TALLINNA TEHNIKAÜLIKOOL Keemiatehnika instituut HÜDRODÜNAAMIKA ALUSED Laboratoorne töö õppeaines Keemiatehnika alused Töö teostasid: Töö teostamise kuupäev: 30.09.3014 Tallinn, 2014 Sisukord Sisukord.................................................................................................................. 2 Töö ülesanne.......................................................................................................... 3 Katseseadme kirjeldus ja skeem............................................................................. 4 Arvutused............................................................................................................... 7 Tabelid..................................................................................................
Tallinna Tehnikaülikool Keemiatehnika instituut Laboratoorne töö õppeaines Gaaside ja vedelike voolamine HÜDRODÜNAAMIKA ALUSED Õpilane: Õppejõud: Jelena Veressinina Õpperühm: KAKB Sooritatud: 15.05.2015 Esitatud: Tallinn 2015 Teooria 1. Vedelike voolamine torustikes Torustikus vedeliku või gaasi liikumapanevaks jõuks on rõhkude vahe, mida on võimalik tekitada pumbaga, kompressoriga või vedeliku nivoo tõstmisega. Teades hüdrodünaamiks põhiseadusi on võimalik leida rõhkude vahe, mis on vajalik selleks, et teatud kogus vedelikku või gaasi panna liikuma etteantud kiirusega ning järelikult ka vedeliku voolamiseks vajaminevat energiakulu. Samuti on võimaliklahendada ka pöördülesannet- leida ettean
Tallinna Tehnikaülikool Keemiatehnika instituut Laboratoorne töö õppeaines Gaaside ja vedelike voolamine HÜDRODÜNAAMIKA ALUSED Õpilane: Õppejõud: Jelena Veressinina Õpperühm: KAKB-41 Sooritatud: 11.02.2013 Esitatud: Tallinn 2013 Teooria 1. Vedelike voolamine torustikes Torustikus vedeliku või gaasi liikumapanevaks jõuks on rõhkude vahe, mida on võimalik tekitada pumbaga, kompressoriga või vedeliku nivoo tõstmisega. Teades hüdrodünaamiks põhiseadusi on võimalik leida rõhkude vahe, mis on vajalik selleks, et teatud kogus vedelikku või gaasi panna liikuma etteantud kiirusega ning järelikult ka vedeliku voolamiseks vajaminevat energiakulu. Samuti on võimaliklahendada ka pöördülesannet- leid
GRAAFIKUD Joonis 1. Resti takistuse sõltuvus õhu kiirusest Joonis 2. Materjali takistuse sõltuvus õhu kiirusest Joonis 3. Keevkihi kõrguse sõltuvus õhu kiirusest. Joonis 4. Kihi poorsuse sõltuvus õhu kiirusest ARVUTUSED de=0,00135m k=1,1839 (õhu tihedus 25°C juures) =161g/250ml=0,644g/cm3=644g/dm3 g=9,81 k=1,8616*10-5 (õhu dünaamiline viskoossus 25°C juures) KOKKUVÕTE Tutvusime keevkihi seadme ehituse ning tööpõhimõttega. Määrasime katseliselt õhu kriitilise kiiruse 0,2373 m/s, sellel kiirusel alustas tahke materjali kiht keemist ja sellest suurema kiiruse juures osakesed alustasid hõljumist. Seejärel määrasime kaasakande kiiruseks 3,8966 m/s, selle kiiruse juures osakesed hõljusid ning osad neist kanti õhuvoolu mõjul kaasa. Toimus pneumotransport. Kirjanduses antud valemitega arvutatud ja katseandmete graafikutelt leitud kriitilise kiiruse väärtused ühtivad üsna hästi ja kriitilise kiiruse leidmise katseosa loeme õnnestunuks. Kirj
Tallinna Tehnikaülikool Keemiatehnika instituut Laboratoorne töö õppeaines Gaaside ja vedelike voolamine KEEVKIHI HÜDRODÜNAAMIKA Õpilased: Õppejõud: Õpperühm: Sooritatud: Esitatud: Tallinn 2013 1. Sissejuhatus Selleks, et viia peeneteraline materjal hõljuvasse olekusse ehk keevakihti, on vaja selle materjali kihist läbi juhtida gaasi või vedelikku (fluidumi) kiirusega, mille puhul kihi takistus õhu voole on võrdne kihi kaaluga pinnaühiku kohta. Fluidumi kiirust, mille juures materjali kiht läheb hõljuvasse olekusse, nimetatakse kriitiliseks kiiruseks. Kriitilisel kiirusel suureneb kihi maht, peeneteralised osakesed omandavad võime üksteise suhtes liikuda ning hakkavad "keema" ja voolama sarnaselt vedelikega. Kriitilisel kiirusel saa
Sissejuhatus. Automaatika süsteeme kasutatakse tootmisprotsessis, kus ta kõrvaldab inimese osavõtu selles protsessis ja võimaldab teostada selliseid protsesse mis on inimesele kahjulikud. Automaatika süsteemi kuuluvad automaat kontrollimine ja automaat reguleerimine. Esimene neist teostab mõõtmisi ja teine teostab reguleerimist e. parameetri hoidmist kindlal tasemel või parameetri hoidmist kindlal tasemel reguleerimisprogrammi järgi. Automaatika süsteemi nimetatakse automatiseerimiseks see võib olla osaline näiteks üks tööpink või tööliin või tsehh ja samuti võib esineda täielik automatiseerimine, sel juhul automatiseeritakse mitu tehnoloogilist protsessi mis on oma vahel seotud. Kompleks automatiseerimine on sel juhul, kui automatiseeritakse juhtimisprotsessid. Seadmete sõlmede kogum mis võimaldab teostada automatiseerimist nimetatakse automaatika süsteemiks. Nad võimaldavad mehhanismide ja seadmete automaatset käivitust, reversee
PNEUMAATIKA ALUSED Koostas: Rein Uulma Sisukord 1 Pneumaatika ajalugu ja kasutatavad ühikud............................................................................ 2 1.1 Suruõhu kasutamise ajalugu............................................................................................. 2 1.2 Suruõhu omadused ........................................................................................................... 2 1.3 Füüsikalised alused .......................................................................................................... 3 1.4 Õhu kokkusurutavus......................................................................................................... 6 1.5 Õhu ruumala sõltuvus temperatuurist .............................................................................. 7 2 Suruõhu saamine ..................................................................................................................... 8 2.1 Kompressorjaam.....
PNEUMAATIKA ALUSED Koostas: Rein Uulma Sisukord 1 Pneumaatika ajalugu ja kasutatavad ühikud............................................................................ 2 1.1 Suruõhu kasutamise ajalugu............................................................................................. 2 1.2 Suruõhu omadused ........................................................................................................... 2 1.3 Füüsikalised alused .......................................................................................................... 3 1.4 Õhu kokkusurutavus......................................................................................................... 6 1.5 Õhu ruumala sõltuvus temperatuurist .............................................................................. 7 2 Suruõhu saamine ..................................................................................................................... 8 2.1 Kompressorjaam.....
Kõik kommentaarid