Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge
Add link

Diskreetse matemaatika kodutöö TTÜ (0)

1 Hindamata
Punktid
Vasakule Paremale
Diskreetse matemaatika kodutöö TTÜ #1 Diskreetse matemaatika kodutöö TTÜ #2 Diskreetse matemaatika kodutöö TTÜ #3 Diskreetse matemaatika kodutöö TTÜ #4 Diskreetse matemaatika kodutöö TTÜ #5 Diskreetse matemaatika kodutöö TTÜ #6 Diskreetse matemaatika kodutöö TTÜ #7 Diskreetse matemaatika kodutöö TTÜ #8 Diskreetse matemaatika kodutöö TTÜ #9 Diskreetse matemaatika kodutöö TTÜ #10 Diskreetse matemaatika kodutöö TTÜ #11 Diskreetse matemaatika kodutöö TTÜ #12 Diskreetse matemaatika kodutöö TTÜ #13 Diskreetse matemaatika kodutöö TTÜ #14 Diskreetse matemaatika kodutöö TTÜ #15
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 15 lehte Lehekülgede arv dokumendis
Aeg2016-01-14 Kuupäev, millal dokument üles laeti
Allalaadimisi 27 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Markxy10 Õppematerjali autor

Sarnased õppematerjalid

thumbnail
5
docx

Diskreetse matemaatika kodutöö

Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Olga Dalton 104493 IAPB11 Tallinn 2010 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 104493

Diskreetne matemaatika
thumbnail
22
docx

Diskreetse matemaatika kodutöö

Tallinna Tehnikaülikool DISKREETNE MATEMAATIKA KODUTÖÖ Elena Borissov 155175IAPB IAPB11 1. Leida oma matriklinumbrile vastav 4-muuutuja loogikafunktsioon Esimene seitsmekohaline arv kalkulaatoris 32C2641 . Kümnendarvudena 3, 2, 12, 6, 4, 1 Järjekorras 1, 2, 3, 4, 6, 12 1de piirkond Esimene üheksakohaline arv kalkulaatoris 440274117 Järjekorras 0, 7 määramatus piirkond 5, 8, 9, 10, 11, 13, 14, 15 0de piirkond f(x1, x2, x3, x4)=∑(1, 2, 3, 4, 6, 12)1 (0, 7)_ 2. Tõeväärtustabel x1, x2, x3, x4 f 0000 - 0001 1 0010 1 0011 1 0100 1 0101

Diskreetne matemaatika
thumbnail
7
doc

Diskreetse matemaatika kodutöö 2009

Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ Kristjan Keskküla 093540 IASB Tallinn 2009 ÜLESANNE 1 Leida oma martiklinumbrile vastav 4-muutuja loogikafunktsioon f(x1, x2, x3, x4) = (2,4,8,9,14,15) (6,11,13) _ (järgnevalt kui funktsioon) 1 ÜLESANNE 2 Leida MDNK ja MKNK, mis sobiksid martiklinumbrist leitud osaliselt määratud 4-muutuja funktsiooni esitamiseks Kuna minu martiklinumber on paarisarvuline leian: MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. 1) Leian MKNK Karnaugh' kaardiga MKNK leidmiseks joonestan Karnaugh' kaardi, kuhu kannan peale funktsiooni 1d, 0d ja määramatused. x3x400 01 11 10 x1x2 00 0 0 0 1 01 1 0 0 - 11 0 - 1 1 10 1 1 - 0 Tegu on osaliselt määratud funktsiooniga.

Diskreetne matemaatika
thumbnail
11
docx

Diskreetse matemaatika kodutöö

1. Martiklinumbrile vastav 4-muutuja loogikafunktsioon? Minu martiklinumber: 155042 -> 25DA2 7-kohaline: 3 2 B 7 4 O E ----> 0 2 3 4 7 11 14 9-kohaline: 4 3 F 3 8 7 E C 2 ----> 2 3 4 7 8 12 14 15 Määramatus: 8, 12, 15 0-de piirkond: 1, 5, 6, 9, A, D f(x1, x2, x3, x4) = (0,2,3,4,7,11,14)1(8,12,15)_ 2. Loogikafunktsiooni tõeväärtustabel x1 x2 x3 x4 f 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 - 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 - 1 1 0 1 0 1 1 1 0 1 1

Diskreetne matemaatika
thumbnail
6
doc

Diskreetse matemaatika kodutöö

Tallinna Tehnikaülikool Diskreetse Matemaatika KODUTÖ Ö Kristjan Lank 082784 MAHB-11 Tallinn 2009 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 082784 Ühtede piirkonna määramiseks saadud 16-nd arv on 205FBF60 Ühtede piirkond on seega f(x1,x2,x3,x4) = (0,2,5,6,11,15) 1 Määramatuspiirkonna määramiseks saadud 16-nd arv on 1E783BA Määramatuspiirkond on seega f(x1,x2,x3,x4) =(1,3,7,8,10,14) ­ 2. Leida selle funktsiooni MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. MKNK: x3x4 x1x2 00 01 11 10 00 1 - - 1 01 0 1 - 1 11 0 0

Diskreetne matemaatika
thumbnail
20
docx

Diskreetne matemaatika kodutöö

Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ 164780 1. Matriklinumber: 164780 Matriklinumber 16ndsüsteemis: 283AC 7-kohaline arv: 35E6B74 4-muutuja loogikafunktisooni 1de piirkond: 3, 4, 5, 6, 7, 11, 14 9-kohaline arv: 48381F86C 4-muutuja loogikafunktisooni määramatuspiirkond: 1, 8, 12, 15 4-muutuja loogikafunktisooni 0de piirkond: 0, 2, 9, 10, 13 2. f(x1x2x3x4) = ∑(3, 4, 5, 6, 7, 11, 14)1 (1, 8, 12, 15)_ x1x2x3 f x4

Diskreetne matemaatika
thumbnail
7
doc

Diskreetne matemaatika kodutöö

11 10 1 1 f(x1 , x2 , x3, x4 ) = x1 x2 x3 x4 x1 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x3 x4 = = x1 x2 x3 x4 x1 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x3 x4 = = ( x1 1) x2 ( x3 1)( x4 1) ( x1 1)( x3 3) x4 ( x1 1) x2 x3 x4 x1 ( x2 2) x3 x4 ( x1 1) x3 ( x4 1) = Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ XXXXX XXXXX XXXXXX IASB99 Tallinn 2009

Diskreetne matemaatika
thumbnail
16
docx

Diskreetne matemaatika 1. Kodutöö

Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ *** 15****IAPB ****** Detsember 2015 1. Minu matriklinumbrile (155423) vastav loogikafunktsioon oma numbrilises 10nd esituses: f(x1, x2, x3, x4) = ∑ (2, 3, 7, 8, 9, 13)1 (1, 4, 5, 14, 15)_ 2. Esitada oma loogikafunktsiooni tõeväärtustabel: x1 x2 x3 x4 f 0000 0 0001 - 0010 1 0011 1 0100 - 0101 - 0110 0 0111 1 1000 1 1001 1 1010 0 1011 0 1100 0 1101 1 1110 - 1111 - 3. Leida MDNK (McClusky meetodil) ja MKNK (Karnaugh’ kaardiga); tuvastada, kas leitud MDNK ja MKNK on teineteisega loogiliselt võrdsed või mitte. MKNK leidmine:

Diskreetne matemaatika



Lisainfo

Sisaldab kodutööd, mille sain arvestatud ja kiituse, et oli ilusti tehtud. Viimases Reed-Mülleri polünoomis on üks aps - nimelt liige x3 tuleks asendada x4-ga. Rohkematest ma ei tea :)

Töö on tehtud selle juhise järgi: http://www.diskmat.ee/kodo.htm

Märksõnad


Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri





Uutele kasutajatele e-mailiga aktiveerimisel
10 punkti TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun