Diskreetne matemaatika KODUTÖÖ SISUKORD SISUKORD..........................................................................................1 ÜLESANNE 1 LOOGIKAFUNKTSIOON......................................................3 ÜLESANNE 2 TÕEVÄÄRTUSTABEL..........................................................3 ÜLESANNE 3 MINIMAALSED NORMAALKUJUD........................................3 3.1 MDNK KARNAUGH’ KAARDIGA.......................................................................3 3.2 MKNK MCCLUSKEY MEETODIGA.....................................................................4 3.3 VÕRDLUS....................................................................................................... 5 ÜLESANNE 4 MKNK TEISENDAMINE DNK-KUJULE....................................5 ÜLESANNE 5 DISJUNKTIIVSED NORMAALKUJUD.....................................5 5.1 TAANDATUD DNK...........................................................
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ *** 15****IAPB ****** Detsember 2015 1. Minu matriklinumbrile (155423) vastav loogikafunktsioon oma numbrilises 10nd esituses: f(x1, x2, x3, x4) = ∑ (2, 3, 7, 8, 9, 13)1 (1, 4, 5, 14, 15)_ 2. Esitada oma loogikafunktsiooni tõeväärtustabel: x1 x2 x3 x4 f 0000 0 0001 - 0010 1 0011 1 0100 - 0101 - 0110 0 0111 1 1000 1 1001 1 1010 0 1011 0 1100 0 1101 1 1110 - 1111 - 3. Leida MDNK (McClusky meetodil) ja MKNK (Karnaugh’ kaardiga); tuvastada, kas leitud MDNK ja MKNK on teineteisega loogiliselt võrdsed või mitte. MKNK leidmine:
Tallina Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ 1. Leida oma matriklinumbrile vastav loogikafunktsioon 1-de piirkond: 1, 3, 9, 10, 13 Määramatuspiirkond: 4, 5, 6, 7, 8, 12, 14 0-de piirkond: 2, 11, 15 179159 3A9AD11 x1 x2 x3 x4 f 4E856E1C7 −¿ 4, 5, 6,7, 8,12, 14 ¿¿ 0 0 0 0 0 0, 2, 11,15 ¿ 0 ¿ 0 0 0 1 1 1, 3, 9,10, 13 ¿1 Π ¿ 0 0 1 0 0 0 0 1 1 1 f ( x 1 … x 4 )=Σ ¿ 0 1 0 0 - 0 1 0 1 - 2. Esitada 0 1 1 0 - 0 1 1 1 - 1 0 0 0 - 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ 164780 1. Matriklinumber: 164780 Matriklinumber 16ndsüsteemis: 283AC 7-kohaline arv: 35E6B74 4-muutuja loogikafunktisooni 1de piirkond: 3, 4, 5, 6, 7, 11, 14 9-kohaline arv: 48381F86C 4-muutuja loogikafunktisooni määramatuspiirkond: 1, 8, 12, 15 4-muutuja loogikafunktisooni 0de piirkond: 0, 2, 9, 10, 13 2. f(x1x2x3x4) = ∑(3, 4, 5, 6, 7, 11, 14)1 (1, 8, 12, 15)_ x1x2x3 f x4
Tallinna Tehnikaülikool Infotehnoloogia teaduskond Diskreetne Matemaatika KODUTÖÖ Üliõpilane: Andri Kaaremäe Õpperühm: IABB13 Matrikli nr: 154819 Tallinn 1) Matriklinumbrile vastav 4-muutuja loogikafunktsioon f(x1 ... x4) = (2, 3, 4, 5, 9, 10)1 (7, 8, 11, 13)_ (0, 1, 6, 12, 14, 15)0 2) Tõeväärtustabel X1 X2 X3 X4 f
Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ xxxx xxxx xxxx Tallinn xxxx 1. Funktsiooni leidmine Matriklinumber: 164139 1-de piirkonna määramiseks saadud 16ndarv: 35B 109D 1-de piirkond: 0, 1, 3, 5, 9, 11, 13 Määramatuspiirkonna leidmiseks saadud 16ndarv: 4 7F03 425B Määramatuspiirkond: 2, 4, 7, 15 Matriklile 164139 vastav 4-muutuja loogikafunktsioon oma numbrilises 10ndesituses: 0,1,3,5,9,11,13 ¿ ¿ ¿ 1(2,4,7,15) ¿ f ( x 1 ... x 4 )= ¿ Nullide piirkond: 6, 8, 10, 12, 14 2. Funktsiooni tõeväärtustabel Nr. x1x2x3x4 f 0 0000 1 1 0001 1 2 0010 - 3 0011 1 4 0100 - 5 0101 1 6 0110 0 7 0111 - 8 1000 0 9
Tallinna Tehnikaülikool Diskreetne Matemaatika Kodutöö Ilya Zaitsev 179712IACB IACB12 1.Matriklinumbrile vastav 4-muutuja loogikafunktsioon Matriklinumber: 179712 7-kohaline 16-nd süsteemi arv: 3AC9200 Seega ühtede piirkond on f(x1...x4) = (0, 2, 3, 9, 10, 12)1 9-kohaline 16-nd süsteemi arv: 4EC3 79E00 Seega määramatuspiirkond on f(x1...x4) = (4, 7, 14) _ Nullide piirkond: 1, 5, 6, 8, 11, 13, 15 Minu funktsioon: f(x1... x4) = (0, 2, 3, 9, 10, 12)1 (4, 7, 14)_ 2. Loogikafunktsiooni tõeväärtustabel X1 X2 X3 X4 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 - 0 1 0 1 0 0 1 1 0 0 0 1 1 1 - 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 - 1 1 1
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Teet Järv 123795 IATB 2012 1. Ülesanne Matrikli number on: 123795 16nd süsteemi teisendatuna on see: 1E393
Kõik kommentaarid