Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad
Statistika mõisted 1) Andmete esitamine Statistiline rida- uuritava kogumi objektide mõõtmisel saadud vaadeldava tunnuse väärtuste rida Variatsioonrida- väärtuse kasvamise või kahanemise järgi järjestatud valim Sagedustabel- võtab andmebaasist kokku mitmel objektil esineb antud väärtus ehk esitab vastava sageduse Diagramm- andmete esitamise graafiline viis 2) Asendit kirjeldavad Mood- tunnuse kõige enam esinev väärtus Mediaan- tunnuse väärtus, mille väiksemaid ja suuremaid väärtusi on võrdne arv Aritmeetiline keskmine- arvusuuruste summa jagatis nende suuruste koguarvuga 3) Hajuvust iseloomustavad Variatsiooni ulatus- tunnuse suurim ja vähim väärtus Kvartiilid- tunnuse väärtused variatsioonireas, mis jagavad variatsioonirea neljaks ligikaudseks võrdseks osaks Dispersioon- hälvete ruutude keskväärtus Standardhälve-iseloomustab tunnuse hajuvust. Mida suurem see on, seda suurem on hajuvus. Keskmine hälve- hälvete aritmeetiline keskmine Variatsioonireakor
Statistika - teadus, mis käsitleb arvandmete kogumist, töötlemist ja analüüsimist. Matemaatiline statistika on matemaatika haru, mis uurib statistiliste andmete põhjal järelduste tegemise meetodeid. Üldkogum on kas looduse või ühiskonna nähtus või objektide hulk, mille kohta soovime teha teaduslikult põhjendatud järeldusi. Valimiks nimetatakse mõõtmiseks võetud üldkogumi osa. Valim peab olema küllalt arvukas ming igal üldkogumi objektil peab olema võimalus valimisse sattuda. Arvtunnused(väärtuseks on arvud) on näiteks pikkus, kaal, vanus, keskmine hinne, kinganumber, rahvaarv ja riigi pindala
Matemaatika Riiklik õppekava: https://www.riigiteataja.ee/aktilisa/1140/1201/1002/VV2_lisa3.pdf# Gümnaasium matemaatika 1.-5 kursus Õppeaine: Matemaatika (lai kursus) Klass: 10. klass 1. Õppekirjandus: l.Lepmann, T.Lepmann, K.Velsker Matemaatika 10.klassile 2. Õppeaine ajaline maht: 5 kursust (175 tundi) 3. Õppeaine eesmärgid:õpilane 1) saab aru matemaatika keeles esitatud teabest; 2) tõlgendab erinevaid matemaatilise informatsiooni esituse viise; 3) kasutab matemaatikat igapäevaelus esinevates olukordades; 4) väärtustab matemaatikat, tunneb rõõmu matemaatikaga tegelemisest; 5) arendab oma intuitsiooni, arutleb loogiliselt ja loovalt; 6) kasutab matemaatilises tegevuses erinevaid teabeallikaid; 7) kasutab arvutiprogramme matemaatika õppimisel. Õppeaine sisu:
Statistika teadus, mis käsitleb arvandmete Objekt-tunnustabel tabel, kus uuritava kogumist, töötlemist ja analüüsimist. andmed on esitatud. Matemaatiline statistika matemaatika haru, Pidev tunnus võib omandada kõiki mis uurib statistiliste andmete põhjal järelduste reaalarvulisi väärtusi mingist piirkonnast (nt tegemise meetodeid. kaal, kasv, aeg ja temp). Üldkogum kas looduse või ühiskonna Diskreetne tunnus võib omandada vaid nähtus või objektide hulk, mille kohta soovime üksteisest eraldatud väärtusi. Saadakse teha teaduslikult põhjendatud järeldusi. tavaliselt loendamisel (nt perekonnaliikmete Valim mõõtmiseks võetud üldkoogumi osa. arv, õpilaste arv klassis) Juhuslik valim koostatud üldvalimi Järjestustunus tunnus, mille väärtusi saab
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega
sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 sin2 cos = sin /tan cos2 1 = - sin2 cot = cos /sin cot =1/tan sin2 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ) sin = vastas kaatet/hüpotenuus cos = sin (90o ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ) tan = vastas kaatet/lähis kaatet cot =tan (90o ) cot = lähis kaatet/vastas kaatet tan = cot (90o ) Kolmnurga pindala Koosinusteoreem Siinusteoreem
1. Ristkülik Mõiste: Ristkülik on nelinurk, mille kõik nurgad on täisnurgad. Pindala: S=ab Ümbermõõt: Ü=2(a+b) Omadused: 1. Ristkülikul on kõik rööpküliku omadused. 2. Kõik nurgad on täisnurgad 3. Diagonaalid on võrdsed 4. Ristkülikul on ümberringjoon, mille keskpunktiks on diagonaalide lõikepunkt (O) ning raadiuseks pool diagonaali. 5. Ristkülikul on kaks sümmeetriatelge ja sümmeetriakeskpunkt. Ruut: Mõiste: Ruutu võib defineerida, kui a) ristkülikut, mille lähisküljed on võrdsed b) rombi, mille üks nurk on täisnurk c) rööpkülikut, mille lähisküljedon võrdsed ja üks nurk on täisnurk. Pindala: S=a² Ümbermõõt: Ü=4a Omadused: 1. Ruudul on nii ristküliku kui ka rombi omadused 2. Ruudu küljed on võrdsed 3. Ruudu nurgad on täisnurgad 4. Ruut on korrapärane nelinurk 5. Ruudul on siseringjoon, mille keskpunktiks on diagonaalide lõikepunkt (O)
Kõik kommentaarid