Toila Gümnaasium Matemaatika Koostas:Tanel Seli Toila 2009 Matemaatika Sõna matemaatika tuleb kreekakeelsest sõnast mathma seetähendab õpitu, teadus. Matemaatika on teadusharu, mis uurib mitmesuguseid hulki arvuhulki, punktihulki ehk kujundeid, funktsioonihulki jms. Peatähelepanu ei osutata seejuures hulkade sisulisele tähendusele, vaid nende elementide seostele ja omadustele. Palju matemaatika mõisteid, näiteks arv, geomeetriline kujund ja funktsioon, on tekkinud tegelike hulkade, esemete või seoste kõrvutamisel ja võrdlemisel, kusjuures on jäetud kõrvale kõik need omadused, mis matemaatika seisukohast pole olulised. Matemaatika eripära teiste teadustega võrreldes on, et matemaatikas ei saa pidada ühtki väidet (peale aksioomide ja definitsioonide) tõeseks, kui seda pole loogiliselt järeldatud varem teada olnud väiteist. Loogiline järeldamine on uute
Algarv- algarvuks nimetatakse ühest suuremat naturaalarvu, mis jagub vaid arvuga 1 ja iseendaga. Kordarv- positiivne naturaalarv,mis jagub peale 1 ja iseenda veel mõne naturaalarvuga. Murru taandamine- murru lugeja ja nimetaja jagamine ühe ja sama arvuga. Murru laiendamine- murru lugeja ja nimetaja korrutamine 1 ja sama arvuga. Liigmurd- harilik murd mille lugeja on suurem või võrdne kui nimetaja. Lihtmurd- harilik murd. Mille lugeja on väiksem, kui nimetaja. Sirgnurk- on nurk, mille haarad moodustavad sirge. Kõrvunurgad- on nurgad, millel on 1 ühine haar ja teised haarad moodustavad sirge. Tippnurgad- on nurgad, millel on ühine tipp ja haarad moodustavad sirged. Täisnurk- on pool sirgunurgast väiksemad nurgad. Teravnurgad- on täisnurgast väiksemad nurgad. Nürinurk- on täisnurgast suuremad nurgad. Lõikuvad sirged- on tasandil asuvad sirged, millel on ühine punkt. Ristuvad sirged- on lõikuavd sirged, mille lõikumisel tekivad täisnurgad. Paralleelsed sirged- on sirged
Matemaatika definitsioonid 1.Lõikuvad sirged on sirged, millel leidub ühine punkt. 2.Paralleelsed sirged on sirged, mis paiknevad ühel ja samal tasandil ning ei lõiku. 3.Ristuvad sirged on kaks lõikuvat sirget, mis lõikumisel moodustavad täisnurga. 4.Sirgnurk on sirge, mille haarad moodustavad sirge. 5.Täisnurk on sirge, mis on 90kraadi. 6.Teravnurk on nurk, mis mahub täisnurga sisse. 7.Nürinurk on nurk, mis mahub sirgnurga sisse, aga mitte täisnurga sisse. 8.Kõrvunurkadeks nimetatakse kaht nurka, millel üks haar on ühine ja mille teised haarad moodustavad sirge. 9.Kaht nurka nimetatakse tippnurkadeks, kui ühe nurga haarad on teise nurga haarade pikendused üle nende ühise tipu. 10.Täisnurkne kolmnurk on kolmnurk, mille üks nurk on täisnurk. 11.Teravnurkne kolmnurk on kolmnurk, mille kõik nurgad on teravnurgad. 12.Nürinurkne kolmnurk on kolmnurk, mille üks nurk on nürinurk. 13.Erikülgne kolmnurk on kolmnurk, mille kõik külj
1. Absoluutväärtus reaalarvuga x määratud mittenegatiivne reaalarv 2. Abstsisstelg x telg 3. Aksioom lause, mida loetakse õigeks ilma põhjenduseta. Aksioomid võetakse aluseks teiste väidete põhjendamisel. 4. Algarv Ühest suurem naturaalarv, mis jagub vaid ühe ja iseendaga. 5. Algebraline murd murd, mille lugejaks ja / või nimetajaks on muutujaid sisaldav avaldis. 6. Algebraline ruutjuur arv, mille ruut on antud arv a. 7. Algkoordinaat antud sirge ja ordinaattelje lõikepunkti ordinaat. 8. Algtegur naturaalarvu algarvuline tegur. 9. Algteguriteks lahutamine naturaalarvu esitamine algarvuliste tegurite korrutisena. 10. Alusnurk võrdhaarse kolmnurga või trapetsi aluse ja haara vaheline nurk. 11. Apoteem 1. korrapärase hulknurga keskpunktist küljele tõmmatud ristlõik. 12. 2. korrapärase püramiidi tipust külgtahule tõmmatud kõrgus. 13. Aritmeetiline keskmine suuruste summa jagatis nende suuruste arvuga. 14. Aritmeetiline
Tiia Toobal 2008 II osa Pärnu Koidula Gümnaasium Test nr. 1. a 0,5 - 16b 0, 5 1. Leia avaldise - 4b 0, 25 , kui a = 16. a 0, 25 - 4b 0, 25 1) 6 2) -2 3) 4 4) 2 2. Leia antud arvudest suurim ( 2) ( 2) 3, 2 3 1 4, 7 1) 2) 3) 4) 3 4 5 2 3 1- log 3 6 - log 4 0 ,125 3. Arvuta avaldise 27 -4 väärtus. 1) 0 2) 7,875 3) 7,875 4) 3,875 4. On antud perioodilise funktsiooni y
Uued mõisted · Asendusvõte 1. Avaldan ühest võrrandist ühe tundamatu 2. Asendan saadud avaldise teise võrrandisse avaldatud tundmati kohale 3. Lahendan saadud võrrandi 4. Asendan saadud tundmatu väärtuse ühte võrrandisse 5. Teen kontrolli esialgse võrrandi süsteemi põhjal 6. Kirjutan vastuse · Defineerimine ja tõestamine 1. Kaht sirget, millel on ainult üks ühine punkt nimetatakse lõikuvateks sirgeteks. 2. Kolmnurga tipust vastasküljeni tõmmatud ristlõiku nimetatakse kolmnurga kõrguseks. 3. Ruuduks nimetatakse võrdsete lähiskülgedega ja võrdsete lähisnurkadega nelinurka. 4. Ringjoone diameetriks nimetatakse lõiku, mis läbib ringjoone keskpunkti ja ühendab ringjoone kaht punkti. 5. Ringjoone diameetriks nimetatakse lõiku, mis poolitab ringjoone. 6. Kolmnurk, mille üks nurk on täisnurk nimetatakse täisnurkseks kolmanurgaks. 7. Algarvuks nimetatakse naturaalarvu, millel on
23.05.1998 a matemaatika riigieksam Lehe haldamist toetavad Topauto ja meelespea.net Põhivariant 1. rida 1998 aasta matemaatika riigieksami ülesannete lahendused 8 - x 12 x +2 1. (5p) Lihtsustage avaldist ning näidake, et selle väärtus ei sõltu x väärtusest. 6 2- x 18 x 21-x Lahendus: Valemid, mida lihtsustamisel kasutati: 1 a n ; ( ab ) = a n bn ; ( a n ) = a n m n m a - n = n ; a m+ n = a m
sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 sin2 cos = sin /tan cos2 1 = - sin2 cot = cos /sin cot =1/tan sin2 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ) sin = vastas kaatet/hüpotenuus cos = sin (90o ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ) tan = vastas kaatet/lähis kaatet cot =tan (90o ) cot = lähis kaatet/vastas kaatet tan = cot (90o ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos a/sin=b/sin=c/sin=2R S=1/2a*b*
Kõik kommentaarid