Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Kodutöö S-2 variant 16 - sarnased materjalid

pcos, sin45, kinemaatika
thumbnail
4
doc

Jäiga keha toereaktsioonide leidmine tasapinnalise süsteemi korral

Tallinna Tehnikaülikool Mehhatroonikainstituut trollolloo Kodutöö S-2 Variant nr 11 Jäiga keha toereaktsioonide leidmine tasapinnalise jõusüsteemi korral Tallinn 2011 Variant 11. 1) Lisan x,y teljestiku, avaldan Q . Q= l*lq Q= 0,5*4=2kN Y X I 1) Leian X'i projektsioonide võrrandi. Et on 45 kraadi ning on täisnurk, eeldan, et kui jõule P joonistada täisnurkne kolmnurk nii, et P on hüpotenuusiks tekib nurk : 2, mis on 45 kraadi, sest ka nurk on 45 kraadi. Xa+ P*sin /2=0 2) Leian Y'i projektsioonide võrrandi. Ya-Q-P*cos /2=0 3) Leian momentide võrrandi punkti A suhtes. Sealjuures eeldan, et kuna kolmnurk CBD on täisnurkne ning ülejäänud kaks nurka on omavahel võrdsed on kolmnurk ka võrdhaarne, st CD=BD.

Staatika kinemaatika
116 allalaadimist
thumbnail
3
doc

Jäiga keha toereaktsioonide leidmine ruumilise jõusüsteemi korral

Tallinna Tehnikaülikool Mehhatroonikainstituut jeje Kodutöö S-13 Jäiga keha toereaktsioonide leidmine ruumilise jõusüsteemi korral Tallinn 2011 Variant 11. Horisontaalne kolmnurgakujuline plaat ABD kaaluga 240 N on kinnitatud sfäärilise liigendiga A, silindrilise liigendiga B ja jäiga kerge vardaga KE. Punkti D on rakendatud sihis DB mõjuv jõud F, mille moodul on 150 N. Leida sidemete reaktsioonid punktides A, B ja E, kui AL = LB = l , AD = DB = 2l , KL = l 2 , AE = ED. Sirge KL on vertikaalne. Nurk = 26,565° 1)Märgin jõud ja teljestikud joonisele. Kuna kolmnurksel plaadil on kaal, siis leian raskuskeskme. Tegemist on võrdkülgse kolmnurgaga, seetõttu on raskuskese mediaanide lõikepunktis. Sxy=S* cos () nurk AE-Sx= 90°- 60°=30° nurk Sxy ja Sy vahel on 90°-30°=60° Projektsioonid telgedele Fx =0 Xa-Sx-Fx=0 Fy =0 Ya+Yb-Sy-Fy=0 Fz =0 Za+Zb-G+Sz=0 Mx=Sz*l*cos30-240*0,5774l=0

Staatika kinemaatika
123 allalaadimist
thumbnail
3
doc

Jäiga keha toereaktsioonide leidmine ruumilise jõusüsteemi korral

Tallinna Tehnikaülikool Mehhatroonikainstituut Kodutöö S-13 Jäiga keha toereaktsioonide leidmine ruumilise jõusüsteemi korral Tallinn 2011 Variant 11. Horisontaalne kolmnurgakujuline plaat ABD kaaluga 240 N on kinnitatud sfäärilise liigendiga A, silindrilise liigendiga B ja jäiga kerge vardaga KE. Punkti D on rakendatud sihis DB mõjuv jõud F, mille moodul on 150 N. Leida sidemete reaktsioonid punktides A, B ja E, kui AL = LB = l , AD = DB = 2l , KL = l 2 , AE = ED. Sirge KL on vertikaalne. Nurk = 26,565° 1) . , . . , . Sxy=S* cos () AE-Sx= 90°-60°=30° Sxy Sy 90°- 30°=60° Fx =0 Xa-Sx-Fx=0 Fy =0 Ya+Yb-Sy-Fy=0 Fz =0 Za+Zb-G+Sz=0 Mx=Sz*l*cos30-240*0,5774l=0 My=2Zb+S*sin -G=0 Mz=Sy*l*sin30+Sx*l*cos30- Yb*2l+Fy*l+Fx*l*1,721= Sy*sin30+Sx*cos30- 2Yb+Fy +1,7321Fx=0 Mx=Sz*cos30-240*0,5774=0 Sz=160 Sy= S*cos *sin60= 277,1287 Sx= S*cos *cos60=160,0004 S= Sz/sin S=357,7715

Füüsika
7 allalaadimist
thumbnail
3
doc

Kodutöö S2 variant 28

Tallinna Tehnikaülikool Mehhatroonikainstituut ............ .......... ........... ............. Kodutöö S-2 Jäiga keha toereaktsioonide leidmine tasapinnalise jõusüsteemi korral Tallinn 2007 F1 X = -F sin 30° F2 X = -F cos 60° 1 KD = BD F1Y = -F cos 30° F21Y = -F sin 60° 2 Q = q l q = 2 4 = 8kN Tasakaaluvõrrandid: n 1) F i =1 iX = 0 : X A + N C - F1 sin + F2 cos = 0 n 2) F i =1 iY = 0 : YA - Q - F1 cos - F2 sin = 0 n BD 3) M i =1 A = 0 : - N C BC + Q ( 2 + AD) + F1 BE

Insenerimehaanika
189 allalaadimist
thumbnail
41
pdf

RAUDBETOONKONSTRUKTSIOONID I - PROJEKT (EER 0012)

TALLINNA TEHNIKAÜLIKOOL EHITISTE PROJEKTEERIMISE INSTITUUT Kursuseprojekt aines EER 0012 RAUDBETOONKONSTRUKTSIOONID I - PROJEKT ÜLIÕPILANE: JUHENDAJA: TÖÖ ESITATUD: TÖÖ ARVESTATUD: Tallinn, 20.. Sisukord 1 Plaadi arvutus 3 1.1 Koormused plaadile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Talade m~ o~ otude valimine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Arvutuslikud avad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Plaadi sissej~ oud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Plaadi armatuuri dimensioneerimine . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5.1 Esim

Raudbetoon
391 allalaadimist
thumbnail
3
docx

Staatika Kinemaatika kodutöö S2

Tallinna Tehnikaülikool Mehhatroonikainstituut Kodutöö S2 Variant 1 Õppejõud: Leo Teder Üliõpilane: Matrikli number: Rühm: MAHB52 Kuupäev: 18.11.2012 Tallinn 2012 Lahendus Jõudude skeem: Q = q lq = 2kN Tasakaaluvõrrandid: 1) kõikide jõudude projektsioonide summa x-teljele on võrdne nulliga n Fix = 0 i =1 , 2) kõikide jõudude projektsioonide summa y-teljele on võrdne nulliga n Fiy = 0 i =1 , 3) kõikide jõudude momentide summa suvalise punkti suhtes on võrdne nulliga. ( ) n M A Fi = 0 i =1 MA 2 X A + T cos = 0 Y A - G AB - Q + T sin = 0 Seega: X A = -4,33 kN Y A = 9,5 k

Staatika kinemaatika
131 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

ANALÜÜTILISE GEOMEETRIA VALEMID 1. Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z 1 8. Vektorite kollineaarsus a b,(

Analüütiline geomeetria
39 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

ANALÜÜTILISE GEOMEETRIA VALEMID 1. Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z 1 8. Vektorite kollineaarsus a b,(

Analüütiline geomeetria
140 allalaadimist
thumbnail
118
doc

TEOREETILINE MEHAANIKA

III) Loenguid ja harjutusi dünaamikast, IV) Loenguid ja harjutusi analüütilisest mehaanikast. Nendest II ja III osa on internetis juba ilmunud, II osa 2008. aastal, III osa 2004. aastal. I osa valmis 2011. aastal. Õpik on mõeldud eeskätt TTÜ üliõpilastele, aga seda võivad edukalt kasutada ka teiste kõrgkoolide ning kolledžite üliõpilased, kus õpitakse teoreetilist mehaanikat. TTÜ-s õpetatakse praegu teoreetilist mehaanikat kahes osas: 1) Staatika ja Kinemaatika kursus; 2) Dünaamika kursus. Analüütiline mehaanika bakalaureuse programmi ei kuulu, seda õpitakse lühidalt magistratuuri ja doktorantuuri erikursuses. Lehekülje häälestus: paber A4, veerised: ülal 25 mm, all 22 mm, vasakul 24 mm, paremal 20 mm. Autoriõigus J. Kirs 2010-2011 J. Kirs Loenguid ja harjutusi staatikast 3 Sissejuhatus Teoreetiline mehaanika on üks osa mehaanikast

Füüsika
76 allalaadimist
thumbnail
13
doc

Bishofi ja morgensterni meetod

= c + tan. Etteantud nõlva kaldenurk on . (joonis 9.4). Lihkepinna kaldenurga peab määrama nõlva kõrguse miinimumitingimusest. Kuna d1 = Hcot ja d2 = Hcot, siis libiseva pinnasemassi kaal on P = 0,5H2 (cot - cot) ehk teisel kujul 3 1 sin ( - ) P = H 2 2 sin sin Kuna N = Pcos ja T = Psin ning lihkepinna pikkus on H/sina, siis saame avaldada nihke- ja normaalpinged lihkepinnal = Tsin/H = Psin2 /H ; = Nsin/H = Psincos/H Asetades need suurused tugevustingimusse, saame 1 sin ( - )( sin - cos tan ) c = H (9.5) 2 sin Võttes tuletise dc/d ja võrrutades selle nulliga, saame lihkepinna kaldenurga

Mäedisain
15 allalaadimist
thumbnail
24
docx

Väntmehhanismi kinemaatiline analüüs

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT MHD0030 MASINAMEHAANIKA KODUTÖÖ NR. 2 Väntmehhanismi kinemaatiline analüüs ÜLIÕPILANE: KOOD: Töö esitatud: 18.03.2014 Arvestatud: Parandada: TALLINN 2015 Lähteandmed Mehhanismi vänt OA pöörleb konstantse nurkkiirusega OA 2,4 rad/s. Pikkused: OA 40 cm, AB 110 cm, AC = 45 cm (punkt C – kepsu massikese). Leida: - Mehhanismi vabadusaste; - Punkti A koordinaadid funktsioonina pöördenurgast ; - Punkti B koordinaat xB funktsioonina pöördenurgast ; - Punkti C koordinaadid funktsioonina pöördenurgast ; - Punkti A kiirus ja kiirendus; - Punkti B kiirus funktsioonina pöördenurgast ; - Arvutada kõik ülal nimetatud suurused hetkel, kus  = 130. Punkti B kiirus leida anal

Masinamehaanika
95 allalaadimist
thumbnail
40
pptx

Loeng 6 Kehade süsteemi tasakaal-Hõõre

LOENGUKURSUS UTT0080 INSENERIMEHAANIKA UTT0090 INSENERIFÜÜSIKA 6. LOENG KEHADE SÜSTEEMI TASAKAAL. HÕÕRE. KINEMAATIKA 6.3 JÕUSÜSTEEMI TASAKAAL Varem oleme näidanud, et jõusüsteem on ekvivalentne tema peavektoriga ja peamomendiga. Süsteemi tasakaaluks on tarvilik ja piisav, et need võrduksid nulliga: FO = 0; MO =0. Toodud avaldised esitavad süsteemi tasakaalutingimusi vektorkujul. TASAKAALUTINGIMUSED Descartes’i koordinaatides omavad nii peavektor kui ka peamoment kolm komponenti, mis annab kokku kuus tasakaalutingimust. Skalaarkujul tasakaalutingimused

Füüsika
11 allalaadimist
thumbnail
12
pdf

Tala tugevusanalüüs

Kodutöö nr ​3​ õppeaines TUGEVUSÕPETUS ​(MES0420) Variant Töö nimetus A B Tala tugevusanalüüs 2 3 Üliõpilane Üliõpilaskood Esitamise kuupäev Õppejõud Uku Luhari 202132 15.11.2020 Priit Põdra Konsooliga talaks tuleb kasutada kuumvaltsitud INP-profiiliga ühtlast varrast, mis on valmistatud terasest S235. Tala on koormatud aktiivse punkt- ja joonkoormusega. Tala joonmõõtmed on antud seostega: b​ = ​a/​ 2. Punktkoormuse väärtus on ​ F​ = 10 kN ja ühtlase joonkoormuse intensiivsus tuleb avaldisest p​ = ​F/​ ​b​. Varuteguri nõutav väärtus on [​ S​]

Tugevusõpetus
22 allalaadimist
thumbnail
19
doc

Nimetu

1 ÜHE MUUTUJA FUNKTSIOON. TEMA MÄÄRAMISPIIRKOND DEFINITSIOON 1. Kui muutuja x igale väärtusele hulgast X on mingi eeskirja f abil vastavusse seatud lõplik reaalarv y, siis öeldakse, et hulgal X on määratud FUNKTSIOON ja seda tähistatakse y = f(x). DEFINITSIOON 2. Muutuja x väärtuste hulka, mille puhul f(x) väärtus on lõplik, nimetatakse funktsiooni y = f(x) MÄÄRAMISPIIRKONNAKS. X = { x R; f(x) väärtus on lõplik}. PÕHILISED ELEMENTAARFUNKTSIOONID: 1. Astmefunktsioonid: y = x , Q; 2. Eksponentfunktsioonid: y = ax, a > 0, a 1; 3. Logaritmfunktsioonid: y = loga x, a > 0, a 1; 4. Trigonomeetrilised funktsioonid: y = sin x, y = cos x, y = tan x, y = cot x; 5. Arkusfunktsioonid: y = arcsin x, y = arccos x, y = arctan x, y = arccot x. 2 LIITFUNKTSIOON DEFINITSIOON 1. Funktsiooni, mille argumendiks ei ole sõltumatu muutuja, vaid tema mingi fu

177 allalaadimist
thumbnail
9
doc

Eksamiküsimuste(staatika) vastused

summad igal kolmel koordinaatteljel võrduks nulliga. Fx = 0, Fy = 0, Fz = 0 32.Mida nimetatakse jõu projektsiooniks teljel? Kas see on skalaarne või vektoriaalne suurus? Millal on see null? Jõu projektsioon teljel ­ on skalaarne suurus, mis on võrdne jõu alguse ja lõpu projektsioonide vahelise lõigu pikkusega, võetuna vastava märgiga. Fx = Fcos Px = -Pcos = Pcos 33.Mida nimetatakse jõu projektsiooniks tasapinnal? Kas see on skalaarne või vektoriaalne suurus? Millal on see null? Jõu projektsioon tasapinnal ­ on vektoriaalne suurus, mis jääb vektorite alguse ja lõpu projektsioonide vahele sellel tasapinnal . See on võrdne nulliga kui jõud on tasapinnaga risti. 34.Millega võrdub summavektori projektsioon mingil teljel? Summavektori projektsioon mingil teljel võrdub - liidetavate vektorite samal teljel võetud

