Võimsus: Ne= 12000kW Pöörete arv: N= 500 p/min Silindrite arv: i= 12 Kolvi käik: S= 610 mm Silindri läbimõõt: D=430 mm Maksimaalne põlemisrõhk: 210 bar Kütuse erikulu: ge (kütus)=192g/kWh Õli erikulu: ge(õli)=0,8g/kWh Peamasina gabariidid: L= 9,9m, B= 3,9m; H=6,7 Peamasinate töökäigud: A1, B1, A2, B2, A4, B4, A6, B6, A5, B5, A3, B3, Ülelaadimisrõhk: 3,35 bar Mootoriressurss: 30000 h 9 Kasutatav kütus ja õli Kasutatav kütus IFO-380 LS Erikaal 15ºC juures 968,4kg/m3 Viskoossus 50ºC juures 350,7cSt Tuhasisaldus 0,025% Väävlisisaldus 0,38% Meh. osakeste sis. 0,02% Veesisaldus <0,03% Koksistuvus 8,72% Leektäpp 200ºC Hangumistäpp -5ºC Fraktsioonil. koostis , Vanaadium 90ppm,
............................................................................. 18 2.1 Üldandmed peamasina kohta ......................................................................................... 18 2.1.1 Peamasina tüüp ........................................................................................................ 18 2.1.2 Tehniline iseloomustus ............................................................................................ 18 2.1.3 Kasutatav kütus ....................................................................................................... 19 2.1.4 Kasutatav õli ............................................................................................................ 19 2.2 Peamasina konstruktsioon .............................................................................................. 19 2.2.1 Plokk- karter ................................................................................................
3.ANDURID JA NENDE MÕÕTEPRINTSIIBID. 3.1.Andurite definitsioon ja liigitus. Anduritele esitatavad nõuded, ideaalkarakteristikud. Andur on automaatsüsteemi osa, mis muundab kontrollitava suuruse mõõtmiseks, edastamiseks, säilitamiseks, registreerimiseks, võimendamiseks või juhitavasse seadmesse suunamiseks sobivasse vormi (optiliseks, mehaaniliseks või elektriliseks signaaliks). Andur koosneb tavaliselt tajurist (esmamuundurist) ja ühest või mitmest vahemuundurist. Mõnel juhul moodustab anduri ainult tajur (nt. termopaar, takistustermomeetri andur). Joonisel 0.2.1 on toodud tüüpilise anduri plokkskeem. Andurid liigitatakse füüsikalise tööpõhimõtte järgi: 1. elektrisuuruste muutusel põhinevad andurid : induktiivandurid, mahtuvusandurid, takistusandurid; 2. optilised, kasutavad elektrimagnetilisi protsesse lainepikkustel üle 10¹² Hz.; 3
Liugurieid liigutatakse käigukangi abil. Traktori jõuülekandesse kuuluvad agregaadid ja mehhanismid, mis kannavad pöördemomendi mootorilt veoratastele (roomikutele) ning muudavad momendi ja pöörlemissageduse väärtust ja suunda. Jõuülekanne edastab seega väntvõlli pöördemomendi käiguosale ja võimaldab pöördemomenti muuta. Traktori jõuülekanne tagab ka mootori võimsuse kandmise traktoriga ühendatud masinale. Jõuülekannet on vaja seetõttu, et mootori pöörlemissagedus on traktori veorataste (roomikute) pöörlemissagedusest tunduvalt suurem. Sõltuvalt pinnase takistusest, tööseadiste koormuste kõikumistest, veeretakistuse ja haardevõime muutustest, tee või pinnase tõusudest ja langustest võib traktori liikumistakistus muutuda laiades piirides ja järelikult on vaja ülekantavat pöördemomenti muuta, et ületada takistusi ja kindlustada mootori ökonoomne kasutamine. Sisepõlemismootorite pöördemomendi nimivarutegur on 20% piires, seega ei ole
Sõltuva vedrustuse ehitus: 1.Tapp(rumm) 2.Rattarumm 3.käändteljepolt 4.põiktala sild,tugiavaga 5.lukustuskiilpolt 6.käändtelg 7.käändmiku hoob 8.roolitrapetsihoob 9.lehtvedrud Sõltuv tüüpvedrustus. 1.tagasild 2.lehtvedrud 3.vedrude kinnitused (esimene,tagumine kinnitus) 4.vedrukinnituskronsteinid 5.tugiplaat 6.amort 7.rattaveovõll(äärikuga) 8.läbilöögipuks(puhver) Teleskoopamort 1.alumine kinnitus silm 2.silinder 3.kolb 4.silindri kaas 5.möödavoolu klapp kolvi sees 6.varras 7.tagasilöögiklapp 8.sisselaskeklapp 9.surveklapp 10.amordi koonus puksid 11.varda keermestatud otsik 12.võtmehoide kandid Rehvid D-vedavatele telgedele T-haagised E-tavamaantee Y-maastik U-linna Levinud Rattarummud. Ülesanne kanda veojõudu diffrist rattarummule ja edasi rattale. 1simmer 2rattarumm(kuullaagril) 3seib 4kinnitusmutter 5.kapsel Rummu ehitus lõikes: 1.Tapp 2.rattarumm 3.simmer 4.mutter 5.kapsel Tagaratta rummu ehitus 1Laager(komplektne) 2stopperseib
SPM SILINDRIKAAN..................................................................................................................18 SILINDRIKAANE TIHENDID.................................................................................................19 SPM KEREOSADE ÜHENDAMINE..........................................................................................20 SPM VÄNT – KEPS MEHHANISM............................................................................................21 KOLB........................................................................................................................................22 KOLVISÕRM............................................................................................................................24 KOLVIRÕNGAD......................................................................................................................24 ÕLIRÕNGAD.....................................................................
Saastusoht: Suruõhk on puhas energiakandja; lekkivad torustikud ei saasta keskkonda, mis on eriti oluline toiduainete-, puidu-, tekstiili- ja galanteriitööstuses Konstruktsioon: Suruõhuajamid on oma ehituselt analoogilised ja seetõttu ka majanduslikult tasuvad. Töökiirus: Suruõhk on kiiretoimeline energiakandja. Pneumosilindrite abil saavutatav liikumiskiirus on 1-2 m/s, pneumomootorite pöörlemissagedus aga kuni 500000 min-1. Reguleeritavus: Suruõhu ajamite tööparameetrid on piiranguteta reguleeritavad. Ülekoormatavus: Suruõhuajamid on tundetud ülekoormustele. Et täpsemalt määratleda suruõhu kasutusvaldkondi, on vajalik teada ka suruõhu puudusi ja kasutuspiiranguid. Õhu ettevalmistus: Kasutatav suruõhk peab olema puhas ja kuiv. Vastasel korral põhjustab ta suruõhuseadmete kulumist ja rikkeid
Saastusoht: Suruõhk on puhas energiakandja; lekkivad torustikud ei saasta keskkonda, mis on eriti oluline toiduainete-, puidu-, tekstiili- ja galanteriitööstuses Konstruktsioon: Suruõhuajamid on oma ehituselt analoogilised ja seetõttu ka majanduslikult tasuvad. Töökiirus: Suruõhk on kiiretoimeline energiakandja. Pneumosilindrite abil saavutatav liikumiskiirus on 1-2 m/s, pneumomootorite pöörlemissagedus aga kuni 500000 min-1. Reguleeritavus: Suruõhu ajamite tööparameetrid on piiranguteta reguleeritavad. Ülekoormatavus: Suruõhuajamid on tundetud ülekoormustele. Et täpsemalt määratleda suruõhu kasutusvaldkondi, on vajalik teada ka suruõhu puudusi ja kasutuspiiranguid. Õhu ettevalmistus: Kasutatav suruõhk peab olema puhas ja kuiv. Vastasel korral põhjustab ta suruõhuseadmete kulumist ja rikkeid
1. Tegelikus tsüklis toimub töötava keha keemiline muutus, st. mis tagaks külma mootori käivitamisel survetakti lõpul küttesegu soojuse saame põlemise teel.Toimuvad 1 Takt. Kolb liigub ASS- ust ÜSS-u. Toimub silindri puhastamine isesüttimise. Selleks peab temperatuur survetakti lõpul ületama põlemisreaktsioonid : jääkgaasidest , silindri täitmine värske õhuga ja peale kütuse isesüttimise temperatuuri 100 kuni 200 0C.
kvalitatiivne segumoodustus. Surveprotsess algab 4-taktilises mootoris momendist, kui sulguvad mootori sisselaskeklapid ja 2-taktilises mootoris pärast gaasivahetust. Surveprotsessi ülesandeks on suurendada ringprotsessi temperatuuri-intervalli, ette valmistada küttesegumoodustamiseks parim keskkond, saavutada kütuse paremad põlemistingimused ja gaasi täielikum paisumine töötaktil. Segumoodustumisprotsess algab sellest momendist, kui silindrisse suunatakse kütus. Hetkel on bensiini- ja diiselmootoritel on kütuse suunamise protsess silindrisse erinev. Segumoodustumisprotsessi iseärasused sõltuvad, kas tegemist on ülelaadimiseta või ülelaadimisega mootoriga. Põlemisprotsess, algab momendist kui küttesegu komprimeerimise tulemusena tekkivad silindris esimesed ülihapendite ergastatud ühendid, mis kutsuvad esile küttesegu kohttsentrite helesinised hõõgumised, mille järgi hilisemalt tekkivad esimesed küttesegu põlemiskolded.
Lisa 1 Siduri hõõrdemomendi arvutusvalemid 59 2 3 Autode jõuülekanded Üldandmed Jõuülekannete otstarve ja tüübid Auto jõuülekandesse kuuluvad agregaadid ja mehhanismid, mis kannavad pöördemomendi mootorilt vedavatele ratastele ning muudavad momendi ja pöörlemissageduse väärtust ja suunda. Jõuülekande vajadus tuleneb järgmistest põhjustest. Mootori pöörlemissagedus on auto veorataste pöörlemissagedusest palju kordi suurem ja auto liikumistakistus muutub pidevalt laiades piirides. Seda põhjustavad pinnase eritakistuse ning rataste veeretakistuse ja haardevõime muutused, mis on tingitud tee või pinnase tõusudest ning langustest. Järelikult on veoratastele kantavat pöördemomenti vaja muuta, et ületada kasvavaid takistusi, täielikumalt kasutada mootori võimsust ja saavutada suur tootlikus väikese kütusekuluga.
Sõidusuuna muutmine toimub planetaarülekande vahendusel. Joonis 4. 2. Automaatkäigukastide mehaanika 2.1 Käiguvalits Automaatkäigukastides toimub ülekandearvu muutmine, ehk käikude vahetamine, automaatselt. Käiguvalitsaga saab autojuht valida eri olukordi, nagu näiteks muuta sõidusuunda, vaba ja parkimisasend. Käiguvalitsage muudetakse trossi vahendusel käigukastis oleva käiguvaliku siibri asendit ja parkimislukustit. Juhtplokk saab käiguvalitsa asendist teada käiguvalitsa asendianduri poolt saadetud elektrisignaali kaudu. Andur asub tavaliselt käigukastist väljaspool käiguvalitsa hoova küljes. Anduriga on liidetud veel lüliti, mis katkestab käiviti juhtahela vooluringi. Turvalisuse suurendamiseks on auto käivitamine võimalik ainult käiguvalitsa P ja N asendites. Joonis 5. Käiguvalits 2.2 Planetaarülekanne
Selliseid mootoreid nimetatakse ka sisepõlemismootoriteks. Need on mootorid, mis on kõikidel kaasaegsetel autodel, mootorratastel, traktoritel. Kui iidsel aurumasinal olid küttekolle ning sellega ühendatud veeanum väljaspool mootorit, siis sisepõlemismootoril veeanum puudub ning kütust põletatakse mootoris. Selline mootor võtab palju vähem ruumi. Kütus siseneb sisepõlemismootori silindrisse portsude kaupa ning üks ports põletatakse kohe väikese plahvatusega ära. Plahvatuse tagajärjel eraldub silindrisse soojusenergiat, mille tulemusel seal olev gaas paisub. Paisunud gaas aga liigutab kolbi ning mootor käivitub. Neis
