Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ukraina abi Ukraina kaitse vajab abi. Tee annetus täna! Tee annetus täna Sulge
Add link

Matemaatika mõisted (0)

1 Hindamata
Punktid
Matemaatika mõisted #1 Matemaatika mõisted #2
Punktid 5 punkti Autor soovib selle materjali allalaadimise eest saada 5 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2013-12-11 Kuupäev, millal dokument üles laeti
Allalaadimisi 22 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor gretzuke16 Õppematerjali autor

Sarnased õppematerjalid

816
pdf

Matemaatika - Õhtuõpik

Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad

Matemaatika
1
docx

Matemaatilise statistika mõisted

Statistika mõisted 1) Andmete esitamine Statistiline rida- uuritava kogumi objektide mõõtmisel saadud vaadeldava tunnuse väärtuste rida Variatsioonrida- väärtuse kasvamise või kahanemise järgi järjestatud valim Sagedustabel- võtab andmebaasist kokku mitmel objektil esineb antud väärtus ehk esitab vastava sageduse Diagramm- andmete esitamise graafiline viis 2) Asendit kirjeldavad Mood- tunnuse kõige enam esinev väärtus Mediaan- tunnuse väärtus, mille väiksemaid ja suuremaid väärtusi on võrdne arv Aritmeetiline keskmine- arvusuuruste summa jagatis nende suuruste koguarvuga 3) Hajuvust iseloomustavad Variatsiooni ulatus- tunnuse suurim ja vähim väärtus Kvartiilid- tunnuse väärtused variatsioonireas, mis jagavad variatsioonirea neljaks ligikaudseks võrdseks osaks Dispersioon- hälvete ruutude keskväärtus Standardhälve-iseloomustab tunnuse hajuvust. Mida suurem see on, seda suurem on hajuvus. Keskmine hälve- hälvete aritmeetiline keskmine Variatsioonireakor

Matemaatika
2
docx

Matemaatika-statistika mõisted

Statistika - teadus, mis käsitleb arvandmete kogumist, töötlemist ja analüüsimist. Matemaatiline statistika on matemaatika haru, mis uurib statistiliste andmete põhjal järelduste tegemise meetodeid. Üldkogum on kas looduse või ühiskonna nähtus või objektide hulk, mille kohta soovime teha teaduslikult põhjendatud järeldusi. Valimiks nimetatakse mõõtmiseks võetud üldkogumi osa. Valim peab olema küllalt arvukas ming igal üldkogumi objektil peab olema võimalus valimisse sattuda. Arvtunnused(väärtuseks on arvud) on näiteks pikkus, kaal, vanus, keskmine hinne, kinganumber, rahvaarv ja riigi pindala

Statistika
16
docx

Matemaatika kursused

Matemaatika Riiklik õppekava: https://www.riigiteataja.ee/aktilisa/1140/1201/1002/VV2_lisa3.pdf# Gümnaasium ­ matemaatika 1.-5 kursus Õppeaine: Matemaatika (lai kursus) Klass: 10. klass 1. Õppekirjandus: l.Lepmann, T.Lepmann, K.Velsker Matemaatika 10.klassile 2. Õppeaine ajaline maht: 5 kursust (175 tundi) 3. Õppeaine eesmärgid:õpilane 1) saab aru matemaatika keeles esitatud teabest; 2) tõlgendab erinevaid matemaatilise informatsiooni esituse viise; 3) kasutab matemaatikat igapäevaelus esinevates olukordades; 4) väärtustab matemaatikat, tunneb rõõmu matemaatikaga tegelemisest; 5) arendab oma intuitsiooni, arutleb loogiliselt ja loovalt; 6) kasutab matemaatilises tegevuses erinevaid teabeallikaid; 7) kasutab arvutiprogramme matemaatika õppimisel. Õppeaine sisu:

Matemaatika
1
doc

Statistika mõisted

Statistika ­ teadus, mis käsitleb arvandmete Objekt-tunnustabel ­ tabel, kus uuritava kogumist, töötlemist ja analüüsimist. andmed on esitatud. Matemaatiline statistika ­ matemaatika haru, Pidev tunnus ­ võib omandada kõiki mis uurib statistiliste andmete põhjal järelduste reaalarvulisi väärtusi mingist piirkonnast (nt tegemise meetodeid. kaal, kasv, aeg ja temp). Üldkogum ­ kas looduse või ühiskonna Diskreetne tunnus ­ võib omandada vaid nähtus või objektide hulk, mille kohta soovime üksteisest eraldatud väärtusi. Saadakse teha teaduslikult põhjendatud järeldusi. tavaliselt loendamisel (nt perekonnaliikmete Valim ­ mõõtmiseks võetud üldkoogumi osa. arv, õpilaste arv klassis) Juhuslik valim ­ koostatud üldvalimi Järjestustunus ­ tunnus, mille väärtusi saab

Matemaatika
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
3
doc

Matemaatika valemid

sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 ­ cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 ­ sin2 cos = sin /tan cos2 ­ 1 = - sin2 cot = cos /sin cot =1/tan sin2 ­ 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ­ ) sin = vastas kaatet/hüpotenuus cos = sin (90o ­ ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ­ ) tan = vastas kaatet/lähis kaatet cot =tan (90o ­ ) cot = lähis kaatet/vastas kaatet tan = cot (90o ­ ) Kolmnurga pindala Koosinusteoreem Siinusteoreem

Matemaatika
17
doc

Valemid ja Mõisted

1. Ristkülik Mõiste: Ristkülik on nelinurk, mille kõik nurgad on täisnurgad. Pindala: S=ab Ümbermõõt: Ü=2(a+b) Omadused: 1. Ristkülikul on kõik rööpküliku omadused. 2. Kõik nurgad on täisnurgad 3. Diagonaalid on võrdsed 4. Ristkülikul on ümberringjoon, mille keskpunktiks on diagonaalide lõikepunkt (O) ning raadiuseks pool diagonaali. 5. Ristkülikul on kaks sümmeetriatelge ja sümmeetriakeskpunkt. Ruut: Mõiste: Ruutu võib defineerida, kui a) ristkülikut, mille lähisküljed on võrdsed b) rombi, mille üks nurk on täisnurk c) rööpkülikut, mille lähisküljedon võrdsed ja üks nurk on täisnurk. Pindala: S=a² Ümbermõõt: Ü=4a Omadused: 1. Ruudul on nii ristküliku kui ka rombi omadused 2. Ruudu küljed on võrdsed 3. Ruudu nurgad on täisnurgad 4. Ruut on korrapärane nelinurk 5. Ruudul on siseringjoon, mille keskpunktiks on diagonaalide lõikepunkt (O)

Matemaatika



Lisainfo

Mõisteid matemaatikast.

Märksõnad

Mõisted


Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri





Uutele kasutajatele e-mailiga aktiveerimisel
10 punkti TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun