1. LOENG Sissejuhatus Lausearvutus: Teoreemid sõnastatakse tavaliselt kujul: ,,Kui A, siis B". Teoreemi osa A, mis on seotud sõnaga kui, nimetatakse teoreemi eelduseks, ja osa, mis on seotud sõnaga siis, väiteks. Näide: Kui kaks vektorit on risti, siis nende vektorite skalaarkorrutis on null. Näide: Kui nurgad on kõrvunurgad, siis nende summa on 180o. Teoreemi tõestamine tähendab selle näitamist, et eeldusest A järeldub väide B. Tõestamisel lähtutakse aksioomidest ja varem tõestatud teoreemidest. Vahetades teoreemis ,,Kui A, siis B" eelduse ja väite, saame lause ,,Kui B, siis A". Seda lauset nimetatakse antud lause pöördlauseks. Kui lause kehtib, siis selle lause pöördlause ei pruugi kehtida. Näide: Lause: ,,Kui arv lõpeb nulliga, siis ta jagub viiega" (kehtib). Pöördlause: ,,Kui arv jagub viiega, siis ta lõpeb nulliga" (ei kehti). Näide: Lause: ,,Kui kolmnurga kül
===SUULISE OSA KÜSIMUSED JA VASTUSED=== I. Lausearvutus 1. Mis on algmõiste? Nimeta vähemalt 3 algmõistet. Mõisted, mida kasutatakse teiste mõistete defineerimiseks. Algmõisteid ise ei defineerita. Näiteks tihti peetakse algmõisteteks: punkt, sirge, tasand, ruum, hulk, arv, suurus 2. Mis on definitsioon ja milliseid reegleid peab ta täitma? Definitsioon on mõistete määratlemine lihtsamate ja tuntumate mõistete kaudu. Definitsioon peab täitma järgnevaid reegled: 1. Definitsioon peab sisaldama ainult nii palju tunnuseid, et see täpselt määraks millega tegu 2. Mõistet ennast ei tohi mõiste defineerimisel kasutada 3. Definitsioon peab võimalusel olema jaatav 4. Peab olema selge ja arusaadav 3. Mis on aksioom? Nimeta vähemalt 3 aksioomi. Põhitõde, mida peetakse vaieldamatult õigeks. Aksioomid on näiteks: 1. Igale naturaalarvukle järgneb vahetult ainult üks naturaalarv 2. Kaht erinevat punkti läbib ainult üks sirge 3. Väljaspool
===SUULISE OSA KÜSIMUSED JA VASTUSED=== I. Lausearvutus 1. Mis on algmõiste? Nimeta vähemalt 3 algmõistet. Mõisted, mida kasutatakse teiste mõistete defineerimiseks. Algmõisteid ise ei defineerita. Näiteks tihti peetakse algmõisteteks: punkt, sirge, tasand, ruum, hulk, arv, suurus 2. Mis on definitsioon ja milliseid reegleid peab ta täitma? Definitsioon on mõistete määratlemine lihtsamate ja tuntumate mõistete kaudu. Definitsioon peab täitma järgnevaid reegled: 1. Definitsioon peab sisaldama ainult nii palju tunnuseid, et see täpselt määraks millega tegu 2. Mõistet ennast ei tohi mõiste defineerimisel kasutada 3. Definitsioon peab võimalusel olema jaatav 4. Peab olema selge ja arusaadav 3. Mis on aksioom? Nimeta vähemalt 3 aksioomi. Põhitõde, mida peetakse vaieldamatult õigeks. Aksioomid on näiteks: 1. Igale naturaalarvukle järgneb vahetult ainult üks naturaalarv 2. Kaht erinevat punkti läbib ainult üks sirge 3. Väljaspool
Diskreetse matemaatika elemendid 2013/2014 LAUSEARVUTUS. TÕESTUSED. 1. Lausearvutuse lausetele esitatavad tingimused. [1] o Välistatud kolmanda seadus. Iga lause on kas tõene või väär. o Mittevasturääkivuse seadus. Ükski lause ei saa olla nii tõene kui ka väär. o Nende nõuete põhjal kuuluvad vaadeldavate hulka ainult nii sugused laused, mis midagi väidavad, kusjuures sellel väitel on olemas ühene tõeväärtus. o . Välistatud kolmanda seaduse nõudel jäävad kõrvale kõik küsilaused ja paljud hüüdlaused, samuti kõik käsud ning mõttetud sõnaühendid. Mitte-vasturääkivuse seadus välistab mitmesugused paradoksid, näiteks „See lause siin on väär“, ja muud taolised väited, mille tõeväärtust pole võimalik üheselt määrata. o Tehte tulemuseks saadud lause tõeväärtus sõltub ainult komponentlausete tõeväärtustest. 2. Lausearvutuse tehted. Tehete järjekord. Lausearvutuse valem. [1] Tehted o Eitus (märk ¬)
Lausearvutus 1) a. Lausearvutuse lausetele esitatavad tingimused: a.i. Välistatud kolmanda seadus. Iga lause on kas tõene või väär. a.ii. Mittevasturääkivuse seadus. Ükski lause ei saa olla nii tõene kui ka väär. a.iii. Tehteid võib teostada ükskõik milliste lausetega. a.iv. Tehte tulemuseks saadud lause tõeväärtus sõltub ainult komponentlausete tõeväärtustest. 2) a. Eitus (märk ¬). Lause mittekehtimine. b. Konjunktsioon (märk &) tähendab seost ,,ja". c. Disjunktsioon (märk ) väljendab seost ,,või". Siin on kasutusel mittevälistav ,,või". d. Implikatsioon (märk ) väljendab tingimuslikku konstruktsiooni ,,kui ..., siis ...". e. Ekvivalents (märk ) tähendab matemaatikas sagedasti kasutatavat seost ,,parajasti siis, kui". f. Tehete järjekord kõrgemast madalamani ¬, &, , , . g. Def.
SISSEJUHATUS MATEMAATILISSE LOOGIKASSE Kordamisküsimused (orienteeruv) Mõnede sümbolite tähendused sõna Materjal puudub & Konjuktsioon Ekvivalents üldisuskvantor Järeldumine Disjunktisoon ¬ Eitus olemasolukvantor Signatuur Implikatsioon Samaväärsus Loogiline järeldumine I. Lausearvutus Laused. Lausearvutuse tehted. Valem. Valemi tõeväärtus. Tõeväärtustabel. Laused Põhilised uuritavad objektid lausearvutuses on laused, mis võimaldavad pärineda ükskõik millisest valdkonnast. Oluline on, et igale lausearvutusele saaks vastavusse seada tõeväärtuse, mis kirjeldab lause tegelikkusele vastava määra. Eeldame, et käsitlevad laused rahuldavad järgmisi tingimusi: · Välistatud kolmanda seadus. Iga lause on kas tõene või väär · Mittevasturääkivuse seadus. Ükski lau
MATEMAATILINE LOOGIKA 1. LAUSEARVUTUS Lausearvutuse tehted: Eitus (¬) Konjuktsioon (&) Disjunktsioon (V) Implikatsioon (->) Ekvivalents (<->) Lausearvutuse valemid on parajasti need, mida saab koostada alltoodud reeglite abil: o iga lausemuutuja on lausearvutuse valem o kui F on lausearvutuse valem, siis ka ¬F on lausearvutuse valem o kui F ja G on lausearvutuse valemid, siis ka (F&G), (FVG), (F->G) ja (F<->G) on lausearvutuse valemid Lausearvutuse valemi F tõeväärtus etteantud väärtustusel leitakse järgmiste reeglite abil: o 1) Kui F = ¬G, siis F = 1 parajasti siis, kui G = 0 o 2) Kui F = G & H, siis F = 1 parajasti siis, kui G = 1 ja H = 1 o 3) Kui F = G H, siis F = 1 parajasti siis, kui G = 1 või H = 1 o 4) Kui F = G H, siis F = 1 parajasti siis, kui G = 0 või H = 1 o 5) Kui F = G H, siis F = 1 parajasti siis, kui G = 1 ja
Matemaatiline analüüs I kontrolltöö Punktid 1-22 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. a. Arvtelje mõiste Arvteljeks nim sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Igale arvtelje punktile vastab ainult üks reaalarv ja vastupidi. b. Reaalarvu absoluutväärtus Reaalarvu absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu |a|= a, kui a 0, -a, kui a<0 c. Loetleda absoluutväärtuse omadused |-a|=|a|; |ab|=|a|*|b|; |a+b||a|+|b|;|a-b||a|-|b| d. Reaalarvude ja lõpmatuste ümbrused d.i. Reaalarvu a ümbruseks nim suvalist vahemikku (a-,a+), kus on
Kõik kommentaarid