Hu lgateooria põh im õis ted N B ! Värv ilin e tek s t arves tu s es . H ulk on baas ter min iks nii ma te ma at ikas kui ka arvutiteadus es . J ärgnevalt tuvu me hulgateoori a põhikonts epts ioonidega ja hulkadele rakendatavate operats ioonidega. P aradoks : a) H abemeaj aj a puzle- kapten käs ib rühma habemeaj aj ale aj ada habet kõikidel kompan ii liikmete l, eeldus el et rühma liik med ei tohi is e habet aj ada. O lles kõigi teis te habemed aj anud, kas vab talle endale habe. Enda habet ei s aa ta aj ada, s es t nii rikuks ta kapteni käs ku. Kui ta aga enda habet ei aj a, s iis ta peaks ühtpidi kapteni käs u järgi enda habet aj ama (kõikidel liik me tel). D ef: Hu lk A on k ollek ts ioon k orrek ts elt d ef in eeritu d ob jek tid es t, n ii et iga ob jek ti k orral k eh tib ük s järgevas t k ah es t võim alu s es t - x k u u lub h u lk a A , k irju tam e x A - x ei ku u lu h u lk a A , k...
Kombinatoorika valemeid ja mõisteid · Variatsioonideks n erinevast elemendist k kaupa nimetame ühendeid, mis sisaldavad k elementi antud n elemendist ning erinevad kas elementide või nende järjestuse poolest. Erinevaid variatsioone on A =n(n-1) ...(n-k+1)=n!/(n-k)! · Permutatsioonideks n elemendilisest hulgast nimetame ühendeid, mis sisaldavad kõiki n elementi (üks kord) ja erinevad järjestuse poolest. Erinevaid permutatsioone on Pn=n (n-1) ...1 = n! · Kombinatsioonideks n elemendist k kaupa nimetame ühendeid, mis sisaldavad k elementi (antud n elemendi hulgast) ja erinevad vähemalt ühe elemendi poolest. n! · Erinevaid kombinatsioone on C =A /Pk C nk = ( n - k )!k! Tõenäosusteooria · Sündmuste hulka, kus alati üks sündmus toimub ja see välistab teiste toimumise ni...
Matemaatiliste tõestuste meetodid 1. Otsesed tõestuse meetodid M ate maa tiline s üs teem koos neb aks ioomides t, teoreemides t, definits ioonides t ja defineeri ma ta obj ektides t. A ks ioom on laus e, mid a eeldataks e tõene olevat. D ef in its ioon i kas utataks e uute konts epts ioonide ja mõis t ete s elgitamis eks teadaolev ate mõis te te kaudu. T eoreem on väide, mis on tões tatud. L em m a - väiks ema is es eis va tähts us ega teoree m, mis on enamas t i abiks teoree mi de tões ta mis e l. Järeld u s - toeree mis t ots es elt järelduv tule mus N äited: D efineeri ma ta obj ektid: punktid, jooned D efinits ioon: Kolmnurg a ümber mõ õt on võrdne s elle kol mnurga külgede s ummag a Teoree m: Täis nuks e kolmnurga kaatet ite ruutude s umma võrdub hüpotenuus i ruuduga. J äreldus : kui kolmnurg a külj ed on võrds e pikkus ega, s iis on s elle kolmnug a nurgad s amut i võrds ed. Teoree mi tões us e põhj endamis t, nimet ataks e tõe...
Relatsioonid ja funktsioonid 1. Relatsioon Lähtu me ees pooldefineeri tud hulkade Cartes ius e korrutis es t ehk ris tkorrutis es t (öeldaks e ka ots ekorrutis ) A × B tähendab kõiki järj es tatud paaride hulka (a,b), kus a A j a b B. N 1: A ntud on hulgad A= { 1,2} j a B={ 1} Leia me : A × B= { (1,1),(2,1)} B × A ={ (1,1),(1,2)} J äreldus : A × B B × A Hu lga A × B alam h ulk a R n im etatak s e b in aars eks relats ioon ik s hu lgas t A hu lk a B K ui (a,b) R, s iis kirj utataks e ka aRb. J uhul kui a pole s eotud b-ga s iis kirj utataks e a R b . Erij uhul kui B=A , s iis R on binaars e relats ioon hulgal A . (alterna tiivne levinud tähis tus on A x B : A B ) Relatsiooni (vastavuse) määramispiirkond D om(R )= { a A |leidub b B nii et (a,b) R } (doma in of R) Relatsiooni (vastavuse) muutumispiirkond R ange(R )= { b B | leidub a A nii et (a,b) R} (range of R) N 2: A ntud on hulgad A= { 2...
TALLINNA MAJANDUSKOOL Majandusarvestuse ja maksunduse osakond Soovitavate laste arv peres Uurimistöö Juhendaja: Tallinn 2009 TÖÖ EESMÄRK Ma lugesin internetist, et hiljutised Eurostati andmed näitavad, et Eestis sündis 2008. aastal 12,2 last 1000 elaniku kohta. Ja mul tuli mõte teha uurimus ning küsida inimeste käest, kui palju lapsi nad soovivad saada. Selle uuringu läbiviimise käigus vastasid nii naised kui mehed, kokku 38 inimest, vanuses 17-38 3 lihtsatele küsimustele: 1.sugu 2.vanus 3. palju last inimene tahab tahab? Vastused oli sellised: - ma ei taha lapsi - tahan ühte last - tahan 2 last - tahan 3 last ja rohkem UURIMUS palju last sa tahad? 1. ma ei taha lapsi 2. tahan ühte last 3. tahan 2 Sugu Vanus last 4. tahan 3 last ja rohkem ...
Antud küsimustiku eesmärgiks on välja selgitada, mida töö peaks pakkuma 9 klassi õpilastele. Üldkogumiks oleks Pärnu linna koolides õppivad üheksanda klassi õpilased, küsimustik on ananüümne, mille andmeid ei kasutata kuskil mujal . Ülesande paremaks mõistmiseks loe kõigepealt läbi terve loetelu. Seejärel loe see punkthaaval uuesti läbi ja hinda, kui oluline on iga kirjeldatu väärtus Sinu jaoks. Kasuta hindamisel järgmist skaalat: 1 = ei ole üldse oluline 2 = ei ole eriti oluline 3 = mingil määral oluline 4 = väga oluline Hindamisskaalal on ,,1" kõige madalam ja ,,4" kõige kõrgem hinne. Mida madalama hinde Sa annad, seda vähem olulisem tegur sinu meelest on. 1. ___ Aidata Ühiskonda- anda oma panus maailma parandamiseks 2. ___ Suhtlemine- palju igapäevaseid kontakte inimestega 3. ___ Töö koos teistega- tihedad koostöösuhted teistega; tegutsemine meeskonnaliikmena ühiste eesmärkide nimel. 4. ___ Sõprus- arendada ...
Mainori Kõrgkool Matemaatika ja statistika Loengukonspekt Silver Toompalu, MSc 2008/2009 1 Matemaatika ja statistika 2008/2009 Sisukord 1 Mudelid majanduses ............................................................................................................. 4 1.1 Mudeli mõiste .....................................................................
Ülesanne 1 Ettevõtte püsikulud on 800 eurot nädalas ja muutuvkulu on 50 eurot tooteühiku kohta. Nõudlusfunktsioon on kirjeldatud mudeliga p(q)=-0,5q+100, kus p on hind ja q tootmismaht. Leida a) kasumi sõltuvus tootmismahust; C(q)= CF + cvq C(q) = 800+50q R(q) = q * p R(q) = q(-0,5q+100) = -0,5q2+100q P = R-C P = -0,5q2+100q-800-50q= -0,5q2+50q-800 Vastus: kasumi sõltuvus tootmismahust on -0,5q2+50q-800 b) optimaalne tootmismaht ja sellele vastav kasum. q(opt) = = = 50 P(50) = -0,5(50)2 + 50*50-800 = -1250+2500-800 = 450 Vastus: optimaalne tootmismaht on 50 ja sellele vastav kasum 450 Ülesanne 2 Firma püsikulud on 3500 eurot kuus ja muutuvkulu tooteühiku kohta on 5 eurot. Kui tootmismaht on sellel aastal 400 ühikut ja järgmiseks aastaks planeeritakse tootmismahu 25%-list tõusu, siis mitme euro võrra väheneb järgmisel aastal keskmine kulu tooteühiku kohta? C(400) = CF + Cvq = 3500*12+5*400 = 42000+2000 = 44000 44000/400 ...
Ülesanne 1 Toote nõudlust kirjeldab mudel p(q)=-q+150. Kulufunktsiooni konstrueerimiseks uuriti ettevõtte kulusid, millest selgus, et püsikulud on 1800 eurot kuus ning tootmismahu suurenedes 50 ühiku võrra suurenesid kulud 500 euro võrra. a) Koostage funktsioon, millega saaks kirjeldada kasumi sõltuvust tootmismahust. Kulufunktsioon: C(q)= CF + Cvq Cvq=500/50ühikut C(q)=1 800+(500/50)q=1800+10q Tulufunktsioon: R(q) = q*p p(q)=-q+150 R(q) =q(-q+150)= -q2 +150q Kasumifunktsioon: P(q) = R-C P(q)= -q2 +150q-1 800-10q= - q2 +140q-1800 Vastus: kasumi sõltuvust tootmismahust on - q2 +140q-1800. b) Kui praegune tootmismaht on 40 ühikut, siis milline peaks olema minimaalne tootmismaht, et kasum oleks praegu saadavast 25% suurem? P(q)= - q2 +140q-1800 P(40)= (-40)2+140*40-1800=1600+5600-1800=5400 ( kui toodame 40 ühikut) (5400*25%)+5400=1350+5400=6750 (oodatav kasum) 6750=-q2+140q-1800 -q2+140q=4950 q = = = 70 Vastus: 70 peaks olema minimaa...
EKSAM - rida 1, pildistatud
EKSAM - rida 2
Ülesanne 1 Linnas on bensiiniliitri hind 16.00 kr, maal on aga bensiin odavam, 15.50 kr liiter. Kuu aja jooksul oli autojuht ostnud 180 liitrit bensiini ja kokku kulutanud selle peale 2830 kr. Mitu liitrit kallimat ja mitu liitrit odavamat bensiini oli ta kuu aja jooksul ostnud? 16x+15,50*(180-x)=2830 16x+2790-15,50x=2830 16x-15,50x=2830-2790 0,5x=40 x=80 liitri linnas x+y=180, 80+y=180 y=180-80 y=100 liitri maal Vastus: x=80 liitri, y=100 liitri Ülesanne 2 Hinnaga 7000 eurot müüdi toodet 40 tk, hinnaga 5700 eurot müüdi 65 tk. Kulud olid vastavate tootmismahtude juures 22 000 eurot ja 33 000 eurot. Eeldades, et nii kulufunktsioon kui nõudlusfunktsioon on lineaarsed, leida a)kulufunktsioon; C(q)=440q+4400 b) nõudlusfunktsioon; p(q) = -52q+9080 c) kasumifunktsioon; P(q) = -52q2+8640q-4400 d) kogus, mille korral kulud on 44 000 eurot; q=90 Hind/euro Kogus/tk Kulud/euro 7000 ...
EESTI ETTEVÕTLUSKÕRGKOOL MAINOR Julia Lissovskaja EV-1-E-S-tar STATISTIKA KODUTÖÖ Juhendaja: Kalev Avi Maslow vajaduste püramiid Tartu 2011 2 SISUKORD ANDMESTIKU TUTVUSTUS............................................................................................ 4 ESMAANALÜÜS.................................................................................................................5 ANALÜÜS............................................................................................................................8 KOKKUVÕTE....................................................................................................................12 Statistika kodutöö ANDMESTIKU TUTVUSTUS Koduse töö andmestikuks valisin Statistikaameti stat...
Parfüümid Kogus(ml)(diskreetne) Pikkus(cm)(pidev) 5th Avenue 125 19 1 Million 100 14.5 Yellow Diamond 50 14.5 Double Dare 75 15.5 NL'Elixir 50 8 Crystal Noir 90 8.5 Passion Struck 250 19.5 Fizzy Energy 30 11 Touch Of Pink 100 16 Tropical Passion 30 11 Coconut Passion 250 ...
Eesti Ettevõtluskõrgkool Mainor IT- Kaug. 2012 TOITUMISHARJUMUSED Matemaatika ja statistika Tallinn 2013 TOITUMISHARJUMUSED TOITUMISHARJUMUSED SISSEJUHATUS Eestlaste toitumusharjumustest on räägitud palju ja kindlasti räägitakse sellest ka tulevikus. Paljude arstide sõnul on hea ja tugeva tervise jaoks väga olulisel kohal just toitumine. Õige toit mõjutab otseselt meie terviseseisundit, mis peegeldub näiteks kehakaalus, juustes, nahas
Kulufunktsioon = fikseeritud kulud + muutuvkulud: C(q)=Cf+Cvq, Tulufunktsioon=nõutav kogus*hind: R(q)=q*p, Kasumifunktsioon=tulufunktsioon-kulufunktsioon: P(q)=R(q)-C(q), Lineaarne nõudlusfunktsioon: P(qastmel d)=b+aq astmel d Lineaarne pakkumisfunktsioon: P(q astmel S)=b+aq astmel S, Tasakaalu tingimus: nõudlusf=pakkumisf, Tulufunktsioon: R=aq ruudus+p0q, Tulufunktsiooni graafiku tipp: q=-p0/2a, Kasumifunktsioon: P=aq ruudus+(p0-cv)q-Cf, Kasumi maksimum: q=cv-p0/2a Ruutvõrrand: Kaupluse hinnakujundus: Sisseostuhind Sh +soetamiskulud (trantsport+rent) Sk =Omahind(soetamishind) OH=Sh+Sk +kasum(nt 15%omahinnast) P =jaehind (netohind, hind ilma käibemaksuta) Jh=Oh+P +käibemaks (eestis 20%) Km =müügihind(lõpphind, brutohind) Mh=Jh+Km Palgaarvestus: Neto=bruto-tulumaks-pensionikindlustus-töötukindlustus NT=Bt-TM-Pk-Tk Tulumaks=(Bruto-maksuvaba-pensionikindlustus-töötuskindlustus)xTm määr TM=(Bt-Mv-Pk-T...
KODUNE KT 1. mõned lahendused Mina sain teise ülesande võrrandi lahendamisel 2 vastust: p1=2, p2=5. Küsimus on aga "Millise honorari korral saabub nõudmise ja pakkumise tasakaal?" Sel juhul tuleb välja, et ühe kontserdi honorar võib olla nii 2$ kui ka 5$? Kui olen artist, küsin 5$, kui olen korraldaja, pakun 2$? Ülesanne 2 Antud: Nõudlusfunktsioon qD (p) = -p + 10 Pakkumisfunktsioon qS (p) = 6p p2 Leida: p = ? , st, leida tasakaaluhind, mille puhul pakutav ja nõutav kogus on võrdsed ehk: qD (p) = qS (p) Lahendus: qD (p) = qS (p) ....asendame antud funktsioonidega: -p + 10 = 6p p2 Tegemist on ruutvõrrandiga (vt. konspekt lk.18), kus kõik liikmed viiakse ühele poole võrdusmärki ja pannakse võrduma 0-ga, seega kujule: ax2 + bx + c = 0 Viime nüüd võrrandi -p + 10 = 6p p2 elemendid kõik ühele poole (teisele poole minejatel muutub märk): p2 7p + 10 = 0 Ma enam ei oska Word`is valemeid kirja panna. Võtke ko...
Graafid Graaf koosneb tippudest(sõlmedest) ja neid ühendavatest kaartest. Kaarega võib ühendada suvalisi graafi tippe, sealhulgas on võimalik kaar samale tipule (iseendale). Iga kaar on määratud kahe tipuga. Orienteeritud graaf: kaared on järjestatud tipupaarid. Def: Graaf on paar (V,E), kus V on mittetühi hulk ning E hulk, mille elementideks on hulga V kaheelemendilised alamhulgad. Näide lk 47 (Palm) Tipu aste tipust väljuvate servade arv. Teoreem: Igas graafis on kõigi tippude astmete summa võrdne servade arvu kahekordsega. Järeldus: Igas graafis on paaritu astemga tippe paarisarv. Ahel graafis tippude järjend, kus iga kaks järjestikust tippu on servaga ühendatud (esimene ja viimane on otstipud vahepeal sisetipud). Ahela pikkus on k kui selles on k+1 tippu. Ahel võib läbida mõnda tippu mitu korda. Lihtahel kõik tipud läbitakse üks kord. Tippude u ja v vaheline kaugus - tippude u ja v vahelise lihtahela pikkus Tsükkel ...
2. Algoritmi ajaline keerukus (jätk) 2.1. Olulisemad mõisted ([J.Kiho] põhjal ) Def: Algoritmi ajalist keerukust väljendab funktsioon f, mis igale antud algoritmi järgi lahendatavale konkreetsele ülesandele andmemahuga n seab vastavusse ülesande lahendamisel sooritatavate algoritmi sammude arvu f(n). Üldiselt eeldatakse,et antud algoritmi alusel koostatud programmide töö aeg on ajalise keerukuse funktsiooni kordne c*f(n), kus c on konstant. Eriti oluline on algoritmi ajalist keerukust väljendava funktsiooni käitumine alg- andmete mahu piiramatul kasvamisel. Vastavat hinnangut nimetatakse asümptootiliseks hinnanguks. Lahendusaja suhtelist kasvu kirjeldab järgmine tabel: Programmi töö aeg kujul c*f(n) Lahendamise aja suhteline kasv f(25)/f(5) c1*log(n) 2 c2*n2 25 c3*n3 125 c4*2n ...