Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Diskreetne matemaatika I IAY0010 eksami konspekt (1)

4 HEA
Punktid
Vasakule Paremale
Diskreetne matemaatika I IAY0010 eksami konspekt #1 Diskreetne matemaatika I IAY0010 eksami konspekt #2 Diskreetne matemaatika I IAY0010 eksami konspekt #3 Diskreetne matemaatika I IAY0010 eksami konspekt #4 Diskreetne matemaatika I IAY0010 eksami konspekt #5 Diskreetne matemaatika I IAY0010 eksami konspekt #6 Diskreetne matemaatika I IAY0010 eksami konspekt #7 Diskreetne matemaatika I IAY0010 eksami konspekt #8 Diskreetne matemaatika I IAY0010 eksami konspekt #9 Diskreetne matemaatika I IAY0010 eksami konspekt #10
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 10 lehte Lehekülgede arv dokumendis
Aeg2014-12-07 Kuupäev, millal dokument üles laeti
Allalaadimisi 564 laadimist Kokku alla laetud
Kommentaarid 1 arvamus Teiste kasutajate poolt lisatud kommentaarid
Autor gregor134 Õppematerjali autor
Kõik Diskreetne matemaatika I aine eksamiks vajalikud mõisted, valemid ja definitsioonid.
Väga põhjalik abimaterjal kordamiseks.

Sarnased õppematerjalid

thumbnail
8
docx

Diskreetne matemaatika - konspekt

LAUSEARVUTUS Diskreetne matemaatika ei tegele reaalarvudega ega pidevate funktsioonidega. Verbaalne esitus on mistahes info esitamine lingvistilise keele abil. Formaalne esitus on mistahes info esitamine ilma lingvistilise keele abita ehk esitus kokkulepitud sümbolite abil. Formaalne esitus peab olema üheselt tõlgendatav. Lausearvutus on loogilise mõtlemise matemaatiline mudel. Lausearvutuse lause võib olla iga verbaalne väide, millele saame omistada tõeväärtuse – tõene või vale. Lihtlause on lihtsaim võimalik lausearvutuslause. Lausearvutuslauseid tähistatakse formaalselt suurtähtedega: A, B, P, Q … Lihtlausetest koostatakse kindlate sidesõnade ja loog konstruktsioonide abil liitlauseid. Lausearvutuse lihtlauseid seotakse liitlauseteks 5 loogilise konstruktsiooni ehk loogikatehte abil. Binaarsed loogikatehted seovad kahte lauset (4 tk), unaarne loogikatehe on rakendatav üksikule lausele (1 tk – eitus). Loogiline korrutamine ehk konjunktsioon ehk JA-tehe. Loogili

Diskreetne matemaatika
thumbnail
24
pdf

MATEMAATILINE ANALÜÜS I. KORDAMISKÜSIMUSED

MATEMAATILINE ANALÜÜS I. KORDAMISKÜSIMUSED 1. Muutuvad suurused (tähistus, jaotus). Matemaatilises analüüsis tähistatakse muutujad väikeste tähtedega (x, y, a jne). Näiteid muutujate vahelistest suhetest: „Patsiendi vererõhk sõltub ravimite manustamise hulgast“, „Ringi pindala sõltub raadiusest“ Jaotus: a) Konstantsed suurused – ei muutu, omavad alati ühte ja sama väärtust N: ühtlane liikumine – kiirus on konstantne, teepikkus on muutuv suurus) b) Muutuvad suurused N: mitteühtlane liikumine – nii kiirus kui teepikkus muuutvad 2. Funktsiooni mõiste (definitsioon, tähistused, näited). DEF. Muutuvat suurust y nimetatakse muutuva suuruse x funktsiooniks, kui mingi eeskirjaga on suuruse x igale väärtusele seatud vastavusse suuruse y üks väärtus. Asjaolu, et y on x-i funktsioon, tähistatakse y = f(x) • Muutujat x nimetatakse sõltumatuks muutujaks (ehk argumendiks). • Muutujat y nimetatakse sõltuvaks muutujaks. • A

Matemaatiline analüüs 1
thumbnail
8
pdf

Matemaatiline analüüs II 2. kollokviumi spikker

1. Mitmemuutuja funktsiooni lokaalsete ekstreemumite mõisted. Statsionaarne punkt. Kriitiline punkt. piirkonna D rajajoon. Eeldame, et piirkonnas D on täidetud tingimus f(x,y)>=g(x,y). Kahekordse integraali 𝑥 = 𝜌 𝑐𝑜𝑠𝜑 Mitmemuutuja funktsiooni lokaalse ekstreemumi tarvilik tingimus. Definitsioon 1. Öeldakse, et kahe omaduse tõttu ∬𝐷[𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)]𝑑𝑥𝑑𝑦 = ∬𝐷 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 − ∬𝐷 𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦. Mõlemad kahekordsed 𝑦 = 𝜌 𝑠𝑖𝑛𝜑 muutuja funktsioonil on punktis P1(x1, y1) lokaalne maksimum, kui sellel punktil leidub niisugune ümbrus tei

Matemaatiline analüüs 2
thumbnail
42
pdf

Diskreetse matemaatika mõisted selgitustega

Diskreetne matemaatika Sisukord Arvusüsteemid ................................................................................................................................................... 2 Kahendkoodid.................................................................................................................................................... 4 Loogikafunktsioonid ja loogikaavaldised ........................................................................................................... 5 Avaldiste teisendused........................................................................................................................................ 8 Karnaugh’ kaart ................................................................................................................................................. 9 McCluskey’ minimeerimismeetod ................................................................................................................... 10 Loogikaskeemi

Diskreetne matemaatika
thumbnail
68
pdf

Eksamikordamisküsimused

JÄÄKFUNKTSIOONID 48 LOOGIKAFUNKTSIOONIDE KLASSID 50 DIGITAALSKEEMIDE ELEMENDID 52 LOOGIKAFUNKTSIOONIDE SÜSTEEMID 56 GRAAFID 58 Palju õnne! 67 Soojendus 1. Millise matemaatikavaldkonnaga ​Diskreetne Matemaatika​ ei tegele? Diskreetne matemaatika ei tegele reaalarvudega ega pidevate funktsioonidega. 2. Milliste arvudega Diskreetne Matemaatika ei tegele? ​Diskreetne matemaatika ei tegele reaalarvudega, negatiivsete ja kümnendarvudega(komadega arvud). 3. Milliseid funktsioone nimetatakse ​pidevateks ​? ​Pidevad funktsioonid on sellised, mille graafik on esitatav pideva (kõver)joonena. 4. Mis on verbaalne esitus? ​Verbaalne esitlus igapäevane suhtluskeel ehk sõnaline esitlus ja kirjalik esitlus. 5

Kategoriseerimata
thumbnail
4
doc

Diskmatt terminid

Diskmatt terminid Lausearvutus Disjunktsioon: liitlause on tõene, kui vähemalt üks osalause on tõene Ekvivalents: liitlause on tõene, kui osalaused on sarnased Implikatsioon: liitlause on tõene, kui esimene muutuja on väär või teine muutuja on tõene Inversioon: eitus Ja-tehe: konjunktsioon Konjunktsioon: liitlause on tõene, kui mõlemad osalaused on tõesed Lause: iga lause, mille puhul saab rääkida tema vastavusest tegelikkusele (millel on tõeväärtus) Olemasolu kvantor: näitab, et predikaat kehtib oma määramispiirkonna vähemalt ühe muutujate puhul Predikaat: lause, mis sisaldab ühte või enamat muutujat Samaselt tõene predikaat: predikaat, mis kehtib kogu määramispiirkonnas Samaselt väär predikaat: predikaat, mis ei kehti kusagil määramispiirkonnas Tautoloogia: samaselt tõene lause Täidetav predikaat: predikaat, mis on tõene osas oma määramispiirkonnas Üldsuse kvantor: näitab, et predikaat kehtib oma määramispi

Diskreetne matemaatika
thumbnail
12
docx

Diskreetne matemaatika eksami kordamise materjal

Lausearvutus:  Diskreetne matemaatika ei tegele pidevate funktsioonidega.  Diskreetne mate ei tegele reaalarvudega.  Verbaalne esitus on lingvistilise keele kasutamine info edastamiseks.  Formaalne esitus on ilma lingivtilise keele kasutamise info edastamine, peamiselt sümbolite abil.  Formaalne esitus peab olema üheselt mõistetav.  Lausearvutus on loogilise mõtlemise matemaatiline mudel.  Lausearvutuse lause on lause, millele saab omistada tõeväärtust(0,1).  Tõeväärtuseid on kaks, 0-väär, 1-tõene.

Diskreetne matemaatika
thumbnail
52
pdf

Mis on Diskreetne Matemaatika

Mis on Diskreetne Matemaatika ? Termineid: — verbaalne esitus on mistahes info esitamine lingvistilise keele abil. " diskreetne " ≡ " mitte pidev " ehk " astmeline " — formaalne esitus on mistahes info esitamine ilma lingvistilise keele abita ehk kokkulepitud sümbolite abil. vs. " Diskreetne Matemaatika " ↔ " Pidev Matemaatika " NB!

Diskreetne matemaatika




Kommentaarid (1)

Mintt profiilipilt
Mintt: Fail on 10 lehte mitte 20 nagu faili kirjelduses kirjas on.
11:27 29-05-2016



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun