Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Majandusmatemaatika loeng (0)

2 HALB
Punktid
Majandusmatemaatika loeng #1 Majandusmatemaatika loeng #2 Majandusmatemaatika loeng #3 Majandusmatemaatika loeng #4 Majandusmatemaatika loeng #5 Majandusmatemaatika loeng #6
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 6 lehte Lehekülgede arv dokumendis
Aeg2009-09-24 Kuupäev, millal dokument üles laeti
Allalaadimisi 168 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor kitn Õppematerjali autor
Tallinna Majanduskooli õpetaja S.Malv'i loengu konspekt (aine on majandusmatemaatika ja statistika).

Sarnased õppematerjalid

thumbnail
57
rtf

Maatriksid

1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): [ ] a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 -

Matemaatika
thumbnail
48
doc

Lineaaralgebra täielik konspekt

Lineaaralgebra elemendid. M.Latõnina 1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus).

Kõrgem matemaatika
thumbnail
3
docx

Lineaalalgebra Esimese KT konspekt

Maatriks arvutus Def 1 : (mxn) m korda n järku arv maatriks A nim mn arvust moodustatud tabelit, milles on m rida ja n veergu. NT filmilint, male- ja kaberuudud. Maatrikselemendid on elemendid, millest maatriks koosneb. Ai-reaindeksj- veeruindeks I= 1, 2, .....m j= 1, 2, ......n A=( a11 a12 a13 ....a1n) ( a21 a22 a23....a2n) ( a31 a32 a33 ....a3n) m=n (ruutmaatriks) nxn n2- maatriks mn (ristkülikmaatriks) Maatriksi seda osa, kus paiknevad elemendid a11 ; a22 ; a33 ..... akk nimetatakse maatriksi peadiagonaaliks. Maatriksi seda osa, kus paiknevad elemendid a1n ; a2n-1 ; a3n-2 .... akn(k-1) nimetatakse maatriksi kõrvaldiagonaaliks. a11 priviligeeritud element. Tehted maatriksiga Def 2 : maatriksid A ja B loetakse võrdseks, kui nad on sama järku ( ühepalju ridu ja veerge) ja nende kõik vastavad elemendid on võrdsed . A: (pxq) B: (rxs) p=r q=s Def 3 : (mxn) järku maatriksite A ja B summaks nimetatakse sama järku numbrite A + B, mille elemendiks on lähte maatriksite kõi

Matemaatika
thumbnail
3
docx

Determinant

Determinant Def1 Eeskirja f, mis seab hulga V igale elemendile x vastavusse hulga W teatava elemendi y nimetatakse kujutiseks hulgast V hulka W. Def2 Kui mistahes x korral hulgast V on eeskirja f alusel vastavusse seatud üks kindel y hulgast W, siis öeldakse, et on määratud ühine kujutis hulgast V hulka W. L V = M(n × n) LW= f: M(n × n) f: Ad A M(n × n) d 1 2 n |a1 a1 ... a1 | |a21 a22 ... a2n| d = |.....................| = (-1) a11 a22 a33 ... ann permutatsioonid |an1 an2 ... ann| Selgitus: determinandi väärtust arvutav summa on võetud üle kõigi permutatsioonide, millised saab moodustada numbritest 1, 2, 3 ... n ( seega on liidetavaid n! tükki), sümbol summa avaldises tähistab inversioonide koguarvu permutatsioonis 1; 2;....; n. Permutatsioon on teatava hulga kõikidest elementidest moodustatud ning konk

Lineaaralgebra
thumbnail
104
pdf

Konspekt

I. Determinandid 1 Determinandi m~ oiste 1.1 Idee selgitus Algul defineerime esimest j¨ arku determinandi, siis esimest j¨arku determinandi abil teist j¨ arku determinandi, seej¨arel teist j¨arku determinandi abil kolmandat j¨ arku detereminandi jne, n-j¨arku determinandi defineerime (n - 1)-j¨arku determinandi kaudu. Sel- list defineerimisviisi nimetatakse induktiivseks ja vastavat objekti induktiivseks konstruktsiooniks. Eelnevalt on soovitatav tutvuda maatriksi m~oistega (II.1.1). Kooloniga v~ordus A := B t¨ahendab j¨argnevas, et A on defineeri- tud B kaudu. Seda v~ordust kasutame ka samav¨ a¨arsete t¨ ahistuste sissetoomiseks. 1.2 Esimest j¨ arku determinant Arvu a R determinandi |a| ehk esimest j¨ arku determinandi de- fineerime valemiga |a| := det a := a. 1.3 N¨ aide | - 5| = -5

Lineaaralgebra
thumbnail
19
doc

Õppematerjal

1 VEKTORALGEBRA PÕHIMÕISTEID DEFINITSIOON. Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e Vektoreid, mille arvväärtus (pikkus) on null, nimetatakse nullvektoriteks. Kasutatakse tähistust 0. Nullvektori siht ja suund on määramata. VEKTORITE VASTASTIKUSED SEOSED: Vektorid a ja b on võrdsed (a

Kõrgem matemaatika
thumbnail
19
doc

VEKTORALGEBRA PÕHIMÕISTEID

1 VEKTORALGEBRA PÕHIMÕISTEID DEFINITSIOON. Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e Vektoreid, mille arvväärtus (pikkus) on null, nimetatakse nullvektoriteks. Kasutatakse tähistust 0. Nullvektori siht ja suund on määramata. VEKTORITE VASTASTIKUSED SEOSED: Vektorid a ja b on võrdsed (a

Kõrgem matemaatika
thumbnail
78
pdf

Majandusmatemaatika

MAJANDUSMATEMAATIKA I Ako Sauga Tallinn 2003 SISUKORD 1. MUDELID MAJANDUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Mudeli mõiste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Matemaatiliste mudelite liigitus ja elemendid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Matemaatilise mudeli struktuur ja sisu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. FUNKTSIOONID JA NENDE ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Arvud ja nende hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Funktsionaalne sõltuvus . . . . . . . . . .

Raamatupidamise alused




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun