Diskreetne matemaatika KODUTÖÖ SISUKORD SISUKORD..........................................................................................1 ÜLESANNE 1 LOOGIKAFUNKTSIOON......................................................3 ÜLESANNE 2 TÕEVÄÄRTUSTABEL..........................................................3 ÜLESANNE 3 MINIMAALSED NORMAALKUJUD........................................3 3.1 MDNK KARNAUGH’ KAARDIGA.......................................................................3 3.2 MKNK MCCLUSKEY MEETODIGA.....................................................................4 3.3 VÕRDLUS....................................................................................................... 5 ÜLESANNE 4 MKNK TEISENDAMINE DNK-KUJULE....................................5 ÜLESANNE 5 DISJUNKTIIVSED NORMAALKUJUD.....................................5 5.1 TAANDATUD DNK...........................................................
Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ Kristjan Keskküla 093540 IASB Tallinn 2009 ÜLESANNE 1 Leida oma martiklinumbrile vastav 4-muutuja loogikafunktsioon f(x1, x2, x3, x4) = (2,4,8,9,14,15) (6,11,13) _ (järgnevalt kui funktsioon) 1 ÜLESANNE 2 Leida MDNK ja MKNK, mis sobiksid martiklinumbrist leitud osaliselt määratud 4-muutuja funktsiooni esitamiseks Kuna minu martiklinumber on paarisarvuline leian: MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. 1) Leian MKNK Karnaugh' kaardiga MKNK leidmiseks joonestan Karnaugh' kaardi, kuhu kannan peale funktsiooni 1d, 0d ja määramatused. x3x400 01 11 10 x1x2 00 0 0 0 1 01 1 0 0 - 11 0 - 1 1 10 1 1 - 0 Tegu on osaliselt määratud funktsiooniga.
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Mark-Felix Mumma 154844 IABB13 x1 x2 x3 x4 f 1. Martiklinumber: 154844 Vahearv 1: 32A6AC4 0 0 0 0 -- Vahearv 2: 43DD50C9C 0 0 0 1 0 ( 2,3,4,6,10,12 )1 ( 0,5,9,13 )-¿ 0 0 1 0 1 2. f ( x1 , x2 , x3 , x 4 ) = ¿ 0 0 1 1 1 0 1 0 0 1 0 1 0 1 -- 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 -- 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 -- 1 1 1 0 0 1 1 1 1 0 3. MDNK : ´x 3 x 2 x´ 1 ´x2 x 3 ´x 2 x 3 x´ 4 ´x 1 x´ 4 Karnaugh-iga MDNK McCluskey' meetodiga: A3 on üleliigne kuna teised katavad juba selle piirkonnad ä
Tallinna Tehnikaülikool Diskreetse Matemaatika KODUTÖ Ö Kristjan Lank 082784 MAHB-11 Tallinn 2009 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 082784 Ühtede piirkonna määramiseks saadud 16-nd arv on 205FBF60 Ühtede piirkond on seega f(x1,x2,x3,x4) = (0,2,5,6,11,15) 1 Määramatuspiirkonna määramiseks saadud 16-nd arv on 1E783BA Määramatuspiirkond on seega f(x1,x2,x3,x4) =(1,3,7,8,10,14) 2. Leida selle funktsiooni MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. MKNK: x3x4 x1x2 00 01 11 10 00 1 - - 1 01 0 1 - 1 11 0 0
1. Martiklinumbrile vastav 4-muutuja loogikafunktsioon? Minu martiklinumber: 155042 -> 25DA2 7-kohaline: 3 2 B 7 4 O E ----> 0 2 3 4 7 11 14 9-kohaline: 4 3 F 3 8 7 E C 2 ----> 2 3 4 7 8 12 14 15 Määramatus: 8, 12, 15 0-de piirkond: 1, 5, 6, 9, A, D f(x1, x2, x3, x4) = (0,2,3,4,7,11,14)1(8,12,15)_ 2. Loogikafunktsiooni tõeväärtustabel x1 x2 x3 x4 f 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 - 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 - 1 1 0 1 0 1 1 1 0 1 1
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ 1. Leida oma matriklinumbrile vastav 4- muutuja loogikafunktsioon. Loogikafunktsioon: f (x1, x2, x3, x4) = 1 (8, 9, 10)_ 2. Leida MDNK ja MKNK, mis sobiksid matriklinumbrist leitud osaliselt määratud 4- muutuja funktsiooni esitamiseks. MDNK Karnaugh' kaardiga f (x1, x2, x3, x4) = 1 (8, 9, 10)_ x3x4 00 01 11 10 x1x2 00 1 0 0 1 01 0 1 1 0 11 1 0 1 0 10 - - 0 - f (x1, x2, x3, x4) = MKNK McCluskey meetodiga Lihtimplikantide hulga leidmine Ind- Ind- Nr Märge Nr Vahe Märge Indeks Nr Vahe Märge eks eks
Tallinna Tehnikaülikool DISKREETNE MATEMAATIKA KODUTÖÖ Elena Borissov 155175IAPB IAPB11 1. Leida oma matriklinumbrile vastav 4-muuutuja loogikafunktsioon Esimene seitsmekohaline arv kalkulaatoris 32C2641 . Kümnendarvudena 3, 2, 12, 6, 4, 1 Järjekorras 1, 2, 3, 4, 6, 12 1de piirkond Esimene üheksakohaline arv kalkulaatoris 440274117 Järjekorras 0, 7 määramatus piirkond 5, 8, 9, 10, 11, 13, 14, 15 0de piirkond f(x1, x2, x3, x4)=∑(1, 2, 3, 4, 6, 12)1 (0, 7)_ 2. Tõeväärtustabel x1, x2, x3, x4 f 0000 - 0001 1 0010 1 0011 1 0100 1 0101
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Teet Järv 123795 IATB 2012 1. Ülesanne Matrikli number on: 123795 16nd süsteemi teisendatuna on see: 1E393
Kõik kommentaarid