Tallina Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ 1. Leida oma matriklinumbrile vastav loogikafunktsioon 1-de piirkond: 1, 3, 9, 10, 13 Määramatuspiirkond: 4, 5, 6, 7, 8, 12, 14 0-de piirkond: 2, 11, 15 179159 3A9AD11 x1 x2 x3 x4 f 4E856E1C7 −¿ 4, 5, 6,7, 8,12, 14 ¿¿ 0 0 0 0 0 0, 2, 11,15 ¿ 0 ¿ 0 0 0 1 1 1, 3, 9,10, 13 ¿1 Π ¿ 0 0 1 0 0 0 0 1 1 1 f ( x 1 … x 4 )=Σ ¿ 0 1 0 0 - 0 1 0 1 - 2. Esitada 0 1 1 0 - 0 1 1 1 - 1 0 0 0 - 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0
Tallinna Tehnikaülikool Infotehnoloogia teaduskond Diskreetne Matemaatika KODUTÖÖ Üliõpilane: Andri Kaaremäe Õpperühm: IABB13 Matrikli nr: 154819 Tallinn 1) Matriklinumbrile vastav 4-muutuja loogikafunktsioon f(x1 ... x4) = (2, 3, 4, 5, 9, 10)1 (7, 8, 11, 13)_ (0, 1, 6, 12, 14, 15)0 2) Tõeväärtustabel X1 X2 X3 X4 f
Tallinna Tehnikaülikool Diskreetne Matemaatika Kodutöö Ilya Zaitsev 179712IACB IACB12 1.Matriklinumbrile vastav 4-muutuja loogikafunktsioon Matriklinumber: 179712 7-kohaline 16-nd süsteemi arv: 3AC9200 Seega ühtede piirkond on f(x1...x4) = (0, 2, 3, 9, 10, 12)1 9-kohaline 16-nd süsteemi arv: 4EC3 79E00 Seega määramatuspiirkond on f(x1...x4) = (4, 7, 14) _ Nullide piirkond: 1, 5, 6, 8, 11, 13, 15 Minu funktsioon: f(x1... x4) = (0, 2, 3, 9, 10, 12)1 (4, 7, 14)_ 2. Loogikafunktsiooni tõeväärtustabel X1 X2 X3 X4 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 - 0 1 0 1 0 0 1 1 0 0 0 1 1 1 - 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 - 1 1 1
Tallinna Tehnikaülikool DISKREETNE MATEMAATIKA KODUTÖÖ Elena Borissov 155175IAPB IAPB11 1. Leida oma matriklinumbrile vastav 4-muuutuja loogikafunktsioon Esimene seitsmekohaline arv kalkulaatoris 32C2641 . Kümnendarvudena 3, 2, 12, 6, 4, 1 Järjekorras 1, 2, 3, 4, 6, 12 1de piirkond Esimene üheksakohaline arv kalkulaatoris 440274117 Järjekorras 0, 7 määramatus piirkond 5, 8, 9, 10, 11, 13, 14, 15 0de piirkond f(x1, x2, x3, x4)=∑(1, 2, 3, 4, 6, 12)1 (0, 7)_ 2. Tõeväärtustabel x1, x2, x3, x4 f 0000 - 0001 1 0010 1 0011 1 0100 1 0101
Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ Tallinn 2011 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matriklinumber: 112799 Matriklinumbri 16ndkuju: 1B89F 16ndarvu 8*3-ga korrutamisel tekib 8-järguline 16ndarv: 1B89F*3*3*3*3*3*3*3*3 = 2C1CA2FF Saadud 16ndarv sisaldab numbrimärke 1 2 A C F , kus 16ndnumbrid A C F omavad väärtusi: A = 10 C = 12 F = 15 Saadud 16ndarvu 8 järguväärtust 0 . . . 15 määravad loogikafunktsiooni 1-de piirkonna. (korduvaid järguväärtusi võib ignoreerida) Seega on 4-muutuja loogikafunktsiooni 1de piirkonnaks (numbrilises 10ndesituses): 2 12 1 10 15 (numbreid 2, C ja F (ehk 2, 12 ja 15) on arvus mitu – neid võib arvestada ühekordselt) 8-järgulise 16ndarvu jagamisel 11-ga tekib 7-järguline 16ndarv: 2C1CA2FF/11 = 29845D2 Saadud 16ndarv sisaldab numbrimärke 2 4 5 8 9 D , kus 16ndnumber D omab väärtust: D = 13 11-ga jagamisel tekkiva 16ndarvu need järguväärtused
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Olga Dalton 104493 IAPB11 Tallinn 2010 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 104493
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ *** 15****IAPB ****** Detsember 2015 1. Minu matriklinumbrile (155423) vastav loogikafunktsioon oma numbrilises 10nd esituses: f(x1, x2, x3, x4) = ∑ (2, 3, 7, 8, 9, 13)1 (1, 4, 5, 14, 15)_ 2. Esitada oma loogikafunktsiooni tõeväärtustabel: x1 x2 x3 x4 f 0000 0 0001 - 0010 1 0011 1 0100 - 0101 - 0110 0 0111 1 1000 1 1001 1 1010 0 1011 0 1100 0 1101 1 1110 - 1111 - 3. Leida MDNK (McClusky meetodil) ja MKNK (Karnaugh’ kaardiga); tuvastada, kas leitud MDNK ja MKNK on teineteisega loogiliselt võrdsed või mitte. MKNK leidmine:
Tallinna Tehnikaülikool Diskreetse Matemaatika KODUTÖ Ö Kristjan Lank 082784 MAHB-11 Tallinn 2009 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 082784 Ühtede piirkonna määramiseks saadud 16-nd arv on 205FBF60 Ühtede piirkond on seega f(x1,x2,x3,x4) = (0,2,5,6,11,15) 1 Määramatuspiirkonna määramiseks saadud 16-nd arv on 1E783BA Määramatuspiirkond on seega f(x1,x2,x3,x4) =(1,3,7,8,10,14) 2. Leida selle funktsiooni MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. MKNK: x3x4 x1x2 00 01 11 10 00 1 - - 1 01 0 1 - 1 11 0 0
Kõik kommentaarid