Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge
Add link

Dikreetse matemaatika kodutöö 2009 (matriklinumbri põhjal) (0)

1 Hindamata
Punktid
Vasakule Paremale
Dikreetse matemaatika kodutöö 2009-matriklinumbri põhjal #1 Dikreetse matemaatika kodutöö 2009-matriklinumbri põhjal #2 Dikreetse matemaatika kodutöö 2009-matriklinumbri põhjal #3 Dikreetse matemaatika kodutöö 2009-matriklinumbri põhjal #4 Dikreetse matemaatika kodutöö 2009-matriklinumbri põhjal #5 Dikreetse matemaatika kodutöö 2009-matriklinumbri põhjal #6 Dikreetse matemaatika kodutöö 2009-matriklinumbri põhjal #7
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 7 lehte Lehekülgede arv dokumendis
Aeg2011-05-25 Kuupäev, millal dokument üles laeti
Allalaadimisi 134 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Anita Hansen Õppematerjali autor

Sarnased õppematerjalid

18
docx

IAY0010 Diskreetne matemaatika kodutöö

Diskreetne matemaatika KODUTÖÖ SISUKORD SISUKORD..........................................................................................1 ÜLESANNE 1 LOOGIKAFUNKTSIOON......................................................3 ÜLESANNE 2 TÕEVÄÄRTUSTABEL..........................................................3 ÜLESANNE 3 MINIMAALSED NORMAALKUJUD........................................3 3.1 MDNK KARNAUGH’ KAARDIGA.......................................................................3 3.2 MKNK MCCLUSKEY MEETODIGA.....................................................................4 3.3 VÕRDLUS....................................................................................................... 5 ÜLESANNE 4 MKNK TEISENDAMINE DNK-KUJULE....................................5 ÜLESANNE 5 DISJUNKTIIVSED NORMAALKUJUD.....................................5 5.1 TAANDATUD DNK...........................................................

Diskreetne matemaatika
7
doc

Diskreetse matemaatika kodutöö 2009

Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ Kristjan Keskküla 093540 IASB Tallinn 2009 ÜLESANNE 1 Leida oma martiklinumbrile vastav 4-muutuja loogikafunktsioon f(x1, x2, x3, x4) = (2,4,8,9,14,15) (6,11,13) _ (järgnevalt kui funktsioon) 1 ÜLESANNE 2 Leida MDNK ja MKNK, mis sobiksid martiklinumbrist leitud osaliselt määratud 4-muutuja funktsiooni esitamiseks Kuna minu martiklinumber on paarisarvuline leian: MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. 1) Leian MKNK Karnaugh' kaardiga MKNK leidmiseks joonestan Karnaugh' kaardi, kuhu kannan peale funktsiooni 1d, 0d ja määramatused. x3x400 01 11 10 x1x2 00 0 0 0 1 01 1 0 0 - 11 0 - 1 1 10 1 1 - 0 Tegu on osaliselt määratud funktsiooniga.

Diskreetne matemaatika
15
docx

Diskreetse matemaatika kodutöö TTÜ

Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Mark-Felix Mumma 154844 IABB13 x1 x2 x3 x4 f 1. Martiklinumber: 154844 Vahearv 1: 32A6AC4 0 0 0 0 -- Vahearv 2: 43DD50C9C 0 0 0 1 0 ( 2,3,4,6,10,12 )1 ( 0,5,9,13 )-¿ 0 0 1 0 1 2. f ( x1 , x2 , x3 , x 4 ) = ¿ 0 0 1 1 1 0 1 0 0 1 0 1 0 1 -- 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 -- 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 -- 1 1 1 0 0 1 1 1 1 0 3. MDNK : ´x 3 x 2 x´ 1 ´x2 x 3 ´x 2 x 3 x´ 4 ´x 1 x´ 4 Karnaugh-iga MDNK McCluskey' meetodiga: A3 on üleliigne kuna teised katavad juba selle piirkonnad ä