Insenerimehaanika
118 allalaadimist
thumbnail
32
pdf

Kujutava geomeetria põhivara

Eesti Põllumajandusülikool Maaehituse instituut INSENERIGRAAFIKA Ainekursus MIT-7.307 Kujutava geomeetria põhivara Koostanud Harri Lille Keeletoimetaja Karin Rummo Tartu 2003 Sissejuhatus Kujutav geomeetria on see geomeetria eriharu, milles pitakse tasandil (joonisel) ruumiliste ülesannete lahendamise meetodeid ning positsiooni-, mte- ja konstruktiivsete ülesannete lahendamise vtteid. Positsiooniülesanneteks nimetatakse geomeetriliste kujundite vastastikuse kuuluvuse ja likumise määramist. Mteülesanded on geomeetriliste kujundite kauguste ja nende telise suuruse leidmine. Konstruktiivsete ülesannete sisuks on etteantud tingimustele vastavate geomeetriliste kujundite (nende kujutised joonisel) loomine. Kasutatud on järgmisi tähiseid: A,B,C,....; 1,2,3,... - ruumipunktid; a,b,c,.... - jooned; ,,,....,,,.... - nurgad;

Kujutav geomeetria
444 allalaadimist
thumbnail
8
docx

Staatika ja kinemaatika

Tallinna Tehnikaülikool Mehaanikateaduskond Mehhatroonikainstituut Staatika ja kinemaatika Kodutöö nr. 1 Variant nr. 1(5) Üliõpilane: Ül.kood: Rühm: Kuupäev: 30.09.14 Õppejõud: Leo Teder 2014 F x =F cos 60 °=1500 0,5=750 N F y =F sin60=1500 0.866=1299,01 N Q=q BC=4000 0,4=1600 N F x =0 X A-Q-F x =0 F y =0Y A -F y + N D =0 3 BD M A =0N D BD -M -Q AB -F x AB-F y =0 4 2

Matemaatika
54 allalaadimist
thumbnail
52
doc

D’Alembert’i printsiip

Tallinna Tehnikaülikool Mehhatroonikainstituut Jüri Kirs, Kalju Kenk Kodutöö D-2 D'Alembert'i printsiip Tallinn 2007 Kodutöö D-2 D'Alembert'i printsiip Leida mehaanikalise süsteemi sidemereaktsioonid kasutades d'Alembert'i printsiipi ja kinetostaatika meetodit. Kõik vajalikud arvulised andmed on toodud vastava variandi juures. Seda, millised sidemereaktsioonid süsteemi antud asendis tuleb leida, on samuti täpsustatud iga variandi juures. Variantide järel on lahendatud ka rida näiteülesandeid koos põhjalike seletustega. Näiteülesandeid d'Alembert'i printsiibi kohta võib lugeda ka E. Topnik' u õpikus ,,Insenerimehaanika ülesannetest IV. Analüütiline mehaanika", Tallinn 1999, näited 14-17, leheküljed 39-49. Kõikides variantides xy-tasapind on horisontaalne, xz- ja yz-tasapinnad aga on vertikaalsed. Andmetes toodud suurused 0 ja 0 on vastavalt pöördenurga ja

Dünaamika
71 allalaadimist
thumbnail
9
docx

Insenerimehaanika eksami küsimuste vastused

1. Teoreetilise mehaanika aine. Teoreetilise mehaanika osad (staatika, kinemaatika, dünaamika, analüütiline mehaanika). Insenerimehaanika. *Mehaanika on teadus reaalsete objektide liikumisest. * Teoreetiline mehaanika on mehaanika osa, mis uurib absoluutselt jäikade kehade paigalseisu ja liikumist nendele kehale rakendatud jõudude mõjul. Absoluutselt jäigaks kehaks nimetame keha, mille kahe mistahes punkti vaheline kaugus on jääv sõltumatult kehale toimivatest välismõjutustest (jõududest). *Seega: absoluutselt jäigas kehas ei toimu iialgi mitte

Insenerimehaanika
123 allalaadimist
thumbnail
5
doc

Eksami abimees

Eesti oludes, kus pinnasevesi on sageli maapinna lähedal, on see probleem suurem peenteristel ja tolmliivadel. Kapillaarjõud on põhjuseks, miks niiske liiv ja hulgast, ka vedeliku viskoossusest. Filtratsioonimooduli suurus sõltub palju ka väga oluline. halvasti tiheneb võrreldes kuivaga. Kapillaarjõududest tingitud teradevahelised pinnaseosakeste mõõtmetest, pinnase poorsus ja vee temp. V ei ole võrdne Sissejuhatus - Geotehnika - ehitustehnika haru, mis tegeleb pinnasega sidemed kaovad niipea kui pinnas küllastub veega (sademed, pinnasevee tegeliku vee liikumise kiirusega pinnases. Kuna tegelik voolamine toimub läbi seotud ehitiste või nende üksikosade projekteerimise ja ehitamisega, see taseme tõus). Pinnaseosakesed võivad olla liidetud looduslike tsementidega, pooride, siis tegelik voolukiirus on: vp=v(1+e)/e. Pinnase vee

Pinnasemehaanika, geotehnika
425 allalaadimist
thumbnail
18
doc

Geodeesia Eksamiabimees

Eksamiabimees 1.Geodeetiline otseülesanne. Geodeetiliseks otseülesandeks on ülesanne, kus on antud punkti A koordinaadid (xA, yA), kaldenurk punktilt A punkti B (AB) ning kahe punkti vaheline kaugus dAB. Antud: xA, yA, AB, dAB X yAB B Leida: xB, yB ? XB xB =xA+ xAB AB yB =yA+ yAB x,y- koordinaatide juurdekasvud, "+" vôi "-". dAB xAB Tuleb arvestada millise veerandi nurgaga on tegemist. XA A xAB = dAB *cosAB yAB = dAB *sinAB xB =xAB + xA 0 YA YB Y yB =yAB + yA 2.Geodeetiline vastuülesanne. Antud on 2 punkti koordinaadid (xA,yA,xB,yB) IV veerand I veerand ja leida tuleb nurk (AB) ja punktidevaheline kaugus dAB. x + x + Antud: xA, yA, xB, yB y - y + (0...90) Leida: AB, d

Geodeesia
744 allalaadimist
thumbnail
7
doc

Teoreetiline mehhaanika

Teoreetiline mehaanika Eksam: 3 teoreetilist küsimust ja 2 lahendus ül. 1. Loeng Teoreetiline mehaanika uurib kehade liikumist. Absoluutselt jäik keha on keha, mille kahe mistahes punktivaheline kaugus on jääv sõltumata kehale mõjuvatest jõududest. Teoreetiline mehaanika jaguneb: · Staatika- uurib kehade tasakaalu tingimus ja neile mõjuvate jõudude süsteeme · Kinemaatika- vaatab mehaanilist liikumisi geomeetria seisukohalt · Dünaamika- uurib kehade liikumisi kui seda põhjustavaid jõude Mehaanika uurimisel kirjeldas Newton integraal ja diferentsiaal arvutust. Kujunes välja 2 uurimismeetodit: geomeetriline ja analüütiline Masspunkt- on keha geomeetriline punkt, kuhu on koondunud ta mass ja mis asub keha raskuskeskmes. Absoluutselt sile keha välistab igasuguse hõõrde. Kasutatakse aksiomaatilisi meetodeid (väited mis ei vaja tõestust) VEKTORID: Skalaarid -suurused mis on määratud täielikult oma mõõtarvuga on

Teoreetiline mehaanika
556 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsio

Matemaatika
42 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsioonid. . . . . . . . .

Matemaatiline analüüs
47 allalaadimist
thumbnail
3
doc

Kodutöö D-2

Tallinna Tehnikaülikool Mehhatroonikainstituut Kodutöö D-2 D'Alembert'i printsiip Variant 19 Õppejõud: Jüri Kirs Üliõpilane: Matrikli number: Rühm: Kuupäev: 02.12.09 Tallinn 2009 1. Ülesande püstitus Leida sidemete A ja B reaktsioonikomponendid ja jõud vedrus. z B E O y m = 40 kg A 60° l = 60 cm O

Insenerimehaanika
69 allalaadimist
thumbnail
571
doc

Mikolaj Kopernik

#;h_èMZ-C}#v#R^#&#*;Y9`0#? #SVrM6+#1nM#Z3j1##Kv? #P^###ocQEz0#qq#z4?Um? #a#z##[#[##J%#J@ ##GI_- k#G Z t%d #S##jRc#mg# 3#m#|s<|#ATW#:6c *[` # [X #<#Q##> 4mT~*i6#- - ,u#U#Ayrmb#44lq#x#ZQml#d##{ :uZG3r?S#T0l-c#n U%y#%]90# zw[*wV1Q####n##c4$r##Xy.APio*E## #s I#wN#x>j=5Yr5O#^4 ;#}#Mahi%[8,GR- _6mx-U#y#y!d3h&?u.-,'#'- `8Vvoq#}3Km4h2O6Nv<- 9/w+FkF"+! R2#R#dOuc#Gi9[#s# #V#MQB#]#S##O7u#wnV 8'#:#m($#:| Q?}su[## P~<#g7#kAj#Kj^/#$U#JR X$Kx ? p#~4+7(} QY#V U?y# Y#p? AYHv.QMt_##Y<$14 g[J#/3Q- z"#? [#!6~T##in#9 #Oj+X0_UN~##*]7)@? ###?K}B#5S aEF#@#{ ## FsTyc[ T `8=O5ny#N##&t&####M# L~DZC2I#M%Vw#fo##aM,`+##i- m##=8 o@,n1e#o3X- ~, $n)#n##)PN^v@nNO8'5Z+##nDw b#vy$|^.TM;#Li N#o##'? o.##N

Füüsika
55 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

1. Funktsioon: Funktsiooni mõiste. Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Funktsioone tähistatakse tavaliselt tähtedega f; g; u; v; ; jne. Olgu antud funktsioon f mille argumendiks on x ja s~oltuvaks muutujaks y. Muutuja y väärtust milleks funktsioon f kujutab argumendi x nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega, me võime kirjutada seose y = f(x) ; (1.1) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Mõnikord kasutatakse funktsiooni ja sõltuva muutuja tähistamiseks ühte ja sama sümbolit. Sellisel juhul seos (1.1) omab kuju y = y(x). Argumendi x muutumispiir

Matemaatiline analüüs
598 allalaadimist
thumbnail
11
docx

Mehaanika eksam

Kui jõusüsteemiga on ekvivalentne üksainus jõud, siis seda jõudu nimetatakse süsteemi resultandiks. 1. Tasakaaluaksioom. Kaks absoluutselt jäigale kehale rakendatud jõudu on tasakaalus siis ja ainult siis, kui nad on samal sirgel ja võrdvastupidised 2. Superpositsiooniaksioom. Tasakaalus olevate jõusüsteemide lisamine või eemaldamine ei mõjuta jäiga keha tasakaalu või liikumist. Järeldus: jäiga keha tasakaal ei muutu, kui kanda jõu rakenduspunkt piki mõjusirget üle keha mistahes teise punkti. 3. Jõurööpküliku aksioom. . Kui keha mingis punktis on rakendatud kaks jõudu, siis neid saab keha seisundit muutmata asendada resultandiga, mis võrdub nende geomeetrilise summaga. Aksioom kehtib ka deformeeruva keha juhul. 4. Mõju ja vastumõju aksioom (Newtoni III seadus ). Kaks keha mõjutavad teineteist võrdvastupidiste jõududega, millel on ühine mõjusirge. 5. Jäigastamise aksioom. . Deformeeruva keha tasakaal ei muutu, kui lugeda

Füüsika ii
76 allalaadimist
thumbnail
8
doc

Kordamisküsimused: Staatika ja Kinemaatika

Kordamisküsimused Staatika + Kinemaatika · Mida nimetatakse jõuks? Jõud on vektoriaalne suurus, mis väljendab ühe materiaalse keha mehaanikalist toimet teisele kehale ja mille tulemuseks on kas kehade liikumise muutus või keha osakeste vastastikuse asendi muutus (deformatsioon) · Mis on jõu mõjusirge? Sirget, mida mööda jõud mõjub nimetatakse jõu mõjusirgeks. Jõu mõjusirge saadakse kui pikendatakse jõuvektorit mõlemas suunas. · Mida nimetatakse absoluutselt jäigaks kehaks?

Staatika kinemaatika
281 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

MATEMAATILINE ANALÜÜS I § 1 REAALARVUD JA FUNKTSIOONID 1. Reaalarvu mõiste Tähistame sümboliga N kõigi naturaalarvude hulga, st N = {1, 2, 3,...} ja sümboliga Z kõigi täisarvude hulga, st Z = {...,­3,­2,­1, 0, 1, 2, 3,...}. p Ratsionaalarvudeks nimetatakse arve kujul q , kus p ja q on täisarvud, q 0. Kõigi ratsionaalarvude hulga tähistame sümboliga Q. Ratsionaalarvudeks on parajasti need arvud, mis on esitatavad lõplike või lõpmatute perioodiliste kümnendmurdudena. Arve, mis on esitatavad lõpmatute mitteperioodiliste kümnendmurdudena, nimetatakse irratsionaalarvudeks. Kõik ratsionaalarvud ja irratsionaalarvud moodustavad reaalarvude hulga. Kõigi reaalarvude hulga tähistame sümboliga R. Iga lõplikku kümnendmurdu a= , 12 ...n saab esitada lõpmatu kümnendmurruna kahel viisil: a = , 12 ...n 00... või a = , 12 ...(n -1)99.

Matemaatiline analüüs i
687 allalaadimist
thumbnail
13
pdf

Majandusmatemaatika IIE eksami kordamisküsimused

Majandusmatemaatika TEM0222 konspekt 1. Gaussi meetod e. elimineerimise meetod täpselt määratud süsteemi korral (võrrandite arv=tundmatute arv): maatriksis jäätakse kõik peadiagonaali elemendid 1ks, kõik ülejäänud elemendid muudetakse 0ks. Selleks valitakse igast reast ja veerust ühe korra juhtelement. Ühest reast või veerust mitu korda juhtelementi valida ei saa. Juhtelemendi rida lahutatakse või liidetakse teistele ridadele, et ülejäänud ridadest saada samasse veergu kus juhtelemend asub nullid. N: -1 2 1 1 ! 7 1 3 -1 1 ! 4 1 8 1 1 ! 13 11 11!6 Mittestabiilse süsteemi korral: Kasutusele tuleb Crameri valem. X1=x1(maatriks)/kogumaatriks Crameri valemit ei kasuta ükski arvutiprogramm, sest see võib anda väga suure vea. Gaussi meetodis saab arvutusvigade vähendamiseks valida juhtelemendiks maksimaalse absoluutväärtusega arvu (antud veerus kui ka kogu süsteemis). Gaussi meetodiga saab leida ka pöördmaatriksit. Pöördmaatr

Majandusmatemaatika
623 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
34
pdf

Kujutava geomeetria vihik

I *, |8 Vi Li t4ihtLLf l allinna TehnikaUlikool Insenerigraafikakeskus KUJUAVAGoMEERIA ULDKURSUS HARJUUsUlEsANDED j .//,,7 .h rkfd/*/ UfiaganeVi{l; iqi joy ppertihmt- l3 Tallinn l l ,t o

Kujutav geomeetria
628 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun