1. Teisendatud kuju ühtede piirkond: 183BCC10>1,8,3,11,12,0 Teisendatud kuju määramatuse piirkond: 16CEDE2> 6,14,13,2 f(X1X2X3X4)=(0,1,3,8,11,12)1(2,6,13,14)_ 2. x3x4 x1x2 00 01 11 10 00 - 01 0 0 0 - 11 - 0 - 10 0 0 MKNK f ( x1 x 2 x3 x 4 ) = ( x3 x 4 ) & ( x1 x 2 ) & ( x 2 x3 ) & ( x1 x 3 x 4 ) McCluskey f(x1 ,x2 ,x3, x4 ) = (0,1,3,8,11,12)1(2,6,13,14)- Ind. Nr. Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge 0 0 X 0-1 0-1 1 X 0-1-1-2 0-1-2-3 1,2 A8 1 1 X 0-2 2 X 2
Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ Ilja Freiberg 185138 IAIB11 Tallinn 2018 1. Funktsiooni leidmine. Matrikli number on 185138 Seitsmekohaline 16ndarv on 3C8F7FE Ühtede piirkonnaks on 3, 5, 8, 12, 13 Üheksakohaline 16ndarv on 512444552 Määramatuse piirkonnaks on 1, 2, 4, 5 Minu matrikli numbrile 185138 vastav 4-muutuja loogikafunktsioon oma numbrilises 10ndesituses oleks: (x1,x2,x3,x4)= (3, 7, 8, 12, 14, 15) (1, 2, 4, 5)_ Ja nullide piirkonnaks on kõik ülejäänud arvud (0, 6, 9, 10, 11, 13) (x1,x2,x3,x4) = (0, 6, 9, 10, 11, 13)0 (1, 2, 4, 5)_ 2. Funktsiooni tõeväärtustabel. nr x1 x2 x3 x4 0 0 0 0 0 0 1 0 0 0 1 - 2 0 0 1 0 - 3 0 0 1 1 1 4 0 1 0 0 - 5 0 1 0 1 - 6 0 1 1 0 0 7 0 1 1 1 1 8 1
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Tallinn 2009 f ( x1 x2 x3 x4 ) (1,2,4,8,9,12)1 (3,6,11) 01 1. 11 10 x3x4 x1x2 00 01 11 10 00 0 1 - 1 01 1 0 0 - 11 1 0 0 0 10 1 1 - 0 f x1 , x2 , x3 , x4 x1 x2 x3 x4 x2 x4 x1 x3 MKNK: 2. Ind. Nr. Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge 1 1 x 1-2 1-3 2 x 1-2-2- 1-3-9- 2,8 A7 3 11 2
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Kadri Liis Leht 155539 IABB12 Tallinn 2015 1. 4-muutuja loogikafunktsiooni leidmine Matrikli number: 155539 Esimese teisenduse tulemus: 32E0DF5 Ühtede piirkond: 3, 2, 14, 0, 13, 15, 5 Teise teisenduse tulemus: 442B4B343 Määramatuspiirkond: 4, 11 Nullide piirkonda kuuluvad ülejäänud arvud ehk (1, 6, 7, 8, 9, 10, 12) 0 Seega on minu matriklinumbrile vastav 4-muutuja loogikafunktsioon oma numbrilises 10ndesituses: f(x1,x2,x3,x4)= ∑ (0, 2, 3, 5, 13, 14, 15)1 (4, 11)_ 2. Funktsiooni f(x1,x2,x3,x4)= ∑ (0, 2, 3, 5, 13, 14, 15)1 Π(1, 6, 7, 8, 9, 10, 12) 0 (4, 11)_ tõeväärtustabel x 1 x2 x3 x4 f(x1,x2,x3,x4) 0000 1 0001
Tallinna Tehnikaülikool Diskreetne Matemaatika KAUGÕPE KODUTÖÖ 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon Matriklinumber: 184974 7-kohaline 16-nd süsteemi arv: 3C81C42 Ühtede piirkond: f(x1 x2 x3 x4) = (1,2,3,4,8,12)1 9-kohaline 16-nd süsteemi arv: 5111DDC6E Määramatuspiirkond: f(x1 x2 x3 x4) = (5,6,13,14)_ Nullide piirkond: 0,7,9,10,11,15 Minu funktsioon: f(x1 x2 x3 x4) = (1,2,3,4,8,12)1 (5,6,13,14)_ 2. Esitada oma loogikafunktsiooni tõeväärtustabel x1 x2 x3 x4 0000 0 0001 1 0010 1 0011 1 0100 1 0101 -
1. Loogika funktsiooni leidmine f(x1 ,x2 ,x3, x4 ) = (1,7,8,9,10,12,15)1 (5,11,13,14)- (0,2,3,4,6)0 2. MDNK ja MKNK leidmine MDNK Karnaugh' kaardiga x3x4 x1x2 00 01 11 10 00 0 1 0 0 01 0 - 1 0 11 1 - 1 - 10 1 1 - - MDNK: x1 x2 x4 x3 x4 2. MKNK McCluskey' meetodiga f(x1 ,x2 ,x3, x4 ) = (0,2,3,4,6)0 (5,11,13,14)- Ind. Nr. Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge 0 0 x 0-1 0-2 2 x 0-1-1-2 0-2-4-6 2,4 A1 1 2 x 0-4 4 x 4 x 1-2 2-3 1 A2 2 3 x 2-6 4 x 5* x
« » « » 16.11.2009 : Valeria Sükiläinen : IAPB 18 : 093743 : . Aleksander Sudnitsõn 2009 , : 17-1 X2, X4 00 01 11 10 X1, X3 00 --(0) 0 1 1 10 --(0) 0 0 0 X1 11 --(0) 1 1 0 X3 01 0 1 --(1) 1 X4 X2 1: . · -- X1X2 v X3X4 · --(X2 v X3
IAY0010 DISKREETNE MATEMAATIKA ( 1-2) : , 2009 : x2 x4 x1 x3 00 01 11 10 00 - - 0 1 10 0 1 - 1 11 0 0 - 0 x1 01 1 1 0 1 x3 x4 x2 I. 1) - - 0 1 (0) (1) (5) (4) 0 1 - 1
Kõik kommentaarid