ning 4 süsteemi: toite-, süüte- , jahutus- ja õlitussüsteem. Mootori ehitus ja tööpõhimõte Kolbmootoris muundab soojusenergia mehhaaniliseks tööks väntmehhanism, mis koosneb silindrist koos silindripeaga, kolvist koos kolvirõngastega, kepsust koos kepsulaagritega selle mõlemas otsas, väntvõllist koos hoorattaga ja siduriga ning karterist. Silinder ja väntvõll toetuvad kahest poolest koosnevale karterile, mis moodustab mootori aluse. Kolb liigub silindris edasi-tagasi ja on ühendatud väntvõlliga liigenditel kepsu kaudu. Mootori töö selgitamiseks oletame, et kolb asub silindri ülemises piirasendis ja kolvipealne ruum on täidetud kokkusurutud kütteseguga so bensiini-õlisegust ja õhust koosnev segu. Kui nüüd küttesegu süüdata, tekib põlemisel kõrge temperatuur ja põlemisgaas paisub, tekitades rõhu, mis surub kolvi silindris allapoole. Kolvi liikumine kandub kepsu kaudu väntvõllile ja see hakkab pöörlema
vedavale rattale. Jõuülekandesse kuuluvad mootoriüle- kanne, sidur, käigukast ja peaülekanne, mis kõik peale vii- mase on mootoriga kokku ehitatud. Mootoriülekandeks nimetatakse kett- võit hammasajamit, mis on vahelüliks mootori ja siduri vahel. Sidur võimaldab mootorit ajutiselt lahutada järgnevatest jõuülekandeseadmetest ja nendega sujuvalt ühendada. See on vajalik mootorratta sujuvaks paigaltvõtuks ja ohutuks käiguvahetamiseks. Sidurit juhi- takse roolikangil asuva hoova abil. Käigukast on hammas- rattapaäridest koosnev mehhanism, mis võimaldab sõltu- valt liikumistakistusest astmeliselt muuta veorattale üle- kantavat pöördemomenti. Käiguvahetus toimub mootor- ratta vasakul küljel paikneva käigupedaali abil. Viimaseks lüliks jõuülekandes on peaülekanne (kardaanülekanne koos reduktoriga või kettülekanne), mille kaudu pöörde- moment kantakse käigukastist veorattale. Joon. 1
põlema lahtise leegi juurde viimisel. Bensiini leekpunkt jääb vahemikku 25 – 30°C. Laevades lubatakse kasutada kütuseid, millede leekpunkt on üle 60°C. Piiratud ujumisrajooniga laevades alla 60°C, aga see peab siiski jääma üle 40°C tingi – musel, et temperatuur kütuse hoidlas oleks 10°C madalam kütuse leekpunktist.Seega leekpunkt on vägatähtis näitaja tuleohtlikuse seisukohalt. HANGUMIS TEMPERATUUR See on mahajahutus temperatuur, mill katseklaasis olev kütus ei võta enam horisontaalset tasapinda katseklaasi kallutamisel 45° nurga alla. HÄGUSEKS MUUTUMISE TEMPERATUUR See on 10°C kõrgem temperatuur, kui seda on hangumistemperatuur. Selle temperatuuri juures hakkavad välja sadestuma parafiini kristallid. Parafiini – kristallid ummistavad filtreid ja torustikke. Diiselkütustel jääb hangumistemperatuur vahemikku 0 - 45°C. ISESÜTTIMIS TEMPERATUUR See on temperatuur, mille juures kütuse küttesegu plahvatab põlema lahtise leegi
Tarvitatava kütuse järgi: 1) Vedelkütusemootor 2) gaasimootor. Jahutusviisi järgi: 1) Vedelikjahutusega 2) Õhkjahutusega. Silindrite arvu järgi: 1) Ühe silindriline 2) mitme silindriline. Silindrite paaiknemise järgi: 1) Reasmootor 2) V- mootor 3) W- mootor 4) vastakuti paiknevate silindritega mootor (boksermootor) 5) Tähtmootor. 3. 4-taktilise ottomootori töötsükkel (slaid 6), (1) lk. 15. 1) Sisselasketakt. Väntvõlli pöörlemisel liigub kolb ülemisest surnud seisust alumisse, tekitades kolvi kohal asuvas ruumis hõrenduse. Seejuures on sisselaskeklapp avatud ja silinder sisselaskekollektori kaudu (sisselasketoru ja karburaatori kaaudu) ühenduses välisõhuga. Rõhkude vahe tõttu tungib õhk silindrisse. (Karburaatoris pihustab õhk kütuse ja moodustab sellega segunedes küttesegu, mis voolab silindrisse). Silindri täitmine õhuga (kütteseguga) kestab seni, kuna kolb jõuab alumisse surnud seisu. Kolvi selles asendis,
Sisepõlemismootor Hiljem hakati kasutama vedelkütusega mootoreid, mida võib ka nimetada soojusmasinateks. Selliseid mootoreid nimetatakse ka sisepõlemismootoriteks. Need on mootorid, mis on kõikidel kaasaegsetel autodel, mootorratastel, traktoritel. Kui iidsel aurumasinal olid küttekolle ning sellega ühendatud veeanum väljaspool mootorit, siis sisepõlemismootoril veeanum puudub ning kütust põletatakse mootoris. Selline mootor võtab palju vähem ruumi! Kütus siseneb sisepõlemismootori silindrisse portsude kaupa ning üks ports põletatakse kohe väikese plahvatusega ära. Plahvatuse tagajärjel eraldub silindrisse soojusenergiat, mille tulemusel seal olev gaas paisub. Paisunud gaas aga liigutab kolbi ning mootor käivitub. Neis masinates toimuvad soojusenergia ülekanded, mis panevad mootori liikuma. Kuid kunagi ei toimu energia ülekanded ilma kadudeta. Osa kütuste põlemisel eraldunud soojusenergiast läheb kogu süsteemi soojendamiseks
raskete koormuste tõstmisel, lüüsiväravate avamisel jne. Hüdraulilisi akumulaatoreid kasutatakse ka hüdraulilistes pressides . Pressi tühikäigu vältel kogub hüdrauline akumulaator teatava vedelikuvaru . Töökäigu ajal ei suuda pump silindrisse küllaldaselt vedelikku anda ; puudujäägi katab siis hüdrauliline akumulaator. Hüdrauliline akumulaator ( joon ) koosneb silindrist A ,milles liigub kolb B. Selle ülemisse otsa külge on kinnitatud traavers C . Traaversi otstele on riputatud raskused . Vedelik ( vesi või õli ) pumbatakse akumulaatorisse mööda toru D . Akumulaatori silindrisse pumbatav vedelik surub kolvi üles. Kui kolb jõuab ettenähtud kõrgeimasse ülemisse asendisse , siis lülitub pump automaatselt välja. Kui tähistada kolvi kaal tähega G ja tema liikumistee ( tõstekõrgus ) tähega H , siis
Lähtuvalt sellele, tuleb võtta vastu otsuseid, leida oma eesmärkide saavutamiseks lahendusi. K24A3 mootorit paigaldati Honda Accordile aastavahemikus 2003-2007, seega algupäraselt on loodud kesklassi pereautole. Antud mootori suurim tehnoloogiline erinevus varasema põlvkonnaga on i-VTEC kasutamine. Kui Honda varasemate põlvkonna mootoritel oli varieeritav klapi juhtmehhanism, mis kandis nime VTEC, siis uuem i-VTEC puhul on lisaks varieeritava klapi juhtmehhanismile ka nukkvõlli regulaator, millega saab muuta sisselaske nukkvõlli asendit väntvõlli suhtes. Tegemist senini Honda kõige suurema kubatuuriga reas neljasilindrilise mootoriga.[2] K24A3 mootori põhi parameetrid[2]: töömaht 2,354 cm3, silindri läbimõõt 87mm, kolvi käik 99 mm, surveaste 10,5:1, maksimaalne võimsus 189hp (140kW) @6800 p/min,
objekti kohta. Töö käigus nad ise koguvad infot, töötlevad ja kasutavad seda oma töös. Nad võivad muuta oma struktuuri, oma häälestusparameetreid vastavalt muutuvatele töötingimustele. Nad õpivad ise ja organiseerivad oma tööd. Süsteemid on keerulised ja kallid kuid töökindlad. Nendes kasutatakse arvuteid. Automaatreguleerimissüsteemid. Põhimõisted. ARS on alati suletud kontuuriga süsteem ja seal on kaks põhiseadet: regulaator ja objekt. ARS sisaldab kahte põhikomponenti regulaator (reguleerib objekti tööd) ja objekt (mis on reguleeritav. võib olla mootor, seade, protsess). 1) reguleeritav parameeter Suhtelisi ühikuid kasutatakse sellepärast, et nende abil saab võrrelda omavahel erineva dimensiooniga parameetreid. 2) häired mis mõjuvad objektile ja kutsuvad esile muutumist. 3)µ - reguleeriv toime. Sellega reguleeritakse parameetreid objektis. Näiteks klapi avamine.
objekti kohta. Töö käigus nad ise koguvad infot, töötlevad ja kasutavad seda oma töös. Nad võivad muuta oma struktuuri, oma häälestusparameetreid vastavalt muutuvatele töötingimustele. Nad õpivad ise ja organiseerivad oma tööd. Süsteemid on keerulised ja kallid kuid töökindlad. Nendes kasutatakse arvuteid. Automaatreguleerimissüsteemid. Põhimõisted. ARS on alati suletud kontuuriga süsteem ja seal on kaks põhiseadet: regulaator ja objekt. ARS sisaldab kahte põhikomponenti regulaator (reguleerib objekti tööd) ja objekt (mis on reguleeritav. võib olla mootor, seade, protsess). 1) reguleeritav parameeter Suhtelisi ühikuid kasutatakse sellepärast, et nende abil saab võrrelda omavahel erineva dimensiooniga parameetreid. 2) häired mis mõjuvad objektile ja kutsuvad esile muutumist. 3)µ - reguleeriv toime. Sellega reguleeritakse parameetreid objektis. Näiteks klapi avamine.
väntvõllipurunemise. Peamasina alusraam kinnitatakse vundamendile enamasti jäigalt (liikumatult), abimasinate omad aga läbi kummipatjade e. amordisaatorite. 4.Sisepõlemismootori tööpõhimõte: 4 taktiline - pealt silindri kaanega ja altkolviga suletud, kui silindrisse pihustada vajaliku rõhuni komprimeeritud õhuhulka kütust, mis õhu kõrge temperatuuri tõttu süttib, siis põlemisel tekkivate gaaside paisumisel surutakse kolb alla. Kui seejärel eemaldada silindrist heitgaasid, viia kolb tagasi algasendisse, täita silinder uuesti värske õhuga,komprimeerida ja süüdata, siis järgneb kolvi uus liikumine ülevalt alla.Kindlas järjekorras, üksteisele järgnevaid protsesse nim.üheks töötsükkliks.Üksikut osa tsükklist, mile jooksul toimub silindris teatud protsess(st.kolviliikumist ühest surnud seisust teise) nim.taktiks 4.taktilise mootori töötsükkel teostub väntvõlli kahe täispöörde jooksul 720(kraadi) st.nelja takti vältel 1
R L x S S=2R Kui on tegemist ühekordse pumbaga st. pump töötab ainult kolvi ühe poolega, võrdub pumba poolt antava vedeliku hulk Q = D 2 S 60nm ( m3/h) 4 n - väntvõlli pöörete arv minutis D - silindri sisemine diameeter S - kolvi käik m - pumba mahukasutegur. Kui kolb liigub äärmisest vasakust asendist paremale ,läbib ta teekonna x, mis on funktsioon vända pöördenurgast. Avaldame x- sõltuvalt vända pöördenurgast x= f(). x = R - R cos = R ( 1 - cos ). x - kolvi tee pikkus R - vända raadius - vända pöördenurk Kolvi liikumise kiiruse saab avaldada kolvi teekonna valemist (x) võttes sellest esimese tuletise ajas t. c = dx/dt. Vända pöördenurga võib asendada vända nurkkiiruse ja aja korrutisega: = t , siis dx =d[R(1-cos t)] ;
ja hüdrotorudest ning -voolikutest. Pumba abil survestatakse süsteem ja hüdrovedeliku reservuaarist juhitakse see jaoturitesse, millest omakorda suunatakse see erinevatesse tarvikutesse, kust see töötsükli lõpus tagasi reservuaari suunatakse. 4. Aksiaal- kolbpumba ülesanne, ehitus, töö põhimõte. Pump muudab jõuseadme mehaanilise energia töövedeliku kinemaatiliseks energiaks. Paigalseisev jaotusketas, pöörlev osa, kolb, tõukur, kaldketas, võll, kaarjas aken. Kolvid liiguvad tänu silindri ploki telje ja vedava võlli telje vahelisele nurgale. Jaotuskettasse on tehtud kaarjad aknad, mille kaudu kolvide abil imetakse ja surutakse töövedelikku. Kui antakse õli surve all läbi jaotusketta silindritesse, mille tulemusena pannakse liikuma kolvid, ning mis läbi kaldketta rakendavad tööle väljundvõlli, töötab süsteem hüdromootorina
teineteisega jäigalt ühendatud. Maksimumtootlikkus on 2x45 cm3 pumbavõlli ühe pöörde kohta. Jagaja Höövli põhiraamile juhikabiini ette on paigaldatud üks viiesektsiooniline ja üks neljasektsiooniline jagaja. Jagaja iga sektsioon koosneb põhijagajast, mille siibrit juhitakse juhthüdraulika madalrõhuliste pilootjagajate abil. Kummaski jagajas on kaitseklapp mis rakendub erandlikes tingimustes süsteemi normaalset töörõhust 3000kPa (30 bar) suuremal rõhul. Klapp toimib ka imiklapina. Hõlma pöördliikumise kaitseklapid Kaitseklapid (2 tk.) asetsevad tööraamil. Kaitseklappide ülesanne on kaitsta tööraami konstruktsiooni takistusele sattumisel vigastumise eest. Hõlma juhtklotsid Kelgul on neli juhtklotsi, millede soontes asetsevad hõlma liugepinnad. Hõlma nihkumisel kelgu suhtes liuguvad liugepinnad juhtklotside soontes kas paremale või vasakule. Iga juhtklots on lahtivõetav ja reguleeritava soonevahega
Atsetüleeni teekond on analoogne. Segukambrist voolab põlevsegu edasi mööda otsaku 2 kanalit, väljub suudmikust ja põleb ära, moodustades keevitusleegi. Normaalse keevitusleegi saamiseks peab gaas väljuma suudmikust teatud kindla kiirusega. Suure kiiruse korral leek kustub, väikese kiiruse korral tungib leek suudmikku. Järelikult on injektorita põletid vähem universaalsed: nad töötavad ainult põlevgaasi keskmisel rõhul. Et põletid töötaksid korralikult, peab töökohal olema regulaator, mis hoiab hapniku ja atsetüleeni töörõhu võrdse. 8) Gaaskeevitusseadmetega metalli lõikamine. Loetlege ja kirjeldage lühidalt seadmeid. Metallide hapniklõikamine põhineb metallide omadusel põleda tehniliselt puhtas hapnikus kusjuures hapnikujuga eemaldab ka põlemisjäägid. Lõikamisel kuumutatakse kõigepealt metall lõikepõletiga temperatuurini, mille juures metall hapnikujoas süttib. Metalli põlemisel eraldub soojus, mis moodustuva räbu kaudu kandub alumistele kihtidele
Looduslikud kütused on maasüsi (antratsiit, kivi- ja pruunsüsi), nafta, maagaas, põlevkivi, turvas, puit ja taimsed jäätmed. Tehiskütuste hulka kuuluvad kõrgahjukoks, mootorikütused, koksi- ja generaatorgaas jt. Kaasaegsetes laevades töötavad peamasinad ja abikatlad reeglina samadel vedelkütustel, milleks põhirežiimil on tavaliselt raskekütus ning erirežiimidel diislikütus. Küttesüsteem on seega lihtsam, sest katla tööks vajalik kütus võetakse peamasinate kulupaakidest ning katelseadmele omaette kütuse põhivaru- ja kulutanke ning ümberpumpamissüsteeme ei vajata. Kui katel on ette nähtud tööks põhiliselt eelsoojendamist vajaval masuudil või raskekütusel, peab laeval olema võimalus kütta katelt ka eelsoojendamist mittevajava diislikütusega, milleks nähakse ette lisasüsteem oma pumpade, torustike ja filtritega diislikütuse kulupaagist
Laevaehitus Eksamipiletite küsimused 1. Laevade spetsialiseerumine. Erinevate lastide veoks ja erinevate ülesannete täitmiseks ette nähtud laevade omapära. Meretranspordilaevad jagunevad kahte suurde gruppi: kaubalainerid e. liinilaevad, mis on ette nähtud regulaarseteks kaubareisideks kindlate sadamate vahel ja jälgivad sõiduplaani; tramplaevad e. "hulkurlaevad", mis teevad kaubareise erinevate sadamate vahel sõltuvalt kauba olemasolust. Tänapäeva transpordilogistikas on kaubalainerid eelistatumad. Vastavalt klassifikatsioonile otstarbe järgi vaatleme transpordilaevu: kaubalaevad; kauba-reisilaevad; reisilaevad. Kaubalaevade alaliikideks on: segalastilaevad e. nn. generaallastilaevad; puistlastilaevad e. balkerid; vedellastilaevad e. tankerid; kombineeritud lasti laevad. Segalastilaevad on arvukaim kaubalaevade alaliikumbes 80% üldarvust. Omakorda on see ka alaliikide poolest arvukaim: universaal
Laevaehitus Eksamipiletite küsimused 1. Laevade spetsialiseerumine. Erinevate lastide veoks ja erinevate ülesannete täitmiseks ette nähtud laevade omapära. Meretranspordilaevad jagunevad kahte suurde gruppi: kaubalainerid e. liinilaevad, mis on ette nähtud regulaarseteks kaubareisideks kindlate sadamate vahel ja jälgivad sõiduplaani; tramplaevad e. "hulkurlaevad", mis teevad kaubareise erinevate sadamate vahel sõltuvalt kauba olemasolust. Tänapäeva transpordilogistikas on kaubalainerid eelistatumad. Vastavalt klassifikatsioonile otstarbe järgi vaatleme transpordilaevu: kaubalaevad; kauba-reisilaevad; reisilaevad. Kaubalaevade alaliikideks on: segalastilaevad e. nn. generaallastilaevad; puistlastilaevad e. balkerid; vedellastilaevad e. tankerid; kombineeritud lasti laevad. Segalastilaevad on arvukaim kaubalaevade alaliikumbes 80% üldarvust. Omakorda on see ka alaliikide poolest arvukaim: un
Laevaehitus Eksamipiletite küsimused 1. Laevade spetsialiseerumine. Erinevate lastide veoks ja erinevate ülesannete täitmiseks ette nähtud laevade omapära. Meretranspordilaevad jagunevad kahte suurde gruppi: kaubalainerid e. liinilaevad, mis on ette nähtud regulaarseteks kaubareisideks kindlate sadamate vahel ja jälgivad sõiduplaani; tramplaevad e. "hulkurlaevad", mis teevad kaubareise erinevate sadamate vahel sõltuvalt kauba olemasolust. Tänapäeva transpordilogistikas on kaubalainerid eelistatumad. Vastavalt klassifikatsioonile otstarbe järgi vaatleme transpordilaevu: kaubalaevad; kauba-reisilaevad; reisilaevad. Kaubalaevade alaliikideks on: segalastilaevad e. nn. generaallastilaevad; puistlastilaevad e. balkerid; vedellastilaevad e. tankerid; kombineeritud lasti laevad. Segalastilaevad on arvukaim kaubalaevade alaliikumbes 80% üldarvust. Omakorda on see ka alaliikide poolest arvukaim: universaal
gaasiballooni; kaitseseade paeb takistama leegi sattumise põlevgaasi torustikku ja sealt edasi põlevgaasi hoidlasse. Vastavalt gaasi liigile on olemas kuni kolm kaitse ülesannet. Kaitseseadme ülesanded Kaitse element Trassile paigaldamise vajadus Eraldi olevatesse balloonidesse Atsetüleen Teised põlevgaasid Hapnik Põlevgaasid Hapnik Tagasilöögi klapp + + + + + Leegi tõke + + - + - Täiendav tõke + - - - - + vajalik; - soovituslik. Gaasitrass Ventiil Tagasilöögi kaitse Gaasivool töökohale
Soojusautomaatika eksamiküsimuste vastused 1. Põhimõisted automatiseeritud tootmise alalt. Automaatikasüsteemide klassifikatsioon nende otstarbe järgi. Näited. Automatiseeritud tootmise põhimõisted: 1. Objekt 2. Regulaator 1. Andur 2. Tajur 3. Automaatikasüsteem Automaatikasüsteemide klassifikatsioon otstarbe järgi: 1. Automaatreguleerimise süsteemid (ARS) 2. Distantsioonjuhtimise süsteemid (DJS) 3. Tehnoloogilise kaitse süsteemid 4. Automaatblokeeringu süsteemid (ABS) 5. Reservseadme automaatse käivitamise süsteem (RAKS) 6. Automaatsed tehnoloogilise kontrolli süsteemid (ATKS) 7. Signalisatsioonisüsteemid (SS) valgus ja helisüsteemid 1