Diskreetne matemaatika
6
doc

Diskreetse matemaatika kodutöö

Tallinna Tehnikaülikool Diskreetse Matemaatika KODUTÖ Ö Kristjan Lank 082784 MAHB-11 Tallinn 2009 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 082784 Ühtede piirkonna määramiseks saadud 16-nd arv on 205FBF60 Ühtede piirkond on seega f(x1,x2,x3,x4) = (0,2,5,6,11,15) 1 Määramatuspiirkonna määramiseks saadud 16-nd arv on 1E783BA Määramatuspiirkond on seega f(x1,x2,x3,x4) =(1,3,7,8,10,14) ­ 2. Leida selle funktsiooni MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. MKNK: x3x4 x1x2 00 01 11 10 00 1 - - 1 01 0 1 - 1 11 0 0

Diskreetne matemaatika
11
docx

Diskreetse matemaatika kodutöö

1. Martiklinumbrile vastav 4-muutuja loogikafunktsioon? Minu martiklinumber: 155042 -> 25DA2 7-kohaline: 3 2 B 7 4 O E ----> 0 2 3 4 7 11 14 9-kohaline: 4 3 F 3 8 7 E C 2 ----> 2 3 4 7 8 12 14 15 Määramatus: 8, 12, 15 0-de piirkond: 1, 5, 6, 9, A, D f(x1, x2, x3, x4) = (0,2,3,4,7,11,14)1(8,12,15)_ 2. Loogikafunktsiooni tõeväärtustabel x1 x2 x3 x4 f 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 - 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 - 1 1 0 1 0 1 1 1 0 1 1

Diskreetne matemaatika
11
docx

Diskreetse matemaatika kodutöö (2011)

Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ 1. Leida oma matriklinumbrile vastav 4- muutuja loogikafunktsioon. Loogikafunktsioon: f (x1, x2, x3, x4) = 1 (8, 9, 10)_ 2. Leida MDNK ja MKNK, mis sobiksid matriklinumbrist leitud osaliselt määratud 4- muutuja funktsiooni esitamiseks. MDNK ­ Karnaugh' kaardiga f (x1, x2, x3, x4) = 1 (8, 9, 10)_ x3x4 00 01 11 10 x1x2 00 1 0 0 1 01 0 1 1 0 11 1 0 1 0 10 - - 0 - f (x1, x2, x3, x4) = MKNK ­ McCluskey meetodiga Lihtimplikantide hulga leidmine Ind- Ind- Nr Märge Nr Vahe Märge Indeks Nr Vahe Märge eks eks

Diskreetne matemaatika
22
docx

Diskreetse matemaatika kodutöö

Tallinna Tehnikaülikool DISKREETNE MATEMAATIKA KODUTÖÖ Elena Borissov 155175IAPB IAPB11 1. Leida oma matriklinumbrile vastav 4-muuutuja loogikafunktsioon Esimene seitsmekohaline arv kalkulaatoris 32C2641 . Kümnendarvudena 3, 2, 12, 6, 4, 1 Järjekorras 1, 2, 3, 4, 6, 12 1de piirkond Esimene üheksakohaline arv kalkulaatoris 440274117 Järjekorras 0, 7 määramatus piirkond 5, 8, 9, 10, 11, 13, 14, 15 0de piirkond f(x1, x2, x3, x4)=∑(1, 2, 3, 4, 6, 12)1 (0, 7)_ 2. Tõeväärtustabel x1, x2, x3, x4 f 0000 - 0001 1 0010 1 0011 1 0100 1 0101

Diskreetne matemaatika
9
docx

Diskreetne Matemaatika kodutöö

Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Teet Järv 123795 IATB 2012 1. Ülesanne Matrikli number on: 123795 16nd süsteemi teisendatuna on see: 1E393

Diskreetne matemaatika



Lisainfo

Reed-Mulleri polünoomis on viga sees, see seisneb valemi kasutamises ja on kergesti parandatav, põhimõte on õige, ülejäänud kõik õige ja sain arvestatud selle töö eest.

Märksõnad


Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri





Uutele kasutajatele e-mailiga aktiveerimisel
10 punkti TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun