Pikkusühikud: kilomeeter (km); meeter (m); detsimeeter (dm); sentimeeter (cm); millimeeter (mm) Pea meeles! 1 km = 1000 m = 103 m 1 m = 0,001 km = 10-3 km 1 m = 10 dm 1 dm = 0,1 m 1 m = 100 cm 1 cm = 0,01 m = 10-2 m 1 cm = 10 mm 1 mm = 0,1 cm 1 m = 1000 mm 1 mm = 0,001 m = 10-3 m Näiteid: 2,5 km = 2,5 x 1000 m = 2500 Selgitus: 1 km = 1000 m m Selgitus: 1 m = 1000 mm, st 1 mm = 0,001 13 mm = 13 x 0,001 m = 0,013 m m Selgitus: 1 m = 100 cm, st 1 cm = 0,01 m 8,5 cm = 8,5 x 0,01 m = 0,085 m Massiühikud: gramm (g), kilogramm (kg), tsentner (ts) ja tonn (t) Pea meeles! 1 kg = 1 000 g 1 ts = 100 kg = 100 000 g 1 t = 1 000 kg 1 t = 10 ts = 1 000 kg 1 t = 10 ts = 1000 kg = 1 000 000 g Pindalaühikud: ruutmillimeeter (mm2); ruutsentimeeter (cm2); ruutdetsimeeter (dm2);
Ühikute teisendamine. Spikker Pikkusühikud: kilomeeter (km); meeter (m); detsimeeter (dm); sentimeeter (cm); millimeeter (mm) Pea meeles! 1 km = 1000 m = 103 m 1 m = 0,001 km = 10-3 km 1 m = 10 dm 1 dm = 0,1 m 1 m = 100 cm 1 cm = 0,01 m = 10-2 m 1 cm = 10 mm 1 mm = 0,1 cm 1 m = 1000 mm 1 mm = 0,001 m = 10-3 m Näiteid: 2,5 km = 2,5 x 1000 m Selgitus: 1 km = 1000 m = 2500 m Selgitus: 1 m = 1000 mm, st 1 13 mm = 13 x 0,001 m mm = 0,001 m = 0,013 m Selgitus: 1 m = 100 cm, st 1 cm 8,5 cm = 8,5 x 0,01 m = = 0,01 m 0,085 m Massiühikud: gramm (g), kilogramm (kg), tsentner (ts) ja tonn (t) Pea meeles! 1 kg = 1 000 g 1 ts = 100 kg = 100 000 g 1 t = 1 000 kg 1 t = 10 ts = 1 000 kg 1 t = 10 ts = 1000 kg = 1 000 000 g Pindalaühikud: ruutmillimeeter (mm2); ruutsentimeeter (cm2); ruutdetsimeeter (dm2); ruutmeeter (m2); aar (a); hektar (ha); ruutkilomeeter (km2)
senti- c 10-2=0,01 cm 1,3 cm = 1,3×10-2 m = 1,3×0,01 m=0,013 m milli- m 10-3=0,001 mm; mV 215 mV = 215×10-3 V = 215×0,001 V = =0,215 V mikro- µ 10-6 µV; µm 2,5 µm = 2,5×10-6 m nano- n 10-9 nm; nV 4 nC = 4×10-9 C Võime asendada 1 cm = 10-2 × 1m = 0,01 × 1 m = 0,01 m Pikkusühikud: meeter (m); kilomeeter (km); detsimeeter (dm); sentimeeter (cm); millimeeter (mm) Ühikute vahelised seosed: 1 km = 1000 m = 103 m 1 m = 0,001 km = 10-3 km 1 m = 10 dm 1 dm = 0,1 m 1 m = 100 cm 1 cm = 0,01 m = 10-2 m 1 cm = 10 mm 1 mm = 0,1 cm 1 m = 1000 mm 1 mm = 0,001 m = 10-3 m Näiteid: 1,5 km = 1,5 × 1000 m = 1500 m 12 mm = 12 × 0,001 m = 0,012 m 8,8 cm = 8,8 × 0,01 m = 0,088 m Ajaühikud: sekund (s); minut (min); tund (h); ööpäev
Elektrivoolu tugevus amper A I Temperatuur kelvin K Valgustugevus kandela cd J Ainehulk mool mol N Tuletatud suurused Pindala ruutmeeter m2 L2 Ruumala kuupmeeter m3 L3 Kiirus meeter sekundis m/s LT-1 Nurkkiirus radiaan sekundis rad/s T-1 Kiirendus meeter sekundi ruudu kohta m/s2 LT-2 Nurkkiirendus radiaan sekundi ruudu kohta rad/s2 T-2 Jõud njuuton N 1N=1 kg m/s2 LMT-2 Rõhk (meh
Mõnedele SI detsimaalsetele kord- ja osaühikutele on antud erinimetused (vt tabel 4). Nendest ühikutest võib omakorda moodustada kord- ja osaühikuid. MÕÕTÜHIKUD 3 Tabel 4 Suurus Ühiku nimetus Tähis Väärtus Maht (ruumala) liiter l, L1 1 l = 1 dm3 = 10--3 m3 Mass tonn t 1 t = 1 Mg = 103 kg Rõhk baar2 bar 1 bar = 105 Pa = 0,1 MPa 1 Eelistada tuleb tähist «l». Tähis «L» on kasutamiseks juhtudel, kui trükitehnilistel põhjustel võivad liitri tähis ja arv 1 segi minna. 2
Pinnamõõdud 1 ruutkilomeeter = 100 hektari = 0,88 ruutversta 1 hektar = 10 000 ruutmeetrit = 0,82 tiinu 1 ruutmeeter = 10 000 ruutsentimeetrit = 0,22 ruutsülda = 10,76 ruutjalga 1 ruutsentimeeter = 0,16 ruuttolli Mahumõõdud 1 kuupmeeter = 100 liitrit = 0,1 kuupsülda = 2,8 kuuparssinat = 4,7 setverti 1 liiter = 0,038 setverikku = 0,8 pange = 1,30 pudelit Meetermõõdustiku lühendid km - kilomeeter (1000 meetrit) m - meeter cm - sentimeeter (10 millimeetrit) mm - millimeeter t - tonn (1000kg) ts - tsentner (100 kg) kg - kilogramm g - gramm km2 - ruutkilomeeter ha - hektar hl - hektoliiter (100 liitrit) dl - dekaliiter (10 liitrit) l liiter Raskusmõõdud 1 tonn = 10 tsentnerit = 61,05 puuda 1 tsentner = 100 kilogrammi = 6,10 puuda 1 kilogramm = 1000 grammi = 2,44 naela Pikkusmõõdud 1 kilomeeter = 1000 meetrit = 0,94 versta
joonist). Lillede osa ühe külje pikkus on 2m ja pindala 10 m2. Maasikate osa ühe külje pikkus on 3m. Kui suurel pindalal kasvavad köögiviljad? Vastus: 8m2 34. Kümneliitrilise ääreni veega täidetud anumasse tulistati 3 ühesugust auku. Kell 12.00 tulistati punkti A Kell 12.01 tulistati punkti B Kell 12.02 tulistati punkti C ( vt joonist. Veetase liitrites on märgitud anuma kõrvale.) Ühe minutiga voolab ühe augu kaudu välja 1 liiter vett. Mitu liitrit vett oli anumas, kui kell sai 12.04 ? Vastus: 4 l 35. Rein teenis pohlade müügist 2 korda rohkem kui ta õde ja kokku said nad 480 krooni. Kui palju teenis kumbki? Vastus: 160 kr õde ja 320 kr Rein ( Õde teenis 1 osa rahast, Rein 2 korda rohkem ehk 2 osa. Kokku teenisid nad 1 + 2 = 3 osa, mis on 480 kr. Ühe osa suurus on 480 : 3 = 160 kr, selle teenis õde. Rein teenis 2 *160 = 320 kr) 36
Mittesüsteemsed ja vanaaegsed mõõtühikud ja nende kasutusvaldkonnad. Vanande ja vähemlevinud mõõtühikute loend loetleb mitmesuguseid maailmas kasutusel olnud või kasutusel olevaid mõõtühikuid ja nende vasteid meetermõõdustikus. 1. PIKKUSÜHIKUD Eestis tarvitatud pikkusühikud 1(vene)penikoorem=7 vertsa-7467,53 m 1 verst= 500 sülda=1,066783 km 1 süld = 3 arssinat= 7 jalga = 4 küünart – 2,1335808 m 1 arssin = 16 versokkit = 28 tolli = 71 cm 1 1/5 mm (-71,12cm) 1 verssok = 4 cm 4 2/5 mm (~4,44 cm) 1 jalg = 12 tolli = 30 cm 4 7/10 mm (~0,3048 m) 1 toll= 10 liini = 2 cm 5 2/5 mm (~2,54 cm) 1 liin= ~2,54 mm 1 küünar = 3/4 arssinat = 21 tolli = 53 cm 3/10mm (~0,5333 m) 1 Lõuna-Eesti maamõõdu küünar = 2 jalga 1 miil ~ 1609,344 m 1 meremiil = 1852 m
Ruutfunktsioon Sissejuhatav kordamine 1. Teosta tehted. Vastustes vabane negatiivsetest astendajatest. 3 1 2 3 1 a) 2 a b c 3 Lahendus: ; 1 4 2 s 3 t b) 4 5 3 4 s t Lahendus: . 2. Lihtsusta avaldis. a) xy(x + 3y) + (x + y)(x2 2xy y2) Lahendus: xy(x + 3y) + (x + y)(x2 2xy y2) = = x2y + 3xy2 + x3 2x2y xy2 + x2y 2xy2 y3 = = x 3 y3 = = (x y)(x2 + xy + y2) b) (3a 2)2 + (2 + 3a)(2 3a) Lahendus: (3a 2)2 + (2 + 3a)(2 3a) = 9a2 12a + 4 + 4 9a2 = = 8 12a 3. Lahenda võrrand. a) 24x2 + 5x 1 (24x2 6x 12x + 3) = 111 Lahendus: 24x2 + 5x 1 (24x2 6x 12x + 3) = 111; 24x2 + 5x 1 24x2 + 6x
kirjanduses kc ): 1 kgf 10 N ( täpsemini 1 kgf = 9,8 N ) Keha mass on suurus, mis iseloomustab keha inertsi ja gravitatsioonilisi omadusi. Mida suurem on keha mass, seda suuremat jõudu tuleb tema kiiruse muutumiseks rakendada ja seda suurem on selle keha ja mingi teise keha vahel mõjuv gravitatsioonijõud. Massi ühikuks on 1 kilogramm (kg), mis on võrdne rahvusvahelise massietaloni massiga. Kilogrammi oli algul määratud 1 dm 3 ( 1 liiter ) puhta vee massiga temperatuuril 4°C, mis erineb natukene praeguse etaloni massist. Praktikas kasutatakse massi määramise viisiks keha kaalumist kangkaalude, st. võrreldame vaadeldava keha massi kaaluvihi massiga. Mõningaid masse ( kg ): elektron 10 30 ühe tähe trükivärv 10 9 Maa 6×10 24 vase aatom 10-25 inimene 80 Päike 2×10 30
2.2 Füüsikaliste suuruste tähistus ja mõõtühikud (DIN 1301 1.osa ja DIN 1304 1.osa) Parameeter Tähis SI-ühik ühik Teisendused Seosed pikkus l meeter m 1 m = 100 cm = teekond s 1000 mm pindala A ruutmeeter m2 1 m2 = 10 000 cm2 = A=l×l 1 000 000 mm2 ruumala V kuupmeeter m3 1 m3 = 1000 dm3 V=A×h 1 dm3 = 1L aeg t sekund s 1s = 1/60 min kiirus vmeetrit m 1m/s = 60m/min v = s/t sekundis s kiirendus a meetrit m Raskuskiirendus a = s/t2 sekundis s2 g = 9,81 m/s2 sekundi kohta
TERASKONSTRUKTSIOONIDE ABIMATERJAL EVS-EN 1993-1-1 EUROKOODEKS 3 Teraskonstruktsioonide projekteerimine Koostas: Georg Kodi Georg Kodi TALLINNA TEHNIKAÜLIKOOL ehitiste projekteerimise instituut SISUKORD 1. TERASRISTLÕIGETE TÄHISED ......................................................................................................................... 3 1.1 Ristlõigete tähistused ja teljed ................................................................................................................ 3 1.2 Ristlõigete koordinaadid ja sisejõud........................................................................................................ 3 2. VARUTEGURID ............................................................................................................................................... 4 2.1 Materjali varutegurid................................................................................
Pindalade korral kehtivad järgmised seosed. × 100 × 100 × 100 × 10 000 × 100 km2 ha a m2 cm2 mm2 ÷ 100 ÷ 100 ÷100 ÷10 000 ÷100 Ruumalade korral kehtivad järgmised seosed. × 1000 × 1000 × 1000 1 liiter = 1 dm 3 m3 dm3 cm3 mm3 1 m3 = 1000 l ÷ 1000 ÷ 1000 ÷1000 Kaalude korral kehtivad järgmised seosed. × 10 × 100 × 1000 T ts kg g ÷ 10 ÷ 100 ÷ 1000
termomeeter kasutab Celsiuse temperatuuriskaalat. Mõnes riigis (näiteks USA-s) kasutatakse Fahrenheiti temperatuuriskaalat. Temperatuuri mõõtmisel on aluseks võetud vee külmumistemperatuur, mis on termomeetril märgitud arvuga 0. Soojakraade märgitakse ,,+"-ga, külmakraade ,,-"-ga. Plussmärgiga arvud on positiivsed arvud, miinusmärgiga arvud on negatiivsed arvud. Arv 0 ei ole positiivne ega negatiivne. · Massiühikud Massi mõõtmisel on meil põhiühikuks gramm. Gramm on massiühik, mis moodustab tuhandiku kilogrammist. Massi mõõdetakse kaaludega. Grammi tähis on g. · Liiter-ruumalaühik. Vedelike ja puisteainete koguse mõõtmisel kasutatakse mõõtühikut liiter (tähiseks L). Liitrites mõõdetakse ka anumate mahtu. Liiter on mahumõõt, mis näitab, kui palju vedelikku või puisteainet vastava ruumalaga mõõdunõusse mahub. 1 Liiter · =1 dm3 · =0.001m3 · =1000ml · Pikkusühikud
Eesti Vabariigi haridus- ja Teadusministeerium Võrumaa Kutsehariduskeskus Puidutöötlemise tehnoloogia õppetool Praktiline töö Vineeri tootmine Pto-07 Õpetaja: Taivo Tering Õpilane: TõnuTomson Väimela 2010 Sisukord Sisukord.................................................................................................... 2 Praktilise töö ülesanne.............................................................................. 4 Lähteandmed.............................................................................................4 1.Toorainete koguse arvutamine...............................................................4 1.1 Kuiva spooni kogus etteantud vineerikoguse tootmiseks......................................................4 1.2. Spooni koorimiseks vajalike pakkude koguse arvutamine..................................................
2018 Abimaterjal aines „Ehitusfüüsika“ Veeauru küllastusrõhk, psat, Pa 25 3300 Veeaurusisaldus õhus, g/m3 17 ,269t psat 610,5 e 237,3 t , Pa, kui t 0 o C , 20 2640 Veeaururõhk, Pa 21,875t 15
Eesti Vabariigi haridus- ja Teadusministeerium Võrumaa Kutsehariduskeskus Puidutöötlemise tehnoloogia õppetool Praktiline töö Vineeri tootmine Pto-07 Õpetaja: Taivo Tering Õpilane: TõnuTomson Väimela 2010 Sisukord Sisukord.................................................................................................... 2 Praktilise töö ülesanne.............................................................................. 4 Lähteandmed.............................................................................................4 1.Toorainete koguse arvutamine...............................................................4 1.1 Kuiva spooni kogus etteantud vineerikoguse tootmiseks......................................................4 1.2. Spooni koorimiseks vajalike pakkude koguse arvutamine..................................................
Johannes Kukebal KÕRVALMAANTEE EHITUSE PAKKUMUSEELARVE KODUTÖÖ Õppeaines: EELARVESTAMINE TEEDEEHITUSES Ehitusinstituud Õpperühm: TE 61 Juhendaja: lektor Pille Hamburg Esitamiskuupäev:................ Üliõpilase allkiri:................. Õppejõu allkiri: .................. Tallinn 2018 SISUKORD SISUKORD ..........................................................................................................................................2 KODUTÖÖ LÄHTEÜLESANNE .......................................................................................................3 1. MAHUARVUTUS JA DETAILNE PAKKUMISEELARVE .....................................................5 1.1. SISSEJUHATUS EELARVE KOOSTAMISSE ....................................................................
Füüsika meie ümber 1. Sissejuhatus ............................................................................................... 1 2. Suvine loodus ................................................................................................ 7 3. Õues ja tänaval .............................................................................................. 9 4. Sport............................................................................................................ 11 5. Inimene ja tervishoid ................................................................................... 16 6. Tuba ............................................................................................................ 20 7. Köök............................................................................................................ 23 8. Vannituba ja saun ........................................................................................ 25
6. ELEKTRIAJAMITE ÜLESANDED Tootmises kasutatakse töömasinate käitamiseks rõhuvas enamuses elektriajameid. Ka pneumo- ja hüdroajamid saavad oma energia ikka elektrimootoritega käitatavatelt kompressoritelt ja hüdropumpadelt. Elektriajam koosneb elektrimootorist ja juhtimissüsteemist, mõnikord on vajalik veel muundur ja ülekanne. Elektriajamite kursuse põhieesmärk on valida võimsuse poolest otstarbekas elektrimootor, arvestades ka kiiruse reguleerimise vajadust ja võimalikult head kasutegurit. Järgnevad ülesanded käsitlevad selle valikuprotsessi erinevaid külgi. 6.1. Rööpergutusmootori mehaaniliste tunnusjoonte arvutus Ülesanne 6.1 Arvutada ja joonestada rööpergutusmootorile loomulik ja reostaattunnusjoon. Mootori nimivõimsus Pn = 20 kW, nimipinge Un = 220 V, ankruvool Ia = 105 A, nimi- pöörlemissagedus nn = 1000 min-1, ankruahela takistus (ankru- ja lisapooluste mähised) Ra = 0,2 ja ankruahelasse on lülitatud lisatakisti takistu
1 2. BETOONI JA RAUDBETOONITÖÖD ¾ BETOON ¾ OMADUSED ¾ KASUTAMINE RAUDBETOON ¾ RAKETIS Töömahtude jaotus Betoonitööd Sarrusetööd Raketisetööd Põhioperatsioonid kokku: Abioperatsioonid 2.1 RAKETISETÖÖD RAKETISEST SÕLTUB: RAKETISE MATERJALID: RAKETISELE ESITATAVAD NÕUDED: 2. Betoonitööd 2 R A K E T I S E A R V U T U S VERTIKAALKOORMUSED 1 Raketise omakaal 2 Värske betooni omakaal 3 Sarruse omakaal Koormus inimestest ja transpordist laudis laudisele parred partele
Üldine meteoroloogia Soojus on energia, mis kantakse ühelt kasvuhoonegaaside sisaldust. Fossiilsete 1000 m paksuse pilve puhul neeldub ja Meteoroloogia uurib atmosfääris ja tema objektilt teisele nende vahelise temp kütuste põledes paiskub õhku peegeldub kogu kiirgus. piirpindadel (maa-õhk, vesi-õhk) erinevuse tõttu süsihappegaas CO2. Metaan CH4 eraldub Vertikaalselt langevast valgusest peegeldub toimuvaid protsesse. riisipõldudelt, metsaalustes tagasi 3%, 80´ all vertikaali suhtes Temperatuuri skaalad. lagunemisprotsessides ja loomade langenud valgusest pool tgasi. Fahrenheit 1714.a
SISUKORD KURSUSEPROJEKTI ÜLESANNE........................................................................... 3 SISSEJUHATUS..........................................................................................................4 1 ARHITEKTUURNE OSA......................................................................................... 5 1.1 Hoone üldiseloomustus.............................................................................................................. 5 1.2 Hoone tehnilised andmed .......................................................................................................... 5 1.3 Mahulis-plaaniline lahendus.......................................................................................................6 1.4 Tehnoökonoomilised näitajad.....................................................................................................7 1.5 Välisviimistlus............................................................................
talvise aja soojemas punktis, Ristnas, on lumikatte püsimise periood keskmiselt 20 päeva Kliima aastas. Mikrokliima Kliima ilmastu, mingi paiga ilmade statistiline iseloomustus aastakümnetega mõõdetavas Asend põhjapoolkeral paraskliimavööndis, mere lähedus, ilmade suur sesonne ja ööpäevane ajavahemikus. Mingi piirkonna temperatuuri ja sademete reziim. Pika aja vältel ei ole kliima kõikumine ühelt poolt ja maastike kirjusus teiselt poolt on põhjuseks, miks mitmed tuntud püsiv: selles on kliimakõikumisi ja kliimamuutusi. Maa on jaotatud kliimavöötmeiks. vene klimatoloogid on Eestit nimetanud "mikrokliima varaaidaks". Vöötmete piires eristatakse merelist kl
Reijo Sild HÜDROSILINDRI TEHNOLOOGILISE PROTSESSI VÄLJATÖÖTAMINE JA TOOTMISJAOSKONNA PROJEKTEERIMINE LÕPUTÖÖ Mehaanikateaduskond Masinaehituse eriala Tallinn 2014 SISUKORD SISSEJUHATUS ..................................................................................................................................3 1. TÖÖ ANALÜÜS..............................................................................................................................5 2. SILINDRI KONSTRUKTSIOON ...................................................................................................7 2.1 Tugevusarvutused.......................................................................................................................8 3. VALMISTAMISE TEHNOLOOGIA ............................................................................................12 3.1 Tootmismaht.......................................
EHITUSMATERJALIDE OMADUSED STANDARDID JA SERTIFIKAADID • Standardid on dokumendid, milledega kehtestatakse nõudmised toodetele või teenustele ning nende vastavuse määramiseks kasutatavad meetodid. Standardite ülesandeks on piiritleda materjalide omadusi, nende omaduste määramise meetodeid ja arendada uute kaasaegsete materjalide kasutamist. • Standardi kehtivusaeg on piiratud. • Materjali vastavust standardi nõuetele tõestab sertifikaat, mis antakse välja akrediteeritud organisatsiooni poolt EHITUSMATERJALIDE ÜLDOMADUSED • Füüsikalised omadused • Mehaanilised omadused • Termilised omadused • Keemilised • Tehnoloogilised (kasutusomadused) FÜÜSIKALISED OMADUSED TIHEDUS • Tihedus (või mahumass) on materjali mahuühiku mass looduslikus olekus (koos pooridega) 𝑮 𝜸𝟎 = 𝑽𝟎 Ühikud: g/cm3, kg/m3 G – aine mass; 𝑉0 �
TALLINNA TEHNIKAULIKOOL Ehitusmaterialid Laboratoorne tOii nr. 8 2007t2008 Soojusisolatsioonikatsetamine 1. Tci6eesmdrk VahtpoliistiteentoodetetnhistuseDniiranine lahtuvalt m66tmtestm66tmete tolerantsidest,swvepingestl0% defomErsioonil,paindetugeersesija sooiuseriiuhti!,usesl 2. Katsetatavadmaterjalid Vahtpolustiireenmate{alid: . paisutatudpotiistiiEen EPS . ekstruuderpoliistiireenXPS 3. Kasutatavadseadmedja vahendid 0,02mm,m66dulinttipsusga0,5 co, kaal upsusega0,19 h0drauliline Nihik tApsusega press,immutamiseksvajalikud n6ud. 4. Tatdkaik 4.'l M66tmetemeeramine 4.1.1Nimimd6tuetega:oote pikkuse.laiusemaaraminevastavaltstandadile EVS EN 822:1999"Ehituseskasutataladsoojustusmaterjalid. Pikkuseia laiusemddramine." Katsekehihoitakseennekatsealustamistvahellalt 6 tmdi temperatuuril(23 : 5fC. Katsedviiakse hbi temperduuril (23 -+5)t. Tasaselepinnaleasetatudkatsekehal vdetaksem66dudtiipsu
viskosimeetrist 200 ml uuritava vedeliku ja samasuguse koguse vee läbivooluks. Vee läbivoolutamise aeg mõõdetakse temperatuuril 20oC. Selle suhte arv kirjeldab antud vedeliku tingviskoossust Engleri kraadides temperatuuril t ja näitab mitu korda on uuritava vedeliku viskoossus suurem vee viskoossusest. Dünaamilise ja kinemaaatilise viskoossuse ühikute teisendamine- Sentistooksi (cSt), SentiPuaasi (cP), Saybolt universaalsekundite (SSU) ja furoolsekundite(SSF), Engleri kraadide teisendamine. Nende seos absoluutse viskoossusega. Kinemaatilise viskoossuse ( ) ja tingviskoossuse Engleri kraadides vaheline seos: , (cSt) Eriti paksude õlide puhul, kus tingviskoossus on üle 10 Engleri kraadi, kasutatakse valemit: , (cSt) Kinemaatilise viskoossuse ühikute teisendamise kokkuvõtlik tabel: CentiPuaasid (cP) = CentiStooks (cSt) x Tihedus SSU1 = Centistooks (cSt) x 4.55
TERASKONSTRUKTSIOONID I Loengukonspekt TTÜ Ehitiste projekteerimise instituut Prof. Kalju Loorits Teras 1 2 SISSEJUHATUS Euroopa Liidus ja Eestis kehtiv projekteerimisstandardite süsteem EN 1990 Eurokoodeks: Kandekonstruktsioonide projekteerimise alused EN 1991 Eurokoodeks 1: Konstruktsioonide koormused EN 1992 Eurokoodeks 2: Raudbetoonkonstruktsioonide projekteerimine EN 1993 Eurokoodeks 3: Teraskonstruktsioonide projekteerimine EN 1994 Eurokoodeks 4: Terasest ja betoonist komposiitkonstruktsioonide projekteerimine EN 1995 Eurokoodeks 5 Puitkonstruktsioonide projekteerimine EN 1996 Eurokoodeks 6 Kivikonstruktsioonide projekteerimine EN 1997 Eurokoodeks 7 Geotehniline projekteerimine EN 1998 Eurokoodeks 8 Ehitiste projekteerimine maavärinat taluvaks EN 1999 Eurokoo
,,Puud ja metsad on kõige kallim aare, mida loodus on inimesele andnud" (Plinius) Puitkütus M Maht õõtühikud, nendevahelised seosed. Olulisemad mõisted m3 kuupmeeter, tm (m3) tihumeeter üks m3 õhuvahedeta puitu. Võib arvestada koorega või koore- ta. Puidu ruumala (mahu-) ühik, millega arvestatakse ka puistu tagavara. rm ruumimeeter e riidakuupmeeter üks m3 puitu koos õhuvahedega (virnmaterjali mõõtühik). Selle asemel kasutatakse ka mõistet riidakuupmeeter ehk steer, pm e pm puistekuupmeeter - ühe m3 suuruses mahus (puistangus) vabalt sisalduv 3 puitkütuse (tavaliselt hakkpuidu) kogus. Soojushulk Energia 1 kJ (kilodzaul) = 0,239 kcal (kilokalor), 1 kWh = 860 kcal, 1 kcal = 4,178 kJ. 1000 kcal = 1,16 kWh. Võimsus (soojushulk ajaühikus) 1 kW (kilovatt) = 8
Järeleaitamine ehk keemiakursuse kokkuvõte 1 SI seitse põhiühikut Pikkus - meeter m Mass - kilogramm kg Aeg - sekund s Elektrivoolu tugevus - amper A Absoluutne temperatuur - kelvin K Ainehulk - mool mol Valgustugevus - kandela cd 31.10.2011 2 Mass Iga füüsikaline keha omab massi. Massi mõõdetakse kilogrammides (1 kg) ja tähistatakse tähega m. Kilogrammile mõjuv raskusjõud on sõltuv laiusest. Pariisis on see Fr = 9,81 N Maa poolusel on see 9,83 N/kg, ekvaatoril 9,78N/kg ja Kuul 1,6 N/kg Suurus mass väljendab keha inertsust tema omadust osutada suuremat või väiksemat vastupanu tema kiirendamisele jõu toimel. 31.10.2011 3
1 Materjalide võrdlus (tootmine, materjalide koostis, tihedus, soojapidavus, tugevus, kasutusala) üks loetletud valikutest: a betoon vs aeroc; Betoon Aeroc Tootmine Saadakse sideaine, Autoklaavis täiteaine ja vee segu poorbetoonist kivinemisel Koostis Täiteained - liiv, kruus, Poorbetoon killustik Sideained - tsement, vesi, lubi Tihedus raskebetoon üle 2600 300-650 kg/m3 kg/m3 normaalne 2100- 2600 kg/m3 kergbetoon 300-2100 kg/m3 Soojapidavus 0,11 W/mK 0,07 W/mK Tugevus Oleneva
1.1. Metalsed materjalid 1,0%. Lisandid viiakse terasesse selle desoksüdee- rimise käigus; ühinedes terases oleva hapnikuga lähevad nad räbusse. Lahustudes rauas paran- 1.1.1. Rauasüsinikusulamid davad nad terase omadusi. Räni lahustununa rauas tõstab terase Teras voolavuspiiri, mis aga halvendab terase külmdefor- meeritavust (stantsimisel, tõmbamisel). Seetõttu Lisandid terases kasutatakse deformeerimise teel valmistatavate Raud on metallidest tähtsaim, kuid puhtal kujul detailide puhul väikese ränisisaldusega teraseid. kasutatakse teda vähe