Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Algebra ja geomeetria: Tõestused - sarnased materjalid

permu, permutatsioon, vektor, teoreem, permutatsioonid, maatriksite, liitmise, definitsioonist, liitmine, arvudega, avaldise, parabooli, mistõttu, esmalt, paneme, jutuks, vaatleme, läheme, sammult, vahetama, temale, saime, uutele, korrutamisel, koordinaatideks, vektorruumi, esiteks, näidatud, lahendiks, nullvektor, reaalarvu, assotsiatiivne
thumbnail
48
pdf

Maatriksid

Hea lugeja, j~oudu s¨ ustemaatilisele t¨o¨ole. K¨aesoleva ~oppevahendi joonised on arvutil teinud u ¨li~opilane Marge Ilmosaar. S¨ udamlik t¨anu talle selle eest. 1 SISUKORD I. Maatriksid ja determinandid 1. Maatriksi m~oiste. Tehted ja nende omadused . . . . . . . . . . . . . . . . . . . . . . 4 2. Permutatsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3. Determinandi m~oiste. Omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4. Laplace'i teoreem. Determinandi arendamine rea ja veeru j¨argi . . . 34 5. Teoreem maatriksite korrutise determinandist . . . . . . . . . . . . . . . . . . . . 40 6. P¨o¨ordmaatriks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Algebra ja geomeetria
55 allalaadimist
thumbnail
96
pdf

ALGEBRA JA GEOMEETRIA

Hea lugeja, j˜oudu s¨ ustemaatilisele t¨o¨ole. K¨aesoleva ˜oppevahendi joonised on arvutil teinud u ¨li˜opilane Marge Ilmosaar. S¨ udamlik t¨anu talle selle eest. 1 SISUKORD I. Maatriksid ja determinandid 1. Maatriksi m˜oiste. Tehted ja nende omadused . . . . . . . . . . . . . . . . . . . . . . 4 2. Permutatsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3. Determinandi m˜oiste. Omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4. Laplace’i teoreem. Determinandi arendamine rea ja veeru j¨argi . . . 34 5. Teoreem maatriksite korrutise determinandist . . . . . . . . . . . . . . . . . . . . 40 6. P¨o¨ordmaatriks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Algebra ja geomeetria
19 allalaadimist
thumbnail
25
doc

Algebra ja geomeetria kordamine

MAATRIKS: Maatriks ­ nimetatakse ümarsulgudesse paigutatud reaalarvude tabelit, milles on eristatavad read ja veerud. Maatriksi mõõtmed ­ Maatriksit, milles on m rida ja n veergu nimetatakse täpsemalt (m,n)- maatriksiks ning arvupaari (m,n) selle maatriksi mõõtmeteks. Maatriksi järk ­ Omadus, mis esineb ainult ruutmaatriksil: Näiteks Mat(n,n) nim. n-järku maatriksiks. Maatriksi elemendid ­nimetatakse reaalarve, milledest maatriks koosneb. Maatriksi ja maatriksite hulga tähistused ­ Maatrikseid tähistatakse tavaliselt suurte ladina tähtedega: A, B,....X, Y, Z. Maatriksite elemente tähistatakse vastavate väikeste ladina tähtedega, mis võivad olla varustatud ka indeksitega: a, b, c, jne. Kõigi (kõikvõimalike mõõtmetega) maatriksite hulka tähistame edaspidi Mat abil ning kõigi (m, n)-maatriksite hulka tähistame edaspidi Mat(m, n) abil. Ruutmaatriks ­maatriks, mille ridade arv on võrdne veergude arvuga, s.t. m=n

Algebra ja geomeetria
62 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

Kõrgema matemaatika kordamisküsimused 1. Maatriksi definitsioon. Maatriksi elemendid. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Transponeeritud maatriks 2. Maatriksite korrutise definitsioon. Korrutamise omadused ja seosed lineaarsete tehete ning korrutamise vahel. Ühikmaatriks. 3. Teist ja kolmandat järku determinandid. 4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste

Algebra I
198 allalaadimist
thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

Nullvektori suund on määramata. 5. Ühikvektor- Kui vektori pikkus on 1 6. vektorite liitmine-rööpkülikureegel: Vektorite a ja b summaks nimetatakse niisugust vektorit c, mis väljub nende ühisest alguspunktist ja on niisuguse rööpküliku diagonaal, mille külgedeks on liidetavad vektorid. Kolmnurga reegel-vektorite liitmisel viiakse teise liidetava alguspunkt esimese liidetava lõpp-punkti. Vektorite a ja b summaks on vektor mis kulgeb esimese liidetava alguspunktist teise liidetava lõpp-punkti. 7. vektorite lahutamine- Vektorite a ja b vaheks nimetatakse vektorit d, millel on omadus b+d=a. Kahe vektori vahe leidmiseks viikse nad ühisesse alguspunkti ja nende vahe on vektor, mis kulgeb vähendaja lõpp-punktist vähendatava lõpp-punkti. 8. vektori ja reaalarvu korrutis- vektori korrutiseks arvuga nimetatakse vektorit, mille pikkus võrdub arvu absoluutväärtuse ja lähivektori pikkuse

Matemaatiline analüüs 1
124 allalaadimist
thumbnail
28
pdf

Lineaaralgebra ja analüütiline geomeetria konspekt

2016 aasta sügis) Ristkoordinaadid. Kui ruumis on antud ristkoordinaadisüsteem, siis ruumi iga punkt P on üheselt määrastud ristkoordinaatidega x, y, z, kus x on punkti P ristprojektsioon abstsissteljele, y on punkti P ristprojektsioon ordinaatteljele ja z on punkti P ristprojektsioon aplikaateljele. Kirjutame P(x, y, z). Kahe punkti vaheline kaugus. Kui P1(x1, y1, z1), P2(x2, y2, z2) on ruumi punktid, siis kaugus d punktide P1 ja P2 vahel on määratud valemiga Vektori mõiste Vektor on suunatud lõik alguspunktiga punktis A ja lõpp-punktiga punktis B. Nullvektor Eukleidilises ruumis (näiteks tasandil) on nullvektoriks määramata suunaga vektor, mille pikkus on null. Ühikvektor Kui vektori pikkus on 1, siis teda nimetatakse ühikvektoriks. Vektorite liitmine ja lahutamine Lahutamine toimub sama põhimõtte järgi. Reaalarvu ja vektori korrutis. Vektori pikkus Vektori pikkuseks loetakse sellele vektorile vastava sirglõigu AB pikkust

Algebra ja analüütiline...
105 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Maatriksite korrutamine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Teist ja kolmandat järku determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Kõrgemat järku determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 Determinantide omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Pöördmaatriks

Kõrgem matemaatika
94 allalaadimist
thumbnail
5
doc

algebra konspekt

Joonte parameetrilised võrrandid Joone parameetrilisteks võrranditeks ruumis nim võrandeid kujul x=x(t) y=y(t) z=z(t) kui esimene võrrand esitab x-i t-funktsioonina, teine võrrand esitab y-i ja kolmas z-i muutuja funktsioonina. Muutujat t nim parametriks. Tasandil nim joone parameetrilisteks võrranditeks võrrandeid x=x(t) y=y(t) Sirge parameetrilised võrrandid Sirge on täielikult määratud kui on teada nullist erinev sirgega paralleelne vektor, nn sirge sihivektor s ja üks punkt M1 sirgel. M on meelevaldne punkt sirgel, siis OM1=r1 ja OM=r. Punktid M1 ja M määravad vektori M1M=r-r1. See vektor on paralleelne sihivektoriga. Võrrand r-r1=st on sirge parameetriline võrrand vektorkujul. Võrrandit y= kx+b nim sirge võrrandiks tõusu ja algordinaadi järgi. Siin arv k on sirge tõus ehk x-telje positiivse suuna ja sirge vahelise nurga tangens. Arvu b nim sirge algordinaadiks.See on sirge ja y-telje lõikepunkti ordinaat.

Algebra ja Analüütiline...
131 allalaadimist
thumbnail
13
pdf

Majandusmatemaatika IIE eksami kordamisküsimused

süsteemi leidmiseks tuleb süsteemi igas reas vasakul pool korrutada vastava järjekorranumbriga tundmatu veerumaatriks esimese tundmatu veerumaatriksiga, seejärel teisega jne. Paremale poole jääb vastava järjekorranumbriga tundmatu veerumaatriksi korrutis vabaliikmete veerumaatriksiga. Märkused. 1) Saame võrrandisüsteemi lahendid, kui projekteerime parema poole b veergude ruumi. 2) Kui parem pool b kuulub veergude ruumi, on Ax = b täpne lahend leitav Gaussi meetodiga. 3) TEOREEM: Normaalvõrrandisüsteemil ATA = ATb on ühene lahend, kui maatriksi A veerud on lineaarselt sõltumatud. 4) Gaussi teisenduste korral vähimruutude lahend muutub, see pole vähimruutude ülesandes lubatud. 4. Kumerad hulgad Def: Hulk QcR2 on kumer, kui kõikide punktipaaride x1,x2 jaoks kogu neid punkte ühendav sirglõik kuulub sellesse hulka. Teoreem: Kumerate hulkade Q1...Qk ühisosa on kumerhulk. Tõestus: =!!!! ! Võtame 2 mistahes punkti x1,x2 Q ja moodustame: x= x1+x2Q

Majandusmatemaatika
623 allalaadimist
thumbnail
5
doc

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks See teoreem kehtib meelevaldsete lineaarsete võrrandisüsteemide lahendamiseks, kus võrrandite ja tundmatute arvud on võrdsed. Lisaks peavad võrrandisüsteemid olema korrastatud. Kui lineaarse võrrandisüsteemi maatriksi determinant on nullist erinev, siis avalduvad tundmatud murdudena, mille nimetajaks on süsteemi maatriksi determinant ja mille lugejad on maatriksi, mis saadakse süsteemi maatriksist vastava tunmatu kordajate veeru asendamisel vabaliikmete veeruga, determinandid.

Lineaaralgebra
177 allalaadimist
thumbnail
14
doc

KT spikker

a a22 K a2 n D = det A = A = 21 . M M O M an1 an 2 K ann Esitame tõestuseta omadused 1 ja 2. Omadus 1. Maatriksite A ja AT determinantide väärtused langevad kokku, s.t. determinandi D väärtus ei muutu, kui tema read paigutada vastavateks veergudeks ja vastupidi: a11 a12 K a1n a11 a21 K an1 a21 a22 K a2 n a12 a22 K an 2 = .

Lineaaralgebra
265 allalaadimist
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

Maatriksi A astakut tähistatakse rank(A) või r(A). Def. Kui maatriksitel A ja B on ühesugused järgud ja astakud, siis nim neid maatrikseid ekvivalentseteks ja kirjutatakse A~B (omadused: 1)refleksiivuss iga A~A 2)sümmeetria A~B ­ B~A 3)transitiivsus A~B ja B~C ­ A~C). Astaku leidmine: tuleb maatriks elementaarteisenduste abil teisendada tereppmaatriksiks, seejärel kasutada teoreemi treppmaatriksi astakust. Kronecker-Capelli teoreem.Öeldakse, et maatriksi astak on r, kui selle maatriksi rea ja veeru elementidest saab moodustada vähemalt ühe 0-st erineva r-järku miinori ja mitte ühtegi 0-st erinevat r+1 järku miinorit. Pöördmaatriks.Kuna maatriksite korrutamine ei olnud kommutatiivne ja lisaks leidusid nullitegurid, siis ei saa rääkida maatriksite jagamisest, kuid teatud juhtudel leidub maatriksil pöördmaatriks. Def. Ruutmaatriksi A pöördmaatriksiks nim sellist matrx B, mis rahuldab tingimust AB=I=BA. Teoreem

Lineaaralgebra
865 allalaadimist
thumbnail
9
docx

Matemaatiline analüüs II KT teooria

Piirkonda, mis on regulaarne nii x-telje kui ka y-telje sihis, nim. regulaarseks piirkonnaks. Olgu funktsioon z=f(x,y) pidev piirkonnas D. Avaldist nim. funktsiooni z=f(x,y) kaksikintegraaliks üle piirkonna D. Kaksikintegraali tõkked (omadus 19.2). Olgu funktsiooni z=f(x,y) vähim ja suurim väärtus piirkonnas D vastavalt m ja M. Tähistame piirkonna D pindala tähega S, siis kehtib seos: Keskväärtuste teoreem (omadus 19.3). Pideva funktsiooni z=f(x,y) kaksikintegraal ID üle piirkonna D, mille pindala on S, võrdub korrutisega, mille üheks teguriks on pindala S ja teiseks funktsiooni z=d(x,y) väärtus piirkonna D teatud punktis P: 3. Pindala ja ruumala arvutamine kahekordse integraali abil: ruumala arvutamine (+märkus 20.1 ja 20.2); tasandilise piirkonna pindala arvutamine (selgitustega: et olgu f(x, y) 1 jne). Ruumala

Matemaatiline analüüs 2
211 allalaadimist
thumbnail
11
doc

Kombinatoorika tööleht

elementidest. Kombinatsioonideks n elemendist m kaupa nimetatakse selliseid ühendeid, millest igaüks sisaldab m elementi, mis on võetud n erineva elemendi hulgast ja mis erinevad üksteisest vähemalt ühe elemendi poolest. Kõigi võimalike erinevate kombinatsioonide arvu n elemendist m kaupa tähistatakse sümboliga m Cn . Arvu m Cn leidmiseks on sobiv kasutada seost m m n m Vn =C P , sest teostades kõigis m kaupa 4 moodustatud kombinatsioonides kõik võimalikud permutatsioonid saame ju kõik m kaupa moodustatud variatsioonid. Seega !( )! ! ! ( 1) ... ( 1) mnm n m nnnm P V C m m mn n- = --+ ==. Näiteks elementidest a, b, c, d ja e (n = 5) saab kolme elemendilisi (m = 3) valikuid teostada 10 62 120 3!2! 3 5! 5= C = = erineval viisil: abc abe ace bcd bde abd acd ade bce cde. Seega erinevus variatsioonidest seisneb selles, et kombinatsioonide puhul ei loeta näiteks sõnu abc, bca ja cab erinevateks. Senivaadatud ühendites me eeldasime iga kord, et kõik antud

Matemaatika
89 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

1. Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6

Lineaaralgebra
199 allalaadimist
thumbnail
7
doc

Kõrgem matemaatika

Tähistatakse E. · Kui ruutmaatriksi peadiagonaal all (või kohal) olevad elemendid on kõik 0 (akl=0; kl), siis nim seda maatriksit kolmnurkseks maatriksiks. · Öeldakse, et maatriks Am*n on trapetsikujuline, kui elemendid tema nullist erinevate elementide aaa, a22...akk all, mis on koondatud maatriksi ülemisse vasakusse nurka, on nullid ja mõned viimased read võivad koosneda nullidest. Tehted maatriksitega: · Maatriksite transponeerimine Operatsiooni, mille käigus Am*n=(aij) read ja veerud vahetavad oma osad, nim maatriksite transponeerimiseks. Bn*m=(aji)=AT · Maatriksi elementaarteisenduseks on operatsioon, mille korral ühele reale (veerule) liidetakse element haaval nullist erineva arvuga korrutatud teine rida (veerg). · Maatriksite liitmine. Liita saab ainult samade parameetritega maatrikseid. Am*n+Bm*n=Cm*n · Maatriksi korrutamine arvuga

Kõrgem matemaatika
477 allalaadimist
thumbnail
14
docx

Diferentsiaalvõrrandite eksami konspekt

Vaadeldes x-i ja p-d y funktsioonina, seejuures: Saame y-ki suhtes lineaarne Saame üldlahendi parameetrilisel kujul: (10.2) (10.1)' teisendub eralduvate muutujatega võrrandiks. Siit Teine variant võrramdist, mida saame lahendada on: (10.3) (10.3)' Sel juhul asendame . Diferentseerime mõlemad pooled x-suhtes, leiame Kus üldlahend parameetrilisel kujul (10.4) (10.3)' saame eralduvate muutujatega võrrandi: Esimest järku võrrandi lahendi olemasolu teoreem ja ühesuse teoreem. Teoreem 10.1 Vaatleme võrrandit, kus (10.5) Olgu f: f(x,y) pidev ristkülikus ja olgu täidetud Lipscitzi tingimus y-muutuja suhtes. Siis eksisteerib üksainus võrrandi (10.5) lahend: , mis rahuldab algtingimust . Lipschitsi tingimusest järeldub: . Järelikult, kui eksisteerib osatuletis , siis saame, et (tõkestatud K-ga absoluutväärtus). 11. Claeraut' ja Lagrange'i võrrandid Need võrrandid on võrrandi (10.3) erijuhud. Claeraut' võrran omab kuju: (11.1) .

Dif.võrrandid
419 allalaadimist
thumbnail
28
docx

ITT0030 Diskreetne matemaatika II - eksamikonspekt

Diskreetne matemaatika II Suulise eksami konspekt IABB 2011 [1]. Hulgad. Alam- ja ülemhulgad. Tehted hulkadega. [2]. Hulga võimsus. Kontiinumhüpotees. [3]. Järjendid. Permutatsioonid. Kombinatsioonid. [4]. Binoomi valem. Pascali kolmnurk. [5]. Liitmis- ja korrutamisreegel kombinatoorikas. [6]. Kordustega permutatsioonid. Multinoomkordajad. [7]. Elimineerimismeetod (juurde- ja mahaarvamise valem). [8]. Korratused ja subfaktoriaalid. [9]. Dirichlet` printsiip. [10]. Arvujadade genereerivad funktsioonid. Jadade ja genereerivate funktsioonide teisendamine. [11]. n objekti jaotamine k gruppi. [12]. Rekurrentsed võrrandid. Rekurrentsi lahendamine ad hoc meetodil ja iteratsioonimeetodil. [13]. Tasandi tükeldamine n sirgega ja n nurgaga. [14]. Lineaarsed rekurrentsed võrrandid. [15]

Diskreetne matemaatika II
377 allalaadimist
thumbnail
36
pdf

Vektor. Joone võrrand. Analüütiline geomeetria

lahendama kolmnurka vektorite abil, leidma lõigu pikkust ja selle keskpunkti koordinaate, koostama sirge võrrandit ka punkti ja sihivektori kaudu ning teisendama kõiki sirge võrrandeid üldkujule. Õpilane leiab ka kahe sirge vahelise nurga, koostab hüperbooli, parabooli ja ringjoone võrrandeid ning leiab kahe joone lõikepunkte. Soovitan kõigil õpetajatel tutvuda kirjastuse Avita poolt välja antud raamatuga ,,Gümnaasiumi kitsas matemaatika III. Vektor tasandil. Joone võrrand". Õpik on ladusas keeles, rohkete illustratsioonidega, järgib hästi ainekava ning sisaldab rohkesti elulisi ülesandeid. Ülesannete raskusaste on kitsale kursusele vastav. Laia kursuse jaoks sobivad ka senini käibel olnud õpikud, kuid ainekava tuleb tõesti tähelepanelikult jälgida. Enne vektori mõiste sissetoomist peaks kordama üle need teadmised, mis puudutavad koordinaatteljestikku ja punkti koordinaate. Selleks sobib kitsa kursuse õpiku alguses olev

Matemaatika
38 allalaadimist
thumbnail
35
pdf

Mitmemuutuja funktsioonid

= lim x = lim tan = tan , x x 0 x x 0 kus on puutuja tõusunurk, tan = k on puutuja tõus. z Geomeetriliselt on osatuletis võrdne pinna z = f ( x, y ) ja tasandi y = const x lõikejoone antud punktis tõmmatud puutja tõusuga k = tan . z Analoogselt on võrdne pinna z = f ( x, y ) ja tasandi x = const lõikejoonele tõmmatud y puutuja tõusuga. 4. Kahe muutuja funktsiooni diferentsiaal. Teoreem diferentsiaali olemasolust. Def. 4.1. Kui kahe muutuja funktsiooni z = f ( x, y ) täismuudu saab esitada kujul z = Ax + By + ( ) , kus = x 2 + y 2 ning A ja B ei sõltu x ja y-st. ( ) on kõrgemat järku LKS suhtes ( ) lim = 0, 0 siis funktsiooni muudu lineaarne osa (x ja y suhtes) on selle funktsiooni diferentsiaal. dz = Ax + By (4.2) Teoreem 4.1. (teoreem diferentsiaali olemasolust)

Matemaatiline analüüs 2
240 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

kuuluvad arvu a ümbrusesse (a - , a + ). Jada piirväärtuse kirjutusviis on järgmine: xn a või lim xn = a . Lõplikku piirväärtust omavat jada nimetatakse koonduvaks. Vastasel juhul nimetatakse jada hajuvaks. 8. Lõpmatult kahaneva ja lõpmatult kasvava suuruse definitsioonid. Lõpmatult kahaneva ja kasvava suuruse omavaheline seos (sõnastada vastav teoreem). Tõkestatud suuruse definitsioon. Sõnastada teoreem lõpmatult kahaneva ja tõkestatud suuruse korrutisest. Lõpmatult kahanevad ja kasvavad suurused. Muutuvat suurust nimetatakse lõpmatult väikeseks ehk lõpmatult kahanevaks, kui lim = 0. Muutuvat suurust nimetatakse lõpmatult kasvavaks, kui lim || = . Lõpmatult kahanevate ja kasvavate suuruste vahel eksisteerib lihtne seos. Nimelt on nad teineteise pöördarvud. Teoreem 2.1. Suurus on lõpmatult kahanev siis ja ainult siis, kui suurus 1 / on lõpmatult kasvav. Tõkestatud suurused

Matemaatiline analüüs
484 allalaadimist
thumbnail
19
doc

VEKTORALGEBRA PÕHIMÕISTEID

1 VEKTORALGEBRA PÕHIMÕISTEID DEFINITSIOON. Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e

Kõrgem matemaatika
50 allalaadimist
thumbnail
19
doc

Õppematerjal

1 VEKTORALGEBRA PÕHIMÕISTEID DEFINITSIOON. Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e

Kõrgem matemaatika
383 allalaadimist
thumbnail
7
docx

Matemaatiline analüüs 1 teooria

Näiteks on n-järku osatuletis; funktsioon z on siin diferentseeritud algul p korda x järgi ja seejärel n-p korda y järgi. Teoreem 11.1.Kui funktsioon z=f(x,y) ja tema osatuletised fx' , fy' , fxy' ja fyx' on punktis M(x;y) ning selle mingis ümbruses määratud ja pidevad, siis selles punktis Teoreemist järeldub, et kui osatuletised on pidevad, siis Analoogiline teoreem kehtib ka suvalise arvu muutujate funktsioonide puhul. 13. Tuletis antud suunas (definitsioon + korralik selgitus joonisega). Vaatleme piirkonnas D funktsiooni z=f(x,y) ja punkti M(x;y). Rakendame punktist M vektori s=(x,y), mille suunakoosinused on cos , cos . Vektori s pikkus olgu s. Seega

Matemaatiline analüüs 1
83 allalaadimist
thumbnail
24
doc

ANALÜÜTILINE GEOMEETRIA RUUMIS, VEKTORID

kindla kohaga). Definitsioon. Libisevateks vektoriteks nimetatakse vektoreid, mille alguspunkti võib suvaliselt nihutada teda kandval sirgel. Näiteks jäigale kehale rakendatud jõud. Definitsioon. Vabadeks vektoriteks nimetatakse vektoreid, mis võivad olla rakendatud suvalisest ruumi punktist, igat vektorit võib üle kanda paralleelselt iseendaga suvalisse ruumi punkti. Siin vaatleme just viimaseid. LINEAARTEHTED VEKTORITEGA Lineaarteheteks vektoritega on vektorite liitmine, vektorite lahutamine, vektori korrutamine arvuga.    Definitsioon. Vektorite a ja b summaks nimetatakse vektorit c  a  b , mille alguspunkt langeb    kokku vektori a alguspunktiga ja lõpp-punkt vektori b lõpp-punktiga eeldusel, et vektor b on 

Matemaatika
39 allalaadimist
thumbnail
23
docx

MATEMAATILINE ANALÜÜS TÖÖ VASTUSED

järelikult Nüüd võime võtta -i -st paremalt või vasakult. Võtame ta vasakult. Jagame võrratuse selle negatiivse arvuga. (Negatiivse arvuga jagamine muudab võrratust!) Võrratus jääb ka siis kehtima, kui võtta temast piirväärtus piirprotsessis . Seega tuletise definitsiooni põhjal: Nüüd võtame -i -st paremalt Ja piirväärtuse Nüüd oleme näidanud, et ja Mis tähendab, et see on võimalik ainult siis, kui 25. Rolle'i teoreem Kui funktsioon on: · Lõigul [a,b] pidev · Diferentseeruv vahemikus (a,b) · Rahuldab tingimust Siis leidub vahemikus (a,b) vähemalt üks punkt kus Tõestus Kuna on pidev lõigul [a,b] siis saavutab ta oma suurima ja vähima väärtuse just sellel lõigul. Olgu M suurim ja m vähim väärtus. Kui M=m siis on funktsioon lõigul konstantne, mis tähendab, et tema tuletis Kui siis võib funktsioon oma ekstreemumi saavutada lõigu [a,b] otspunktis või vahemikus (a,b).

Matemaatika analüüs I
104 allalaadimist
thumbnail
9
docx

Lineaaralgebra

n n ,anname k väärtused (1,2,3....n-1) n n z= r ¿ 4) Vektorruumi mõiste, vahetud järeldused aksioomidest. Vektorruum on-mittetühi hulk V mille elementitega saab teha 2 tehet.1)liitmine-2le ( , V on )elemendile on pandud + V vastandisse. 2) skalaarkorrutamine- vastavuse elemet( C V on pandud arvule( C R ja hulga elemendile ( V ) .vektorruumi element-on vektor. 5) Vektorite lineaarne sõltuvus ja sõltumatus. Lineaarse s~oltuvuse tarvilik ja piisav tingimus. Lineaarne sõltuvus- Vektorruumi X(üle korpuse K) vektorite hulka nimetatakse lineaarselt sõltuvaks, kui Vektorruumi X(ülekorpuse K) mingit vektorite hulka nimetatakse lineaarselt sõltumatuks, kui ta ei ole lineaarselt sõltuv 6) Vektorruumi baas ja mõõde. Vektori koordinaadid. Tasnd- kasutatakse vektorruum pikkusega 1 =1

Matemaatiline analüüs 2
32 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

16. ühikvektorite skalaarkorrutised ii = 1 ji = 0 ki = 0 ij = 0 jj = 1 kj = 0 ik = 0 jk = 0 kk = 1 17. Skalaarkorrutis koordinaatides a b = X1X2 + Y1Y2 + Z1Z2. X 1 X 2 + Y1Y2 + Z 1 Z 2 18. Ühe vektori projektsioon teisel vektoril prb a = X 22 + Y22 + Z 22 19. Vektoria vektorkorrutis vektoriga b on vektor c, mis on määratud järgmiste tingimustega: 1. c = a xb = a b sin , vektori c pikkus võrdub nende vektorite moodulite ja nende vektorite vahelise nurga siinuse korrutisega. 2.Vektori c siht on risti vektoritele a ja b joonestatud rööpküliku tasandiga. ( c a ; c b ) 3.Vektori c suund on selline, et vektorid a, b ja c antud järjekorras moodustaksid parempoolse vektorkolmiku, s.t.

Analüütiline geomeetria
140 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

16. ühikvektorite skalaarkorrutised ii = 1 ji = 0 ki = 0 ij = 0 jj = 1 kj = 0 ik = 0 jk = 0 kk = 1 17. Skalaarkorrutis koordinaatides a b = X1X2 + Y1Y2 + Z1Z2. X 1 X 2 + Y1Y2 + Z 1 Z 2 18. Ühe vektori projektsioon teisel vektoril prb a = X 22 + Y22 + Z 22 19. Vektoria vektorkorrutis vektoriga b on vektor c, mis on määratud järgmiste tingimustega: 1. c = a xb = a b sin , vektori c pikkus võrdub nende vektorite moodulite ja nende vektorite vahelise nurga siinuse korrutisega. 2.Vektori c siht on risti vektoritele a ja b joonestatud rööpküliku tasandiga. ( c a ; c b ) 3.Vektori c suund on selline, et vektorid a, b ja c antud järjekorras moodustaksid parempoolse vektorkolmiku, s.t.

Analüütiline geomeetria
39 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

ümarsulgudega. Maatriksit tähistatakse suure tähega: Maatriksi järk tähistab maatriksi mõõtmeid: A on m*n järku maatriks. Liigid: · Ruutmaatriks (m=n) · Diagonaalmaatriks ­ ruutmaatriks, mille peadiagonaalis arvud, muud elemendid 0-d. · Ühikmaatriks ­ diagonaalmaatriksi erijuht. Peadiagonaali elemendid 1-d. Täh E. · Nullmaatriks ­ kõik nullid. Täh . 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). · Korrutamine arvuga: korrutades maatriksit reaalarvuga, muutuvad kõik elemendid, selle arvu korra suuremaks. · Maatriksite liitmine: mõõtmed peavad olema samad. Ühemaatriksi elemendid liidetakse teise maatriksi vastavate elementidega: A = (a ij) ja B = (bij) A+B =(cij) kus cij = aij + bij. · Maatriksite lahutamine : esimese maatriksi ja teise maatriksi vastandmaatriksi summa. A ­ B = A + (­B)

Kõrgem matemaatika
356 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

Jagame võrratuse selle negatiivse arvuga. Negatiivse arvuga jagamine muudab võrratust, Võrratus jääb ka siis kehtima, kui võtta temast piirväärtus piirprotsessis . Seega tuletise definitsiooni põhjal: Võtame -i -st paremalt Ja piirväärtuse Järeldub, et ja Mis tähendab, et see on võimalik ainult siis, kui 3. Sõnastada ja tõestada Rolle'i teoreem. Rolle'i teoreemi geomeetriline sisu. Sõnastada ja tõestada Cauchy teoreem. Sõnastada ja tõestada Lagrange'i teoreem. Lagrange'i teoreemi geomeetriline sisu. a. Rolle'i teoreem ­ Kui funktsioon f on lõigul [a,b] pidev, vahemikus (a,b) diferentseeruv ja rahuldab tingimust f (a) =f (b), siis leidub vahemikus (a,b) vähemalt üks punkt nii, et f`(c)=0. b. Rolle'i teoreemi geomeetriline sisu:

Matemaatiline analüüs 2
100 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

. . . . . . . . . . . . 33 2.1.4 Tähtsad piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2 Koonduvuseteooria neli printsiipi . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.1 Monotoonsuseprintsiip . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Bolzano–Weierstrassi teoreem . . . . . . . . . . . . . . . . . . . . . . 36 2.2.3 Cauchy kriteerium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.4 Cantori teoreem üksteisesse sisestatud lõikudest . . . . . . . . . . . . 38 2.2.5 Reaalarvu kümnendesitus . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.6 Arv e . . . . . . . . . . . . . . . . . . . .

Algebra I
8 allalaadimist
thumbnail
12
pdf

Matemaatika eksami teooria 10. klass

Täisarvude hulk Z · on järjestatud lõpmatu hulk, milles puudub nii vähim, kui ka suurim arv · on hulk, milles arvud järgnevad vahetult üksteisele ega kata kogu arvtelge · on hulk, mis on kinnine liitmis-, korrutamis- ja lahutamistehte suhtes Ratsionaalarvude hulk Q · on järjestatud lõpmatu hulk, milles puudub nii vähim, kui ka suurim arv · on tihe arvuhulk, kuid ka need arvud ei kata kogu arvtelge · on hulk, mis on kinnine liitmise, korrutamise, lahutamise ja nullist erineva arvuga jagamise suhtes Reaalarvude hulk R · on järjestatud lõpmatu hulk, milles puudub nii vähim, kui ka suurim arv · on tihe arvuhulk, iga kahe reaalarvu vahel paikneb alati veel reaalarve · on pidev, s.t need arvud katavad kogu arvtelje · on hulk, mis on kinnine liitmise, korrutamise, lahutamise ja nullist erineva arvuga jagamise suhtes. Ruutjuur mittenegatiivsest reaalarvust on alati reaalarv. 1

Matemaatika
79 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun