1. Teoreemid ja mõisted kolmnurgast 2. Mediaanlõik - Kolmnurga mediaaniks nimetatakse elementaargeomeetrias kolmnurga tipust vastaskülje keskpunkti tõmmatud lõiku või selle pikkust. Kolmnurgal on kolm mediaani. Kõik nad lõikuvad ühes punktis, mida nimetatakse mediaanide lõikepunktiks. Jaotab tipupoolse osa suhtes alumise osaga 2:1. 3. Kesklõik - Lõiku, mis ühendab kolmnurga kahe külje keskpunkte, nimetatakse kolmnurga kesklõiguks. Kolmnurga kesklõik on paralleelne kolmnurga ühe küljega ja võrdub poolega sellest küljest.Nende ristumiskoht on kolmnurga ümberringjoone 4. Nurgapoolitaja – nurgapoolitajaks nimetatakse tipust lähtuvat kiirt, mis poolitab nurga kaheks võrdseks nurgaks. Nende ristumiskoht on siseringjoone keskpunkt. 5. Hüpotenuus - Hüpotenuus on täisnurga vastaskülg täisnurkses kolmnurgas. 6. Kolmnurga nurkade summa on 180 kraadi. 7. Kolmnurgal on kolm nurka ja kolm külge. 8. Täisnurkne ko
KOLMNURKADE LIIGITAMINE NURKADE JÄRGI Kolmnurki liigitatakse nurkade järgi teravnurkseteks, nürinurkseteks ja täisnurkseteks kolmnurkadeks. Teravnurkse kolmnurga kõik nurgad on teravnurgad. Nürinurkse kolmnurga üks nurk on nürinurk, ülejäänud nurgad on teravnurgad. Täisnurkse kolmnurga üks nurk on täisnurk, ülejäänud kaks teravnurgad. Ühegi kolmnurga nurkade hulgas ei saa olla kahte nürinurka ega kahte täisnurka. Täisnurkse kolmnurga puhul nimetatakse ühte külge hüpotenuusiks ja kahte ülejäänud külge - täisnurga lähiskülgi - kaatetiteks. Mille alusel saab kolmnurki veel liigitada? 1. Kirjuta iga kolmnurga juurde, kas ta on terav-, nüri- või täisnurkne kolmnurk. .............Teravnurkne........................Teravnurkne..........................................täisnurkne .............................................................. 2. Joonesta kolmnurk, mille üks külg 3. Otsusta, kas kolm
1. Teoreemid ja mõisted kolmnurgast 2. Mediaanlõik - Kolmnurga mediaaniks nimetatakse elementaargeomeetrias kolmnurga tipust vastaskülje keskpunkti tõmmatud lõiku või selle pikkust. Kolmnurgal on kolm mediaani. Kõik nad lõikuvad ühes punktis, mida nimetatakse mediaanide lõikepunktiks. Jaotab tipupoolse osa suhtes alumise osaga 2:1. 3. Kesklõik - Lõiku, mis ühendab kolmnurga kahe külje keskpunkte, nimetatakse kolmnurga kesklõiguks. Kolmnurga kesklõik on paralleelne kolmnurga ühe küljega ja võrdub poolega sellest küljest.Nende ristumiskoht on kolmnurga ümberringjoone 4. Nurgapoolitaja – nurgapoolitajaks nimetatakse tipust lähtuvat kiirt, mis poolitab nurga kaheks võrdseks nurgaks. Nende ristumiskoht on siseringjoone keskpunkt. 5. Hüpotenuus - Hüpotenuus on täisnurga vastaskülg täisnurkses kolmnurgas. 6. Kolmnurga nurkade summa on 180 kraadi. 7. Kolmnurgal on kolm nurka ja kolm külge. 8. Täisnurkne k
KOLMNURK 6.klass Hulka, mille elementideks on seespool kolmest lülist koosnevat kinnist murdjoont olevad punktid, koos murdjoone punktidega, nimetatakse KOLMNURGAKS. tipp külg külg tipp külg tipp Ristlõiku, mis on joonestatud kolmnurga tipust vastasküljele või selle pikendusele, nimetatakse KOLMNURGA KÕRGUSEKS (h). h h Külge, mille vastastipust on joonetatud kolm- nurgale kõrgus,nimetatakse KOLMNURGA ALUSEKS(a). h a h a KOLMNURKADE LIIGITAMINE KÜLGEDE JÄRGI NURKADE JÄRGI erikülgne kolmnurk teravnurkne võrdhaarne kolmnurk kolmnurk täisnurkne võrdkülgne kolmnurk kolmnurk nürinurkne kolmnurk KÜLGEDE JÄRGI
KOLMNURK 6.klass Koostaja: Robi P2rnik Hulka, mille elementideks on seespool kolmest lülist koosnevat kinnist murdjoont olevad punktid, koos murdjoone punktidega, nimetatakse KOLMNURGAKS. tipp külg külg tipp külg tipp Ristlõiku, mis on joonestatud kolmnurga tipust vastasküljele või selle pikendusele, nimetatakse KOLMNURGA KÕRGUSEKS (h). h h Külge, mille vastastipust on joonetatud kolm- nurgale kõrgus,nimetatakse KOLMNURGA ALUSEKS(a). h a h a KOLMNURKADE LIIGITAMINE O KÜLGEDE JÄRGI O NURKADE JÄRGI O erikülgne O teravnurkne kolmnurk kolmnurk O võrdhaarne O täisnurkne kolmnurk kolmnurk O nürinurkne O võrdkülgne kolmnurk kolmnurk KÜLGEDE JÄR
PLANIMEETRIA III 1.Leida täisnurkse kolmnurga küljed, kui kolmnurga ümbermõõt on 12 cm ja kaatetite vahe on 1 cm. 2. Arvutada täisnurkse kolmnurga kaatetid, kui täisnurga poolitaja jaotab hüpotenuusi lõikudeks, mille pikkusedon 15 cm ja 20 cm. 3.Täisnurkse kolmnurga kaatetid suhtuvad nagu 5:6 ja hüpotenuus on 122 cm. Arvuta lõigud, milleks kõrgus jaotab hüpotenuusi. 4. Täisnurkse kolmnurga kaatetid on 8 cm ja 6 cm. Täisnurga tipust on tõmmatud ristlõik hüpotenuusile, leia selle pikkus. 5. Täisnurkse kolmnurga kaatetid on 16 cm ja 12 cm. Arvutada sise- ja ümberringjoone raadius. 6. Täisnurkse kolmnurga kaatetid on 15 dm ja 20 dm. Arvutada siseringjoone keskpunkti kaugus hüpotenuusioe joonestatud kõrgusest. 7. Täisnurkse kolmnurga üks kaatet on 15 cm ja siseringjoone raadius 3 cm. Leia selle kolmnurga pindala. 8. Täisnurkse kolmnurga siseringjoon jaotab puutepunktis hüpotenuusi osadeks 5 cm ja 12 cm. Arvutada kolmnurga kaatetid
PLANIMEETRIA III 1.Leida täisnurkse kolmnurga küljed, kui kolmnurga ümbermõõt on 12 cm ja kaatetite vahe on 1 cm. 2. Arvutada täisnurkse kolmnurga kaatetid, kui täisnurga poolitaja jaotab hüpotenuusi lõikudeks, mille pikkusedon 15 cm ja 20 cm. 3.Täisnurkse kolmnurga kaatetid suhtuvad nagu 5:6 ja hüpotenuus on 122 cm. Arvuta lõigud, milleks kõrgus jaotab hüpotenuusi. 4. Täisnurkse kolmnurga kaatetid on 8 cm ja 6 cm. Täisnurga tipust on tõmmatud ristlõik hüpotenuusile, leia selle pikkus. 5. Täisnurkse kolmnurga kaatetid on 16 cm ja 12 cm. Arvutada sise- ja ümberringjoone raadius. 6. Täisnurkse kolmnurga kaatetid on 15 dm ja 20 dm. Arvutada siseringjoone keskpunkti kaugus hüpotenuusioe joonestatud kõrgusest. 7. Täisnurkse kolmnurga üks kaatet on 15 cm ja siseringjoone raadius 3 cm. Leia selle kolmnurga pindala. 8. Täisnurkse kolmnurga siseringjoon jaotab puutepunktis hüpotenuusi osadeks 5 cm ja 12 cm. Arvutada kolmnurga kaatetid
PLANIMEETRIA KORDAMINE NELINURGAD RÖÖPKÜLIK Vastasküljed on paralleelsed ja võrdsed Vastasnurgad on võrdsed Diagonaalid poolitavad teineteist Diagonaal jaotab rööpküliku kaheks pindvõrdseks kolmnurgaks Lähisnurkade summa on 180º ( Diagonaalide ruutude summa on võrdne külgede ruutude summaga: d 12 + d 22 = 2 a 2 + b 2 ) Ümbermõõt. P = 2( a + b ) Pindala: S = ah S = a b sin ROMB On võrdsete külgedega rööpkülik, seega on rombil kõik rööpküliku omadused. Lisaks on rombi diagonaalid risti ja poolitavad rombi nurgad, Rombi kõrgused on pikkuselt võrdsed. 1 Rombi diagonaalide lõikepunkt on siseringjoone keskpunkt r = h 2 d 12 + d 22 = 4a 2 Ümbermõõt: P = 4a Pindala: S = a h
Kõik kommentaarid