Diskreetne matemaatika Sisukord Arvusüsteemid ................................................................................................................................................... 2 Kahendkoodid.................................................................................................................................................... 4 Loogikafunktsioonid ja loogikaavaldised ........................................................................................................... 5 Avaldiste teisendused........................................................................................................................................ 8 Karnaugh’ kaart ................................................................................................................................................. 9 McCluskey’ minimeerimismeetod ................................................................................................................... 10 Loogikaskeemi
LAUSEARVUTUS Diskreetne matemaatika ei tegele reaalarvudega ega pidevate funktsioonidega. Verbaalne esitus on mistahes info esitamine lingvistilise keele abil. Formaalne esitus on mistahes info esitamine ilma lingvistilise keele abita ehk esitus kokkulepitud sümbolite abil. Formaalne esitus peab olema üheselt tõlgendatav. Lausearvutus on loogilise mõtlemise matemaatiline mudel. Lausearvutuse lause võib olla iga verbaalne väide, millele saame omistada tõeväärtuse – tõene või vale. Lihtlause on lihtsaim võimalik lausearvutuslause. Lausearvutuslauseid tähistatakse formaalselt suurtähtedega: A, B, P, Q … Lihtlausetest koostatakse kindlate sidesõnade ja loog konstruktsioonide abil liitlauseid. Lausearvutuse lihtlauseid seotakse liitlauseteks 5 loogilise konstruktsiooni ehk loogikatehte abil. Binaarsed loogikatehted seovad kahte lauset (4 tk), unaarne loogikatehe on rakendatav üksikule lausele (1 tk – eitus). Loogiline korrutamine ehk konjunktsioon ehk JA-tehe. Loogilin
Diskmatt terminid Lausearvutus Disjunktsioon: liitlause on tõene, kui vähemalt üks osalause on tõene Ekvivalents: liitlause on tõene, kui osalaused on sarnased Implikatsioon: liitlause on tõene, kui esimene muutuja on väär või teine muutuja on tõene Inversioon: eitus Ja-tehe: konjunktsioon Konjunktsioon: liitlause on tõene, kui mõlemad osalaused on tõesed Lause: iga lause, mille puhul saab rääkida tema vastavusest tegelikkusele (millel on tõeväärtus) Olemasolu kvantor: näitab, et predikaat kehtib oma määramispiirkonna vähemalt ühe muutujate puhul Predikaat: lause, mis sisaldab ühte või enamat muutujat Samaselt tõene predikaat: predikaat, mis kehtib kogu määramispiirkonnas Samaselt väär predikaat: predikaat, mis ei kehti kusagil määramispiirkonnas Tautoloogia: samaselt tõene lause Täidetav predikaat: predikaat, mis on tõene osas oma määramispiirkonnas Üldsuse kvantor: näitab, et predikaat kehtib oma määramispi
Mis on Diskreetne Matemaatika ? Termineid: — verbaalne esitus on mistahes info esitamine lingvistilise keele abil. " diskreetne " ≡ " mitte pidev " ehk " astmeline " — formaalne esitus on mistahes info esitamine ilma lingvistilise keele abita ehk kokkulepitud sümbolite abil. vs. " Diskreetne Matemaatika " ↔ " Pidev Matemaatika " NB! MÕTLEMINE on alati verbaalne ehk toimub mingi lingvistilise keele Diskreetne Matemaatika ei tegele reaalarvudega ega pidevate funktsioonidega. abil.
HULGATEOORIA PÕHIMÕISTEID HULK - algmõiste, intuitiivse definitsiooni järgi objektide kogum. George Cantor (1845-1918) - saksa matemaatik, hulgateooria rajaja. Hulgad jaotuvad lõpmatuteks ja lõplikeks. Meie kursuses käsitletakse lõplikke hulki, mõnikord ka lõpmatuid loenduvaid hulki. Hulgateoreetilised operatsioonid Hulkade ühend A B = { x ( x A) V ( x B ) } Hulkade ühisosa (lõige) A B = { x ( x A) & ( x B ) Hulga täiend A = { x ( x I ) & ( x A ) }, kus I on nn. universaalhulk. Hulkade vahe A B = { x ( x A) & ( x B ) } Hulkade sümmeetriline vahe A B = { x (( x A ) & ( x B )) V (( x A ) & ( x B )) } Hulga A astmehulgaks 2A nimetatakse hulga A kõigi alamhulkade hulka. Hulgateoreetiliste operatsioonide omadused Kommutatiivsusseadused A B = B A B = B Assotsiatiivsusseadused A ( B C ) = ( A B ) C A ( B C ) = ( A B )
AIY3310 Diskreetne matemaatika Lühikonspekt Käesolev lühikonspekt katab suure osa aines AIY3310 (endise koodiga LIY3310) loetavast. Samal ajal ei saa seda materjali vaadelda kui antud aine täiskonspekti, mille läbitöötamine garanteeriks hea eksamiresultaadi. Loengutes ja harjutustundides käsitletakse mitmeid probleeme tunduvalt põhjalikumalt. Sellest hoolimata usun, et antud kirjutisest on paljudele tudengitest lugejatele kasu valmistumisel kontrolltööks ja eksamiks. Margus Kruus HULGATEOORIA PÕHIMÕISTEID HULK - algmõiste, intuitiivse definitsiooni järgi objektide kogum. George Cantor (1845-1918) - saksa matemaatik, hulgateooria rajaja. Hulgad jaotuvad lõpmatuteks ja lõplikeks. Meie kursuses käsitletakse lõplikke hulki, mõnikord ka lõpmatuid loenduvaid hulki. Hulgateoreetilised operatsioonid · Hulkade ühend AB={x |(xA)V (xB)} · Hulkade ühisosa (lõige) AB={x |(xA)& (xB) · Hulga täiend A = { x | ( x I ) & ( x A ) }, kus I on nn. universaalhulk. ·
Lausearvutus: Diskreetne matemaatika ei tegele pidevate funktsioonidega. Diskreetne mate ei tegele reaalarvudega. Verbaalne esitus on lingvistilise keele kasutamine info edastamiseks. Formaalne esitus on ilma lingivtilise keele kasutamise info edastamine, peamiselt sümbolite abil. Formaalne esitus peab olema üheselt mõistetav. Lausearvutus on loogilise mõtlemise matemaatiline mudel. Lausearvutuse lause on lause, millele saab omistada tõeväärtust(0,1). Tõeväärtuseid on kaks, 0-väär, 1-tõene. Lihtlause on lihtsaim lausearvutuse lause. Lausearvutuse lauseid tähistatakse suutre tähtedega A, B, C. Liitlause koosneb lihtlausetest ning neid siduvatest konstruktisoonidest ja sidesõnadest. Lausearvutuse loogikatehted on inversioon, konjunktsioon, disjunktsioon, implikatsioon, ekvivalents. Binaarsed tehted on need tehted, mida saab teha kahe a
LAUSEARVUTUS Diskreetne matemaatika ei tegele reaalarvudega ega pidevate funktsioonidega. Verbaalne esitus on mistahes info esitamine lingvistilise keele abil. Formaalne esitus on mistahes info esitamine ilma lingvistilise keele abita ehk esitus kokkulepitud sümbolite abil. Formaalne esitus peab olema üheselt tõlgendatav. Lausearvutus on loogilise mõtlemise matemaatiline mudel. Lausearvutuse lause võib olla iga verbaalne väide, millele saame omistada tõeväärtuse – tõene või vale. Lihtlause on lihtsaim võimalik lausearvutuslause. Lausearvutuslauseid tähistatakse formaalselt suurtähtedega: A, B, P, Q … Lihtlausetest koostatakse kindlate sidesõnade ja loog konstruktsioonide abil liitlauseid. Lausearvutuse lihtlauseid seotakse liitlauseteks 5 loogilise konstruktsiooni ehk loogikatehte abil. Binaarsed loogikatehted seovad kahte lauset (4 tk), unaarne loogikatehe on rakendatav üksikule lausele (1 tk – eitus). Loogiline korrutamine ehk konjunktsioon ehk JA-tehe. Loogili
Kõik kommentaarid