikuga. 4.

Füüsika
13 allalaadimist
thumbnail
12
doc

Soojustehnika - küsimused vastustused

kusjuures P ja T, külmagents suunatakse edasi aurutisse Osad: K-kompressor; KO-kondensaator, D-drosselseade, KK-külmutusseade, A- aurusti (toimub külmagentsi täielik aurustumine). 12.Termodünaamilise keha voolamine ja drosseldamine. Gaasiturbiinseadme rengprotsess. Põhimõtte skeem. TD keha voolamine ja drosseldamine Stats. voolam pidevuse võrrand: Fc

Soojustehnika
89 allalaadimist
thumbnail
19
doc

Soojustehnika eksamiküsimused (vastused)

p1 T1 võrdeliselt absoluutsete temperatuuridega: v=const(isohoorne) = p 2 T2 11. Ideaalgaaside segud. Partsiaalrõhu mõiste. Daltoni seadus. Gaasikomponendi suhteline osamass ja suhteline osamaht. *Ideaalgaaside segu on ideaalsete gaaside mehaaniline segu, mille puhul kehtivad samuti idealgaaside olekuvõrrandid. Iga gaas segus võtab enda alla kogu segu mahu ja omandab segu temperatuuri. *Partsiaalrõhk ­ kui iga üksikgaas avaldab anuma seintele kindlat rõhku ja üksikuid gaase millest segu koosneb nim. gaasi komponentideks siis üksiku komponendi rõhku nim. partsiaalrõhuks. * Daltoni seadus ­ gaasi segu rõhk võrdub komponentide partsiaalrõhkude summaga n p = p1 + p 2 + .... + p n = pi [Pa] i =1 Mi

Soojustehnika
764 allalaadimist
thumbnail
19
doc

Soojustehnika eksami küsimuste vastused

p1 T1 võrdeliselt absoluutsete temperatuuridega: v=const(isohoorne) p 2 T2 11. Ideaalgaaside segud. Partsiaalrõhu mõiste. Daltoni seadus. Gaasikomponendi suhteline osamass ja suhteline osamaht. *Ideaalgaaside segu on ideaalsete gaaside mehaaniline segu, mille puhul kehtivad samuti idealgaaside olekuvõrrandid. Iga gaas segus võtab enda alla kogu segu mahu ja omandab segu temperatuuri. *Partsiaalrõhk ­ kui iga üksikgaas avaldab anuma seintele kindlat rõhku ja üksikuid gaase millest segu koosneb nim. gaasi komponentideks siis üksiku komponendi rõhku nim. partsiaalrõhuks. * Daltoni seadus ­ gaasi segu rõhk võrdub komponentide partsiaalrõhkude summaga n p p1 p 2 .... p n pi [Pa] i 1 Mi

Soojustehnika
59 allalaadimist
thumbnail
54
pdf

SOOJUSTEHNIKA EKSAMI VASTUSED

Soojus ja töö. Energia ülekanne töö vormis- on seotud kehade ümberpaiknemisega ruumis või süsteemiväliste parameetrite muutusega. 2.Energia otsest üleminekut ühelt kehalt teisele ilma väliste parameetrite muutusteta (kõrgema temp. kehalt madalama temp. kehale), sellist ülekande vormi nim. soojuseks. Soojusvahetus, levi- soojusevormis ülekantud energiat nim. soojushulgaks. Tähistatakse Q- [J]. q=Q/M [J/kg]. Ideaalne gaas. Selle all mõistetakse gaasi, mis koosneb elastsetest molekulidest, mille vahel puuduvad jõud. Ideaalse gaasi molekulide endi maht on tühiselt väike, mis võimaldab neid vaadelda materiaalsete punktidena. Gaasi molekulid on pidevas liikumises. Sellist aineosakeste liikumist nimetatakse soojuslikuks liikumiseks. Ideaalses gaasis liigub sirgjooneliselt seni kuni ta põrkub kokku naabermolekuli või gaasi piirava pinnaga. Põrked põhjustavad rõhu, mis ajaühikus jaguneb üle

Soojustehnika
46 allalaadimist
thumbnail
29
doc

Põhivara füüsikas

Pidevuse korral puuduvad aga ruumis punktid, kus vektor pole määratud. 10 Kiiruste väli vektorväli, millega kirjeldatakse vedelike ja gaaside liikumist (voolamist). Voolavas vedelikus või gaasis on igas ruumipunktis vedeliku või gaasi kiirus vektoriaalsena määratav ja seetõttu ongi liikumine kirjeldatav kiiruste väljana. Joonte (voolujoonte) meetod on üks graafilisi meetodeid vektorvälja kirjeldamiseks. Voolamise puhul on voolujooneks kujuteldav pidev joon, mille igas punktis on sellele punktile vastavad kiirusvektorid voolujoone puutuja sihilised. Voolujoon annab infot voolamise suuna, mitte aga otse voolamise kiiruse kohta. Ideaalse vedeliku korral annab infot voolamise kiiruse kohta voolujoonte tihedus. Jõuväljade (gravitatsiooniväli, elektrostaatiline väli) korral kasutatakse vastavalt jõujoonte mõistet.

Füüsika
121 allalaadimist
thumbnail
105
doc

Füüsika konspekt

11.1.INERTSIAALNE TAUSTSÜSTEEM EINSTEIN JA MEIE Albert Einstein kui relatiivsusteooria rajaja MART KUURME Liikumise uurimine algab taustkeha valikust ­ leitakse mõni teine keha või koht, mille suhtes liikumist kirjeldada. Nii pole aga alati tehtud. Kaks ja pool tuhat aastat tagasi arvas eleaatidena tuntud kildkond mõtlejaid, et liikumist pole üldse olemas. Neid võib osaliselt mõistagi. Sest kas keegi meist tunnetab, et kihutame koos maakera ja kõige temale kuuluvaga igas sekundis umbes 30 kilomeetrit, et aastaga tiir Päikesele peale teha? Eleaatide järeldused olid muidugi rajatud hoopis teistele alustele. Nende neljast apooriast on köitvalt kirjutanud mullu meie hulgast lahkunud Harri Õiglane oma raamatus "Vestlus relatiivsusteooriast". Elease meeste arutlused on küll väga põnevad, kuid tõestavad ilmekalt, et palja mõtlemisega looduses toimuvat tõepäraselt kirjeldada ei õnnestu. Aeg on näidanud, et ka nn. terve mõistusega ei jõua tõe täide sügavusse. E

Füüsika
282 allalaadimist
thumbnail
2
doc

Soojustehnika teooria eksamiks

Tõeliseks erisoojuseks- nim. madalama temp. kehale), sellist ülekande vormi nim. erisoojust, mida keha omab c=dq/dt = limq/t. soojuseks. Soojusvahetus, levi- soojusevormis 13.Termodünaamilise keha entalpia. Entalpia h on ülekantud energiat nim. soojushulgaks. Tähistatakse Q- siseen u ja rõhuenergia pv summa: h=u+pv [J/kg]. [J]. q=Q/M [J/kg]. Arvuliselt on võrdne tööga, mis on vaja, et viia gaas 20.Vee aurustumine. Vee aurustumise all mõistetakse 4. Ideaalne gaas . Selle all mõistetakse gaasi, mis mahuga v vaakumist ruumi rõhuga p. Entalpia antakse sellist TD pr, kus küllastustempl olev vesi muudetakse koosneb elastsetest molekulidest, mille vahel puuduvad keha 1kg kohta. Entalpia on ekstensiivne suurus. isobaarilises kuumutamisprotsessis kuivaks küllastunud jõud

Soojustehnika
727 allalaadimist
thumbnail
97
pdf

Pneumaatika alused

Pärast kompressori sisselaskeklapi avatud asendisse lukustamist, ei ole kompressor võimeline tootma suruõhku (sele 16). Sele 16 - Sisselaskeklapi lukustamine 17 2.3.2.4 Kompressori ajami pöörlemissageduse muutmine. Meetodit kasutatakse enamasti juhul, kui kompressori ajamiks on sisepõlemismootor. Pöörlemissagedust muudetakse sellisel juhul kas käsitsi või automaatselt sõltuvalt töörõhust. Kui kompressori ajam on elektriline, kasutatakse muudetava pooluste arvuga elektrimootorit. Elektriajami puhul on see meetod väga harva kasutusel. 2.3.2.5 Õhu sissevoolu piiramine. Reguleerimine toimub õhu sissevoolu piiramise teel. Meetodit kasutatakse eeskätt kolb- ja turbokompressorite kasutamise korral. 2.3.3 Automaatne reguleerimine Antud reguleerimise korral on kompressor ühes olekus kahest: töötab täiskoormusel või on väljalülitatud. Rõhu tõustes väärtuseni pmax, lülitatakse

Ohuõpetus
238 allalaadimist
thumbnail
194
pdf

Pneumaatika alused

Pärast kompressori sisselaskeklapi avatud asendisse lukustamist, ei ole kompressor võimeline tootma suruõhku (sele 16). Sele 16 - Sisselaskeklapi lukustamine 17 2.3.2.4 Kompressori ajami pöörlemissageduse muutmine. Meetodit kasutatakse enamasti juhul, kui kompressori ajamiks on sisepõlemismootor. Pöörlemissagedust muudetakse sellisel juhul kas käsitsi või automaatselt sõltuvalt töörõhust. Kui kompressori ajam on elektriline, kasutatakse muudetava pooluste arvuga elektrimootorit. Elektriajami puhul on see meetod väga harva kasutusel. 2.3.2.5 Õhu sissevoolu piiramine. Reguleerimine toimub õhu sissevoolu piiramise teel. Meetodit kasutatakse eeskätt kolb- ja turbokompressorite kasutamise korral. 2.3.3 Automaatne reguleerimine Antud reguleerimise korral on kompressor ühes olekus kahest: töötab täiskoormusel või on väljalülitatud. Rõhu tõustes väärtuseni pmax, lülitatakse

Tehnoloogia
44 allalaadimist
thumbnail
76
pdf

Soojusõpetuse konspekt

..................................................................................18 2.7. Baromeetriline valem. Boltzmanni jaotus..............................................................................19 III pt. Reaalsed gaasid. Vedelikud ja kristalsed kehad.......................................................................20 3.1. Ülekandenähtused...................................................................................................................20 3.1.1. Viskoossus.......................................................................................................................20 3.1.2. Soojusjuhtivus.................................................................................................................21 3.1.3. Difusioon gaasides..........................................................................................................21 3.1.4. Molekulide keskmine vaba tee pikkus gaasides....................................

Füüsika
31 allalaadimist
thumbnail
288
pdf

Keemiakursuse kokkuvõte

sisaldavad võrdsel temperatuuril ja võrdsel rõhul võrdse arvu gaasi molekule. Avogadro seadust saab tuletada kahest eeldusest: 1. Kõikide gaaside molaarruumalad standardtingimustel on 22,7 dm3/mol. 2. Üks mool gaasi sisaldab NA gaasi molekuli. 88 Gaaside tihedused suhtuvad teineteisesse nii nagu nende molaarmassid. Kahe gaasi molaarmasside suhe näitab, mitu korda on üks gaas teisest raskem või kergem ehk milline on ühe gaasi tihedus teise suhtes. Praktikas hinnatakse sageli gaasi tihedust õhu suhtes. Sel juhul on õhu M arvväärtus 29. CO2 on õhust raskem 44/29 = 1,5 korda. Õhk on veeaurust 29/18 = 1,61 korda raskem. 89 Vesi Vesi ehk divesinikmonooksiid ehk vesinikoksiid ehk oksidiaan on keemiline ühend keemilise valemiga H2O.

Rekursiooni- ja...
16 allalaadimist
thumbnail
57
rtf

TEHNILINE TERMODÜNAAMIKA

mehaaniline kui ka soojuslik koosmõju. Termodünaamilist süsteemi, millel puudub soojusvahetus väliskeskkonnaga (ka siis, kui termodünaamilise süsteemi temperatuur erineb väliskeskkonna temperatuurist), nimetatakse s o o j u s l i k u l t i s o l e e r i t u d ehk a d i a b a a t i l i s e k s s ü s t e e mi k s. Adiabaatiliseks termodünaamiliseks süsteemiks on näiteks soojuslikult ideaalselt isoleeritud anumasse paigutatud gaas.Sellist süsteemi, mis väliskeskkonnast on eraldatud samaaegselt adiabaatiliste (soojuslikult isoleeritud) ja mehaaniliselt absoluutselt jäikade pindadega, nimetatakse s u l e t u d ehk i s o l e e r i t u d t e r m o ­d ü n a a m i l i s e k s s ü s t e e m i k s. Isoleeritud termodünaamilise süsteemi ja väliskeskkonna vahel puudub nii soojuslik kui ka mehaaniline koosmõju. 1.2. Termodünaamiline keha.

Termodünaamika
17 allalaadimist
thumbnail
72
pdf

Keemia ja materjaliõpetus (YKI3030) eksami kordamisküsimused ja vastused 2016/2017

10. Püsivus ja reaktsioonivõime. 11. Terviserisk. 12. Keskkonnarisk. 13. Jäätmekäitluse viis. 14.Veonõuded. 15. Õigusaktid. 16. Muu teave. 4 22. Mis on REACH? Registration, Evaluation and Authorisation of CHemicals  Euroopa parlamendi määrus, mis käsitleb kemikaalide registreerimist, hindamist, autoriseerimist ja piiramist. 23. Gaas ja aur-definitsioonid.  GAAS on aine, mis normaaltemperatuuril ja rõhul on täielikult gaasilises olekus.  AUR on selline aine gaasilises olekus, mille keemistemperatuur on kõrgem kui toatemperatuur. Näiteks veeaur. 24. Gaaside omadused.  Gaaside kõige iseloomulikum omadus on nende kokkusurutavus ja võime paisuda.  Gaasidel ei ole kindlat kuju, nad täidavad anuma võttes selle kuju.  Gaasi ruumala ühtib anuma ruumalaga, milles ta asub.

Keemia ja materjaliõpetus
42 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun