Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Hulkliikmega ülesanne teguri toomisega sulgudest välja - sarnased materjalid

tegurda
thumbnail
6
pdf

Matemaatilised meetodid loodusteadustes.

Matemaatilised meetodid loodusteadustes. II kontrollt¨ o¨o, I variant 1. Leida j¨argmised piirv¨a¨artused (3p): 9 + x2 -2x4 - 3x3 + 1 2x lim , lim , lim x-3 (x + 3)2 x- x3 - 3x4 x x - ex Lahendus. 9 + x2 limx-3 (9 + x2 ) 18 1) lim = = = +, x-3 (x + 3)2 limx-3 (x + 3)2 +0 -2x4 - 3x3 + 1 x4 -2 - x3 + x14 -2 + 0 + 0 2 2) lim 3 4 = lim 4 2 = = x- x - 3x x- x x -3 0-3 3 2x limx (( 2x)

Looduskaitsebioloogia
50 allalaadimist
thumbnail
2
pdf

Hulkliikmete tegurdamine

Hulkliikme tegurdamine 1) ühisteguri sulgude ette toomine 8y2 ­ 4y = 4y (2y ­ 1) 2 5 4 18u v ­ 27uv = 9uv4 (2uv ­ 3) ­x2 ­ 2x = ­x (x + 2) 2) valemite abil a2 ­ b2 = (a + b) (a ­ b) a2 ± 2ab + b2 = (a ± b)2 a3 ± b3 = (a ± b) (a2 ab + b2) 4a2 ­ 9b2 = (2a + 3b) (2a ­ 3b) 4m2 ­ 20mn + 25n2 = (2m ­ 5n)2 27x3 + 8 = (3x + 2) (9x2 ­ 6x + 4) 3) rühmitamisvõte ay + az + by + bz = a (y + z) + b (y + z) = = (y + z) (a + b) x3 ­3x2 ­ 3x + 9 = x2 (x ­ 3) ­ 3 (x ­ 3) = = (x ­ 3) (x2 ­ 3) 4) erinevate võtete kombineerimine NB! Kõigepealt toome võimaluse korral ühisteguri sulgude ette, seejärel vaatame, kas saab tegurdada veel mõne teise võttega. 5x2 + 10x + 5 = 5 (x2 + 2x + 1) = = 5 (x + 1)2 m3n ­ mn3 = mn (m2 ­ n2) = = mn (m + n) (m ­ n)

Matemaatika
280 allalaadimist
thumbnail
6
docx

Ruutvõrratused

2.4 RUUTVÕRRATUS Ühe muutujaga ruutvõrratuse üldkuju on ax2 + bx + c > 0, kus a 0. Märgi > asemel võib võrratuses olla ka üks märkidest <, , . Ruutvõrratuse lahendamiseks 1) lahendame ruutvõrrandi ax2 + bx + c = 0; 2) skitseerime parabooli y = ax2 + bx + c; 3) leiame jooniselt, kus funktsiooni väärtused positiivsed, kus negatiivsed. Ruutfunktsiooni y = ax2 + bx + c graafik on parabool. Kui a > 0, siis avaneb parabool ülespoole. Kui a < 0, siis avaneb parabool allapoole. Kui lahendame ruutvõrrandi ax2 + bx + c = 0, siis on kolm erinevat võimalust: A) Diskriminant D = b2 ­ 4ac > 0. Parabool lõikab sel juhul x ­ telge kahes erinevas punktis. ax2 + bx + c > 0 L = (­ ;x1) (x2; ) ax2 + bx + c >0 L = (x1; x2) 1 B) Kui diskriminant D = 0, siis on ruutvõrrandil kaks võrdset reaalarvulist lahendid ning parabool puudutab x ­

Matemaatika
90 allalaadimist
thumbnail
63
doc

Põhikooli matemaatika kordamine

3. Leia lineaarliikme kordaja b väärtus, kui ruutfunktsiooni y = ­ 3x 2 ­ bx + 4 graafik läbib punkti A(­ 2; 2). Lahendus: Siin tuleb muutujate x ja y asemel panna vastavad väärtused ehk x = ­2 ja y = 2. Saame 2 = ­ 3 . (­2)2 ­ b . (­2) + 4; 2 = ­12 + 2b + 4; 2b = 10; b = 5. Vastus: b = 5 Ratsionaalavaldised ja murdvõrrandid Ruutkolmliikme tegurdamine 1. Tegurda ruutkolmliige x2 ­ x ­ 30. Lahendus: Kõigepealt leiame antud ruutkolmliikme nullkohad. Selleks lahendame ruutvõrrandi x2 ­ x ­ 30 = 0. Siis saame: x 2 x 30 0; x 0,5 0,5 2 30 ; x 0,5 30,25 ; x 0,5 5,5; x 1 0,5 5,5 6; x 2 0,5 5,5 5. Võrduse ax2 + bx + c = a(x ­ x1)(x ­ x2) järgi saame tulemuseks, et x2 ­ x ­ 30 = (x ­ 6)(x + 5) 2. Tegurda ruutkolmliige 2x2 ­ 5x ­ 3. Lahendus:

Matemaatika
91 allalaadimist
thumbnail
3
doc

Ruutvõrrand

1.5 RUUTVÕRRAND Ruutvõrrandiks nimetatakse võrrandit kujul ax2 + bx + c = 0, kus a 0. Kordajad a, b ja c on reaalarvud ning x tundmatu (otsitav). Ruutvõrrand on teise astme algebraline võrrand. Ruutvõrrandi liikmeid nimetatakse järgmiselt: ax2 ­ ruutliige, kus a on ruutliikme kordaja; bx ­ lineaarliige, kus b on lineaarliikme kordaja; c ­ vabaliige. Ruutvõrrandi lahendivalem on - b ± b 2 - 4ac x= () 2a Avaldist D = b2 ­ 4ac nimetatakse ruutvõrrandi diskriminandiks. · Kui D > 0, siis ruutvõrrandil on 2 erinevat lahendit. · Kui D = 0, siis on ruutvõrrandil 2 võrdset lahendit. · Kui D < 0, siis ruutvõrrandil reaalarvulised lahendid puuduvad. Kui ruutliikme kordaja on negatiivne arv, siis enne võrrandi lahendamist korrutame mõlemaid pooli arvuga (­1) ja saame ruutliikme kordajaks positiivse arvu. Ruutvõrrandi lahendite õigsust tuleb kontrollida, asendades lahendid algvõrrandis. Tekstülesande korral peab lahend sobima ka üles

Matemaatika
168 allalaadimist
thumbnail
6
doc

Ruutvõrrandid

Ruutvõrrandid. Ruutvõrrandid esituvad kujul ax2 + bx + c = 0. Ruutvõrrandid jagunevad taandamata ja taandatud ruutvõrranditeks: Taandamata ruutvõrrand Taandatud ruutvõrrand ax2 + bx + c = 0 x2 + px + q = 0 - b ± b 2 - 4ac 2 x1;2 = p p 2a x1;2 = - ± - - q 2 2 Kui ruutvõrrandis ax2 + bx + c = 0 kas b = 0 või c = 0, siis on tegemist mittetäieliku ruutvõrrandiga. Selliseid võrrandeid viisakas inimene ei lahenda eespool toodud lahendivalemiga, sest neid saab lihtsamalt lahendada. Näide 1. Lahendame võrrandid 1) 3x2 + 6x = 0, 2) 0,5x2 ­ 23 = 0, 3) ­3x2 = 0. 1) Võrrandi 3x2 + 6x = 0 lahendamisel toome x sulgude ette, siis saame x(3x + 6) = 0. Kahe arvu korrutis on

Matemaatika
29 allalaadimist
thumbnail
11
pdf

Üks-ja hulkliikmed

Üks- ja hulkliikmed © T. Lepikult, 2010 Matemaatiline avaldis Matemaatiliseks ehk analüütiliseks avaldiseks nimetatakse eeskirja, mis määrab teatava skalaarse suuruse (ehk avaldise väärtuse) leidmiseks konstantide ja muutujatega sooritatavad tehted ning nende sooritamise järjekorra. Näited 1) 2 52 on matemaatiline avaldis, mille väärtus on 27. 2) r2 on matemaatiline avaldis, mille väärtuse leidmiseks tuleb esmalt leida muutuja r väärtuse ruut ja seejärel korrutada tulemust arvuga = 3,14... 3) log( 5 x 2 sin x) - selle matemaatilise avaldise väärtuse leidmiseks tuleb 1) leida siinus nurgast, mille suurus radiaanides on x; 2) leida muutuja x väärtuse ruut ja korrutada see viiega jne. 4) 32 - lihtsaimaks matemaatiliseks avaldiseks on konstant (arv). algusesse eelmine sl

Matemaatika
20 allalaadimist
thumbnail
17
docx

VÕRRANDID (mõisted)

VÕRRANDID Võrrand on muutujaid sisaldav võrdus, milles üks või mitu muutujat loetakse tundmatuks (otsitavaks). Tundmatu väärtust, mille korral võrrand osutub samasuseks (tõeseks arvvõrduseks), nimetatakse võrrandi lahendiks. Võrrandil võib olla üks või mitu lahendit, kuid neid võib olla ka lõpmata palju või mitte ühtegi. Lahendada võrrand tähendab leida tundmatu kõik need väärtused, mis rahuldavad võrrandit (st tundmatu asendamisel lahendiga muutub võrrand samasuseks). Võrrandi lahendamisel püütakse võrrandit teisendada nii, et iga uus võrrand oleks eelmisega samaväärne. Lubatud teisendused (võrrandi põhiomadused) on järgmised: 1) võrrandi pooli võib vahetada; 2) võrrandi mõlemale poolele võib liita või mõlemast poolest lahutada ühe ja sama arvu või muutujat sisaldava avaldise (mis omab mõtet võrrandi kogu määramis- piirkonnas), see annab sisuliselt teisenduse, mida tuntakse kui võrrandi liikmete teisele poole

Matemaatika
14 allalaadimist
thumbnail
28
doc

Ruutvõrrandi abil lahenduvaid ülesandeid

379 Lihtsusta avaldis, kasutades hulkliikmete korrutamise valemeid. a) ( x 2)( x 2) x 2 4 b) (3 2 x) 2 4 x 2 12 x 9 f) ( 2u 3v) 2 4u 2 12uv 9v 2 g) (t 2)(t 2 2t 4) t 3 2 3 t 3 8 e) (2 x 3)(3 2 x) (2 x 3)(2 x 3) 4 x 2 9 i) ( y 1)( y 2 y 1) y 3 1 j) (b 1) 3 b 3 3b 2 3b 1 (1 2 x) 3 1 3 2 x 3 4 x 2 (2 x) 3 n) 1 6 x 12 x 2 8 x 3 8 x 3 12 x 2 6 x 1 380 Tegurda hulkliige (NB!kasutan abivalemeid) a) x 2 25 ( x 5)( x 5) b) x 2 10 x 25 ( x 5) 2 d) a 2 4a 4 ( a 2) 2 f) a 3 4a 4 (a 2) 2 i) 27 x 3 33 x 3 (3 x)(9 3 x x 2 ) j) x 3 6 x 2 12 x 8 ( x 2) 3 n) 27 27 x 9 x 2 x 3 (3 x) 3 382 Taanda hulkliige, selleks too ühine tegur sulgude ette. a) 3 x 2 6 x 3 3 3( x 2 2 x 1) 3( x 1) 2 b) 5a 2 10a 5 5( a 2 2a 1) 5(a 1) 2 d) x 2 10 x 25 ( x 2 10 x 25) ( x 5) 2 g) 3u 2 12u 3u (u 4)

Algebra I
13 allalaadimist
thumbnail
28
doc

Ruutvõrrandi abil lahenduvaid ülesandeid

379 Lihtsusta avaldis, kasutades hulkliikmete korrutamise valemeid. a) ( x 2)( x 2) x 2 4 b) (3 2 x) 2 4 x 2 12 x 9 f) ( 2u 3v) 2 4u 2 12uv 9v 2 g) (t 2)(t 2 2t 4) t 3 2 3 t 3 8 e) (2 x 3)(3 2 x) (2 x 3)(2 x 3) 4 x 2 9 i) ( y 1)( y 2 y 1) y 3 1 j) (b 1) 3 b 3 3b 2 3b 1 (1 2 x) 3 1 3 2 x 3 4 x 2 (2 x) 3 n) 1 6 x 12 x 2 8 x 3 8 x 3 12 x 2 6 x 1 380 Tegurda hulkliige (NB!kasutan abivalemeid) a) x 2 25 ( x 5)( x 5) b) x 2 10 x 25 ( x 5) 2 d) a 2 4a 4 ( a 2) 2 f) a 3 4a 4 (a 2) 2 i) 27 x 3 33 x 3 (3 x)(9 3 x x 2 ) j) x 3 6 x 2 12 x 8 ( x 2) 3 n) 27 27 x 9 x 2 x 3 (3 x) 3 382 Taanda hulkliige, selleks too ühine tegur sulgude ette. a) 3 x 2 6 x 3 3 3( x 2 2 x 1) 3( x 1) 2 b) 5a 2 10a 5 5( a 2 2a 1) 5(a 1) 2 d) x 2 10 x 25 ( x 2 10 x 25) ( x 5) 2 g) 3u 2 12u 3u (u 4)

Matemaatika
21 allalaadimist
thumbnail
29
doc

Ruutvõrrand

379 Lihtsusta avaldis, kasutades hulkliikmete korrutamise valemeid. a) ( x - 2)( x + 2) = x 2 - 4 b) (3 + 2 x) 2 = 4 x 2 + 12 x + 9 f) (2u - 3v) 2 = 4u 2 - 12uv + 9v 2 g) (t + 2)(t 2 - 2t + 4) = t 3 + 2 3 = t 3 + 8 e) (2 x - 3)(3 + 2 x) = (2 x + 3)(2 x - 3) = 4 x 2 - 9 i) ( y - 1)( y 2 + y + 1) = y 3 - 1 j) (b + 1) 3 = b 3 + 3b 2 + 3b + 1 (1 - 2 x) 3 = 1 - 3 × 2 x + 3 × 4 x 2 - (2 x) 3 = n) 1 - 6 x + 12 x 2 - 8 x 3 = -8 x 3 + 12 x 2 - 6 x + 1 380 Tegurda hulkliige (NB!kasutan abivalemeid) a) x 2 - 25 = ( x - 5)( x + 5) b) x 2 -10 x + 25 = ( x - 5) 2 d) a 2 + 4a + 4 = ( a + 2) 2 f) a 3 + 4a + 4 = (a + 2) 2 i) 27 + x 3 = 33 + x 3 = (3 + x)(9 - 3x + x 2 ) j) x 3 + 6 x 2 + 12 x + 8 = ( x + 2) 3 n) 27 - 27 x + 9 x 2 - x 3 = (3 - x) 3 382 Taanda hulkliige, selleks too ühine tegur sulgude ette. a) 3 x 2 + 6 x + 3 = 3 = 3( x 2 + 2 x + 1) = 3( x + 1) 2 b) 5a 2 -10a + 5 = 5(a 2 - 2a +1) = 5(a -1) 2

Matemaatika
212 allalaadimist
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD 1. ARVUHULGAD …………………………………………………… 2 2. ARITMEETIKA ……………………………………………….…… 3 2.1 Mõningate arvude kõrgemad astmed ………………………….……. 3 2.2 Hariliku murru põhiomadus ………………………………….…….. 3 2.3 Tehetevahelised seosed ……………………………………….…….. 3 2.4 Tehted harilike murdudega ………………………………….……… 4 2.5 Tehete põhiomadused ……………………………………….……… 5 2.6 Näited tehete kohta positiivsete ja negatiivsete arvudega …….…….. 5 2.7 Näited tehete kohta ratsionaalarvudega ……………………….……. 6 2.8 Protsent ja promill ……………�

Matemaatika
75 allalaadimist
thumbnail
78
pdf

Majandusmatemaatika

MAJANDUSMATEMAATIKA I Ako Sauga Tallinn 2003 SISUKORD 1. MUDELID MAJANDUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Mudeli mõiste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Matemaatiliste mudelite liigitus ja elemendid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Matemaatilise mudeli struktuur ja sisu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. FUNKTSIOONID JA NENDE ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Arvud ja nende hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Funktsionaalne sõltuvus . . . . . . . . . .

Raamatupidamise alused
399 allalaadimist
thumbnail
104
pdf

Konspekt

I. Determinandid 1 Determinandi m~ oiste 1.1 Idee selgitus Algul defineerime esimest j¨ arku determinandi, siis esimest j¨arku determinandi abil teist j¨ arku determinandi, seej¨arel teist j¨arku determinandi abil kolmandat j¨ arku detereminandi jne, n-j¨arku determinandi defineerime (n - 1)-j¨arku determinandi kaudu. Sel- list defineerimisviisi nimetatakse induktiivseks ja vastavat objekti induktiivseks konstruktsiooniks. Eelnevalt on soovitatav tutvuda maatriksi m~oistega (II.1.1). Kooloniga v~ordus A := B t¨ahendab j¨argnevas, et A on defineeri- tud B kaudu. Seda v~ordust kasutame ka samav¨ a¨arsete t¨ ahistuste sissetoomiseks. 1.2 Esimest j¨ arku determinant Arvu a R determinandi |a| ehk esimest j¨ arku determinandi de- fineerime valemiga |a| := det a := a. 1.3 N¨ aide | - 5| = -5

Lineaaralgebra
511 allalaadimist
thumbnail
4
txt

Matemaatika mõisted 8. klassile

Misted 8. klassile 1. Milline murd on harilik murd? * Harilik murd nitab, mitmeks vrdseks osaks on tervik jaotatud ja mitu sellist osa on vetud. 2. Milline murd on kmnendmurd? Too nide . * Kmnendmurd on komaga arv . nt : 2,14 ; 76,76 ; 16,36 3. Mida nimetatakse murru taandamiseks? * Hariliku murru taandamiseks nimetatakse murru lugeja ja nimetaja jagamist he ja sama nullist erineva arvuga 4. Astmete korrutamine. Too nide. * he ja sama alusega astmete korrutamisel me liidame astendajad ja siis astendame astme alust. nt : a(astmes n) * a(astmes m) = a (astmes n+m) 3(astmes4)* 3 (ruudus) = 3(astmes 6) = 729 5. Astemete astendamine. Too nide. * Astmete astendamisel antendajad korrutame ja siis astendame. nt: (a astmes n) astmes m = a astmes mn ; (2 astmes -3) astmes 4 = 2 astmes -12 6. Astmete jagamine. * Sama alusega astmete jagamisel me lahutame astendajad ja siis astendame astme alust. 7.Negatiivne astendaja. Too nide . * Negatiivse astendajaga aste thendab murdu , mille lugejaks

Matemaatika
104 allalaadimist
thumbnail
8
pdf

Kompleksarvud gümnaasiumiõpikus

Arvu a nimetatakse kompleksarvu a + ib reaalosaks ja arvu bi selle imaginaarosaks. KOMPLEKSARVUD Kui a = 0, siis on tegemist imaginaararvuga bi, kui b = 0, siis saame arvu a + 0·i, mis on reaalarv a. Kui a = b = 0, siis siis saame tulemuseks arvu 0. KOMPLEKSARVU MÕISTE. TEHTED KOMPLEKSARVUDEGA Kaks kompleksarvu on omavahel võrdsed parajasti siis, kui nende reaalosad ja 1. Kompleksarvu mõiste imaginaarosad on vastavalt võrdsed: a + ib = c + id

Matemaatika
16 allalaadimist
thumbnail
12
docx

Matemaatika 11.klass valemid

Valemid, teoreemid, seosed, tunnused, tingimused MATEMAATIKA EKSAMIL XI KLASSIS 1) a2-b2 = (a+b)(a-b) 2) a3 + b3=(a+b)(a2-ab+b2) 3) a3 - b3=(a-b)(a2+ab+b2) 4) (a+b)3 =a3+3a2b+3ab2+b3 5) (a-b)3 =a3-3a2b+3ab2-b3 −b ± √ b2−4 ac 2 6) a) lahenda ax + bx+c =0 2a b) tegurda : ax2 + bx+c= a( x− x1 )( x−x 2) c) tegurda ax3 + bx2+ax+b= x2(ax+b)+ax+b = (ax+b)(x2+1) 7) lim  an  bn   lim an  lim bn n  n  n  8) lim  an  bn   lim an  lim bn n  n  n  9) lim  anbn   lim an  lim bn n  n  n  an 10) lim  lim an  lim bn n  bn n  n 

Matemaatika
18 allalaadimist
thumbnail
4
pdf

Majandusmatemaatika - Ühe muutuja funktsioonid 2

Ühe muutuja funktsioonid 2 Ülesanded iseseisvaks lahendamiseks Vastused Q 2 1.Kulufunktsioon on C(Q) = 600 + 4Q + 200 ning tulufunktsioon R(Q) = 20Q, kus Q on tootmismaht. Leida M C(8) ja M R(4). Leida püsikulu ja muutuvkulu, kui Q = 10. Leida ka tooteühiku hind. Q Lahendus: M C = C (Q) = 4 + 100 . M C(8) = 4.08. Toodangu suurendamisel kaheksast tooteühikust üheksa tooteühikuni suurenevad kulud 4.08 rahaühiku võrra. M R = R (Q) = 20. Nagu näha MR ei sõltu toodangu hulgast. Toodangu suurendamisel ühe ühiku võrra tulu suureneb alati 20 rahaühiku võrra. Kulufunktsiooni vabaliige on 600, mis ongi püsikuluks (see ei sõltu toodanguhulgast Q). Q2 102 Muutuvkulu avaldub kujul T V C(Q) = 4Q + 200

Majandusmatemaatika
91 allalaadimist
thumbnail
10
pdf

Diskreetsed struktuurid

Kontrolltöö lahendused Diskreetsed struktuurid 1. variant Ülesanne 1. 15 inimese hulgas on A ja B omavahel sõbrad ning C ja D omavahel vaenlased. Mitmel viisil saab need inimesed jaotada 5 ühesuuruseks rühmaks nii, et sõbrad kuuluksid samasse rühma, aga vaenlased erinevatesse rühmadesse? Rühmade järjekord oluline ei ole. Lahendus. Iga rühm peab sisaldama 3 inimest. Paigutame A ja B esimesse rühma. Kui selle rühma kolmas liige on C, siis tuleb ülejäänud 12 inimest jao- tada 4 ühesuuruseks rühmaks, ülesande tingimused saavad sellega täidetud. Eeldame esialgu, et nende 4 rühma järjekord on oluline. Valime 3 inimest esimesse rühma, selleks on 123 võimalust. Ülejäänud 9 inimesest valime 3 inimest teise rühma, milleks on 93 võimalust. Lõpuks valime 6 inimesest 3, kes moodustavad kolmanda rühma, selleks on 63 võimalust. Sellega on rühmade koosse

Informaatika1
52 allalaadimist
thumbnail
22
ppt

Võrrandisüsteemide koostamine tekstülesannete põhjal I osa

Võrrandisüsteemide koostamine tekstülesannete põhjal I osa © T. Lepikult, 2003 Leida kaks arvu, ülesanne 1 Ülesanne 1 Kahe arvu korrutis on 30, nende arvude summa 11. Leida need arvud. Lahendus Seda tüüpi ülesannetes vaadeldakse otsitavaid arve tundmatutena ja ülesande tingimuste põhjal tuletatakse võrrandisüsteem tundmatute leidmiseks. Tähistame esimese arvu sümboliga x ja teise sümboliga y. Tingimusest, et arvude korrutis on 30, saame esimese võrrandi: x y = 30 Ülesanne 1 (2) Lahendus jätkub ... Tingimusest, et arvude summa on 11, saame teise võrrandi: x + y = 11. Saadud kaks võrrandit moodustavad võrrandisüsteemi tundmatute x ja y määramiseks: x y = 30, x + y = 11. NB! Võrrandisüsteem ei ole lineaarne (kuna esimeses võrrandis esineb tundmatute korrutis!). See

Matemaatika
139 allalaadimist
thumbnail
48
doc

Lineaaralgebra täielik konspekt

Lineaaralgebra elemendid. M.Latõnina 1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus).

Kõrgem matemaatika
858 allalaadimist
thumbnail
57
rtf

Maatriksid

1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): [ ] a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 -

Matemaatika
283 allalaadimist
thumbnail
5
doc

8.kl matemaatika ülesandeid koos lahendustega

Ülesanded lahendustega 1. Maalil ja Juulil on kokku 480 krooni. Kui Maali annaks Juulile 120 krooni, siis jääks talle niisama palju raha, kui oli enne Juulil. Kui palju oli raha Maalil ja Juulil? Lahendus: Olgu Maalil x krooni ja Juulil y krooni. Kokku on neil siis x + y = 480 krooni. Kui Maali annaks Juulile 120 krooni, siis jääb talle x - 120 krooni, mis on niisama suur summa, kui oli enne Juulil x ­ 120 = y. Saame võrrandisüsteemi: Kontroll: Maalil ja juulil on kokku 300 + 180 = 480 krooni. Kui Maali annaks Juulile 120 kooni, siis talle endale jääks 300 ­ 120 = 180 krooni, mis on samapalju kui Juulil esialgu. Vastus: Maalil oli 300 krooni ja Juulil 180 krooni. 2. Arvuta kujundi pindala, mida piiravad jooned x = 0; y = -2; y = 5; y = -2x + 10. Lahendus: Leiame joonte lõikepunktid. 1) Joonte x = 0; y = -2 lõikepunkt on A(0;-2). 2) Joonte y = 5 ja y = -2x + 10 lõikepunkt. Koostame võrrandisüsteemi: Joonte y = 5 ja y = -2x + 10 lõikepunkt on B(2,5; 5

Matemaatika
204 allalaadimist
thumbnail
7
doc

Riigieksami lahendused II

23.05.1998 a matemaatika riigieksam Lehe haldamist toetavad Topauto ja meelespea.net Põhivariant 2. rida 1998 aasta matemaatika riigieksami ülesannete lahendused 7 y -1 - 4 x -1 1. (5p) Leidke avaldise väärtus, kui x : y = 3 : 4. 3y -1 - x -1 Lahendus: 7 ( 4( x y 7x - 4y - -1 7 y - 4x -1 y = (x x = xy = ( 7 x - 4 y ) xy = 7 x - 4 y

Matemaatika
369 allalaadimist
thumbnail
21
pdf

Funktsiooni tuletis (jätk) loeng 6

Funktsiooni tuletis (jätk) - + sin - sin = 2 sin cos 2 2 Funktsiooni y = sin x tuletis Teoreem: Funktsiooni y = sin x tuletis on cos x. x + x - x x + x + x Tõestus: y = sin( x + x) - sin x = 2 sin cos 2 2 x x = 2 sin cos x + 2 2 x x x 2 sin cos x + sin y 2 2 2 cos x + x = = x x x 2 2 1 x

Matemaatika
70 allalaadimist
thumbnail
18
pdf

8. klassi raudvara: PTK 6

6.ptk Ruutvõrrand 8.klass Õpitulemused Näited 1.Arvu ruut - kahe võrdse teguri korrutis Ül.1262,1263 2 a a=a ; mistahes ratsionaalarvu ruut on Leida arvu ruut taskuarvuti abil. mittenegatiivne 2 2 2 2 15 =225; 28 =784; 41 =1681; 57 =3249 Lihtsustada avaldis ja arvutada. 2 2 2 2 2,4 2 =(2,4 2) =4,8 =23,04 NB ruutjuure pöördtehe; saab kasutada 2 näiteks ruudu ja ringi pindala arvutamisel =3,5 =12,25 2 2 2 2 2 (-4,5) 4 -8 (-1,5) =(-4,5 4) -(-8

Matemaatika
64 allalaadimist
thumbnail
85
pdf

Konspekt

Mainori Kõrgkool Matemaatika ja statistika Loengukonspekt Silver Toompalu, MSc 2008/2009 1 Matemaatika ja statistika 2008/2009 Sisukord 1 Mudelid majanduses ............................................................................................................. 4 1.1 Mudeli mõiste ......................................................................................................................... 4 1.2 Matemaatilise mudeli struktuur ja sisu ................................................................................... 4 2 Funktsioonid ja nende algebra............................................................................................... 5 2.1 Funktsionaalne sõltuvus ....................................

Matemaatika ja statistika
559 allalaadimist
thumbnail
13
pdf

Majandusmatemaatika IIE eksami kordamisküsimused

Majandusmatemaatika TEM0222 konspekt 1. Gaussi meetod e. elimineerimise meetod täpselt määratud süsteemi korral (võrrandite arv=tundmatute arv): maatriksis jäätakse kõik peadiagonaali elemendid 1ks, kõik ülejäänud elemendid muudetakse 0ks. Selleks valitakse igast reast ja veerust ühe korra juhtelement. Ühest reast või veerust mitu korda juhtelementi valida ei saa. Juhtelemendi rida lahutatakse või liidetakse teistele ridadele, et ülejäänud ridadest saada samasse veergu kus juhtelemend asub nullid. N: -1 2 1 1 ! 7 1 3 -1 1 ! 4 1 8 1 1 ! 13 11 11!6 Mittestabiilse süsteemi korral: Kasutusele tuleb Crameri valem. X1=x1(maatriks)/kogumaatriks Crameri valemit ei kasuta ükski arvutiprogramm, sest see võib anda väga suure vea. Gaussi meetodis saab arvutusvigade vähendamiseks valida juhtelemendiks maksimaalse absoluutväärtusega arvu (antud veerus kui ka kogu süsteemis). Gaussi meetodiga saab leida ka pöördmaatriksit. Pöördmaatr

Majandusmatemaatika
623 allalaadimist
thumbnail
18
pdf

Ökonomeetria-BA.

Ökonomeetria-BA. Harjutusülesande koos lahendustega Koostanud: Tiiu Paas Ülesanne 1. Analüüsime regressioonimudelit Yi  800  0.93 X i  50 Di  0.01Di X i uˆ i , i  1,2,..,100 , (t ) (22.54) (2.34) (0.56) R 2  0.82, F  15.342 ( p  0.001) kus Y – küsitletu tarbimine eurodes, X – küsitletu sissetulek eurodesning D – küsitletu sugu (D = 1, kui mees ning D = 0, kui naine); t – statistiku kriitiliseks väärtuseks on t 0.025,96  1.99 . Vastake järgmistele küsimustele ning põhjendage vastuseid a) kas mudel on statistiliselt oluline olulisuse nivool 0.05; mida saate öelda mudeli kirjeldatuse taseme kohta. b) millised muutujad on statistilised olulised olulisuse nivool 0.05; c) Leida muutuja X e

Makroökonoomia
20 allalaadimist
thumbnail
15
doc

HÜDROSTAATIKA

1.HÜDROSTAATIKA Tihedus on vedeliku massi ja ruumala suhe ehk ruumalaühiku mass m = , V mis laeva jaoks merevees laeva mingi massi ja mahulise veeväljasurve puhul on SW = , kus ­ SW on merevee tihedus; ­ ­ laeva massveeväljasurve; ­ ­ laeva mahuline veeväljasurve. SI süsteemis on tiheduse ühikuks kg/m3, kuid merenduses on levinum t/m3, sest tiheduse arvväärtus tuleb kolm suurusjärku väiksem. Erinevate vedelike tihedus on erinev ja normaaltingimustel näiteks: ­ merevesi SW = 1,025 t/m3; ­ magevesi FW = 1,000 t/m3; ­ diisliõli DO = 0,900 t/m3; ­ kütteõli HO = 0,950 t/m3. Kasutatakse ka suhtelise tiheduse (relative density, rd) mõistet, mis on antud aine tiheduse suhe

Laevade ehitus
59 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvu

Matemaatika
1453 allalaadimist
thumbnail
10
docx

11. klass kordamine EKSAMIKS vastustega

Kordamisülesanded 11 klass 1. Kombinatoorika ja tõenäosus a) Ühes klassis õpitakse 14 õppeainet. Mitmel erineval viisil saan nendest koostada ühe päeva tunniplaani, kui selles peab olema 7 erinevat õppeainet? Vastus: 17297280 b) Martinil on taskus viis viiekroonist ja neli kümnekroonist rahatähte. Kui suur on tõenäosus, et kahe kupüüri juhuslikul võtmisel on mõlemad viiekroonised? Vastus: 20/72 c) Tõenäosus leida pliiats kirjutuslaua esimesest sahtlist on 0,5, teisest sahtlist 0,7 ja kolmandast 0,4. Kui suur on tõenäosus , et pliiats on olemas a) täpselt ühes sahtlis b) vähemalt ühes sahtlis c) mitte üheski sahtlis

Matemaatika
105 allalaadimist
thumbnail
22
docx

Matemaatika eksami kordamine KEVAD 2015

-1- - 1.Leia funktsiooni määramispiirkond. 3 x 3 x y y b) y  17  15 x  2 x log( 1  x ) 2 a) 4x  8 c) 2x  2 3 9 x y d) y = log( x2 + x -20 ) - 6x e) log 2 ( x  4) f) y = log x-1 x2

Matemaatika
179 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun