Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge
Add link

Kodutöö diskreetne matemaatika (1)

3 HALB
Punktid
Vasakule Paremale
Kodutöö diskreetne matemaatika #1 Kodutöö diskreetne matemaatika #2 Kodutöö diskreetne matemaatika #3 Kodutöö diskreetne matemaatika #4 Kodutöö diskreetne matemaatika #5 Kodutöö diskreetne matemaatika #6 Kodutöö diskreetne matemaatika #7 Kodutöö diskreetne matemaatika #8 Kodutöö diskreetne matemaatika #9
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 9 lehte Lehekülgede arv dokumendis
Aeg2008-01-12 Kuupäev, millal dokument üles laeti
Allalaadimisi 296 laadimist Kokku alla laetud
Kommentaarid 1 arvamus Teiste kasutajate poolt lisatud kommentaarid
Autor Rain Ungert Õppematerjali autor

Sarnased õppematerjalid

thumbnail
6
doc

Kodutöö aines diskreetne matemaatika

1. Teisendatud kuju ühtede piirkond: 183BCC10>1,8,3,11,12,0 Teisendatud kuju määramatuse piirkond: 16CEDE2> 6,14,13,2 f(X1X2X3X4)=(0,1,3,8,11,12)1(2,6,13,14)_ 2. x3x4 x1x2 00 01 11 10 00 - 01 0 0 0 - 11 - 0 - 10 0 0 MKNK f ( x1 x 2 x3 x 4 ) = ( x3 x 4 ) & ( x1 x 2 ) & ( x 2 x3 ) & ( x1 x 3 x 4 ) McCluskey f(x1 ,x2 ,x3, x4 ) = (0,1,3,8,11,12)1(2,6,13,14)- Ind. Nr. Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge 0 0 X 0-1 0-1 1 X 0-1-1-2 0-1-2-3 1,2 A8 1 1 X 0-2 2 X 2

Diskreetne matemaatika
thumbnail
9
docx

Diskreetne matemaatika

Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ Ilja Freiberg 185138 IAIB11 Tallinn 2018 1. Funktsiooni leidmine. Matrikli number on 185138 Seitsmekohaline 16ndarv on 3C8F7FE Ühtede piirkonnaks on 3, 5, 8, 12, 13 Üheksakohaline 16ndarv on 512444552 Määramatuse piirkonnaks on 1, 2, 4, 5 Minu matrikli numbrile 185138 vastav 4-muutuja loogikafunktsioon oma numbrilises 10ndesituses oleks: (x1,x2,x3,x4)= (3, 7, 8, 12, 14, 15) (1, 2, 4, 5)_ Ja nullide piirkonnaks on kõik ülejäänud arvud (0, 6, 9, 10, 11, 13) (x1,x2,x3,x4) = (0, 6, 9, 10, 11, 13)0 (1, 2, 4, 5)_ 2. Funktsiooni tõeväärtustabel. nr x1 x2 x3 x4 0 0 0 0 0 0 1 0 0 0 1 - 2 0 0 1 0 - 3 0 0 1 1 1 4 0 1 0 0 - 5 0 1 0 1 - 6 0 1 1 0 0 7 0 1 1 1 1 8 1

Diskreetne matemaatika
thumbnail
7
docx

Diskreetne Matemaatika

Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Tallinn 2009 f  ( x1 x2 x3 x4 )   (1,2,4,8,9,12)1 (3,6,11)  01 1. 11 10 x3x4 x1x2 00 01 11 10 00 0 1 - 1 01 1 0 0 - 11 1 0 0 0 10 1 1 - 0   f  x1 , x2 , x3 , x4    x1  x2  x3  x4  x2  x4 x1  x3  MKNK: 2. Ind. Nr. Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge 1 1 x 1-2 1-3 2 x 1-2-2- 1-3-9- 2,8 A7 3 11 2

Diskreetne matemaatika
thumbnail
18
pdf

Diskreetne matemaatika I

Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Kadri Liis Leht 155539 IABB12 Tallinn 2015 1. 4-muutuja loogikafunktsiooni leidmine Matrikli number: 155539 Esimese teisenduse tulemus: 32E0DF5 Ühtede piirkond: 3, 2, 14, 0, 13, 15, 5 Teise teisenduse tulemus: 442B4B343 Määramatuspiirkond: 4, 11 Nullide piirkonda kuuluvad ülejäänud arvud ehk (1, 6, 7, 8, 9, 10, 12) 0 Seega on minu matriklinumbrile vastav 4-muutuja loogikafunktsioon oma numbrilises 10ndesituses: f(x1,x2,x3,x4)= ∑ (0, 2, 3, 5, 13, 14, 15)1 (4, 11)_ 2. Funktsiooni f(x1,x2,x3,x4)= ∑ (0, 2, 3, 5, 13, 14, 15)1 Π(1, 6, 7, 8, 9, 10, 12) 0 (4, 11)_ tõeväärtustabel x 1 x2 x3 x4 f(x1,x2,x3,x4) 0000 1 0001

Diskreetne matemaatika
thumbnail
11
docx

Diskreetne Matemaatika

Tallinna Tehnikaülikool Diskreetne Matemaatika KAUGÕPE KODUTÖÖ 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon Matriklinumber: 184974 7-kohaline 16-nd süsteemi arv: 3C81C42 Ühtede piirkond: f(x1 x2 x3 x4) = (1,2,3,4,8,12)1 9-kohaline 16-nd süsteemi arv: 5111DDC6E Määramatuspiirkond: f(x1 x2 x3 x4) = (5,6,13,14)_ Nullide piirkond: 0,7,9,10,11,15 Minu funktsioon: f(x1 x2 x3 x4) = (1,2,3,4,8,12)1 (5,6,13,14)_ 2. Esitada oma loogikafunktsiooni tõeväärtustabel x1 x2 x3 x4 0000 0 0001 1 0010 1 0011 1 0100 1 0101 -

Diskreetne matemaatika
thumbnail
5
doc

Diskreetne matemaatika

1. Loogika funktsiooni leidmine f(x1 ,x2 ,x3, x4 ) = (1,7,8,9,10,12,15)1 (5,11,13,14)- (0,2,3,4,6)0 2. MDNK ja MKNK leidmine MDNK Karnaugh' kaardiga x3x4 x1x2 00 01 11 10 00 0 1 0 0 01 0 - 1 0 11 1 - 1 - 10 1 1 - - MDNK: x1 x2 x4 x3 x4 2. MKNK McCluskey' meetodiga f(x1 ,x2 ,x3, x4 ) = (0,2,3,4,6)0 (5,11,13,14)- Ind. Nr. Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge 0 0 x 0-1 0-2 2 x 0-1-1-2 0-2-4-6 2,4 A1 1 2 x 0-4 4 x 4 x 1-2 2-3 1 A2 2 3 x 2-6 4 x 5* x

Diskreetne matemaatika
thumbnail
5
pdf

Diskreetne matemaatika

« » « » 16.11.2009 : Valeria Sükiläinen : IAPB 18 : 093743 : . Aleksander Sudnitsõn 2009 , : 17-1 X2, X4 00 01 11 10 X1, X3 00 --(0) 0 1 1 10 --(0) 0 0 0 X1 11 --(0) 1 1 0 X3 01 0 1 --(1) 1 X4 X2 1: . · -- X1X2 v X3X4 · --(X2 v X3

Informaatika
thumbnail
8
doc

Diskreetne matemaatika

IAY0010 DISKREETNE MATEMAATIKA ( 1-2) : , 2009 : x2 x4 x1 x3 00 01 11 10 00 - - 0 1 10 0 1 - 1 11 0 0 - 0 x1 01 1 1 0 1 x3 x4 x2 I. 1) - - 0 1 (0) (1) (5) (4) 0 1 - 1

Diskreetne matemaatika



Lisainfo

Matr. nr 010636

Märksõnad

Mõisted


Kommentaarid (1)

reku13 profiilipilt
Reigo Rannak: täitsa hea asi
19:15 28-02-2010





Uutele kasutajatele e-mailiga aktiveerimisel
10 punkti TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun