Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Tugevusarvutused paindele - sarnased materjalid

sisejõud, tasakaaluvõrrandid, profiil, toereaktsioonid, fres, tugevusmoment, tala, paindel, arvudega, ristlõiked, tugevusarvutus, normaalpinge, telg, voolepiir, ristlõikega, epüür, mhe0011, tugevusõpetus, tugevusarvutused, juhendaja, s235, andmetega, resultant, epüürid, tugevustingimus, paine, ohtlikus, paindepinge, lõikepinge, põikjõud
thumbnail
8
docx

Kodune töö VI - Tugevusarvutused paindele

Variant nr. Töö nimetus: A-9 Tugevusarvutused paindele B-0 Üliõpilane (matrikli nr ja nimi) Rühm: Juhendaja: MAHB - 32 Priit Põdra Töö esitatud: Töö parandada: Arvestatud: 1. Andmed INP-profiil S235 b = c = a/2 = 0,75 m F = 10 kN p = F/b = 13,33 kN [S] = 4 a = 1,5 m 1.1 Toereaktsioonid (1) Ühtlase joonkoormuse resultant = pL => 0,375*13,33 = 5 kN 1.1 Toereaktsioonid (2) =0 F*AC - FB*AB + Fres*AD = 0 => arvutan sellest FB asendades arvudega -FB = 1.1 Toereaktsioonid (3) =0 FA*AB ­ Fres*DB + F*BC = 0 => arvutan sellest FA asendades arvudega FA = ­ vektori sound vale Joonis parandatud vektoriga 1.1 Toereaktsioonid (4) kontroll =0 F + FB ­ FA ­ Fres1 ­ Fres2 = 0 => 10 + 8,75 ­ 8,75 ­ 5 ­ 5 = 0 Toereaktsioonide väärtused ja suunad on õiged! 2

Tugevusõpetus i
434 allalaadimist
thumbnail
12
docx

Tala paindesiirete arvutus universaalvõrranditega

MHE0012 TUGEVUSÕPETUS II Variant nr. Töö nimetus: A-3 Tala paindesiirete arvutus universaalvõrranditega B-8 Üliõpilane (matrikli nr ja nimi) Rühm: Juhendaja: MAHB - 41 Priit Põdra Töö esitatud: Töö parandada: Arvestatud: 1. Andmed INP-profiil S235 b = c = a/2 F = 10 kN p = F/b [S] = 4 a = 2,5 m Joonis täheliste andmetega 1.1 Toereaktsioonid (1) Ühtlase joonkoormuse resultant

Tugevusõpetus ii
377 allalaadimist
thumbnail
6
docx

Tala tugevusarvutus paindele

MHE0011 TUGEVUSÕPETUS I Kodutöö nr. 6 Variant nr. Töö nimetus: Tala tugevusarvutus paindele A-1 B-4 Üliõpilane (matrikli nr ja nimi): Rühm: Juhendaja: 112441 MATB32 A.Sivitski Töö esitatud: Töö parandada: Arvestatud: Andmed INP-profiil S235 F = 10 kN a =4,5 m b = c = a/2 = 2,25 m p = F/b = 4,4 kN/m [S] = 4 Toereaktsioonid

Abimehanismid
247 allalaadimist
thumbnail
32
docx

Tala paindsiirete arvutus universaalvõrranditega

1. Algandmed INP-profiil S235 b = c = a/2 = 1,75 m F = 10 kN p = F/b = 5,7 kN/m [S] = 4 a = 3,5 m Joonis täheliste andmetega 1.1 Toereaktsioonid (1) Ühtlase joonkoormuse resultant F res 4,99 p= => =¿ 5,7 kN/m b 0,875 Fres = p*b/2 => 5,7*0,875 = 4,99 ≈ 5 kN 1.1 Toereaktsioonid (2) A ∑ M =0 -F*AC - FB*AB + Fres*AD + Fres*AJ= 0 => arvutan sellest FB asendades arvudega 5∗3,0625−10∗5,25+5∗0,4375 FB = =−10 kN 3,5 Negatiivne märk tähendab, et vektori suund joonisel on tagurpidi. Teeme joonisele paranduse 1.1 Toereaktsioonid (3) B ∑ M =0 -F*BC - Fres*DB - Fres*BJ + FA*BA = 0 => arvutan sellest FA asendades arvudega 10∗1,75+5∗0,4375+5∗3,0625 FA = =10 kN 3,5 1.1 Toereaktsioonid (4) kontroll

Tugevusõpetus ii
200 allalaadimist
thumbnail
12
docx

Tala tugevusarvutus paindele

1. Andmed. INP-profiil S235 a=3 m b=c=a/2=1,5 m F=10 kN [S]=4 Joonis mõõtkavas 1:20 2. Toereaktsioonid 2.1. Ühtlase joonkoormuse resultant 2.2. Kuna toereaktsiooni Fc väärtus tuli negatiivne, siis on vektor joonisel vale pidi. 2.3. 2.4. Toereaktsioonide väärtused ja suunad on õiged. 3. Sisejõudude analüüs 3.1. Sisejõud lõikes D MD=0 3.2. Sisejõud lõikes C (+) 3.3. Sisejõud lõikes B (+) 3.4. Sisejõud lõikes E Selles punktis peaks QE=0 3.5. Sisejõud lõikes A FA=QA=7,5 kN(+) MA=0 3.6. Sisejõudude epüürid Ohtlikud ristlõiked on D ja E QE=0 QD=10 kN MD=0 4. Tugevusarvutused 4.1 INP-ristlõike nõutav tugevusmoment Painde tugevustingimus - suurim normaalpinge ristlõikes - ristlõike telg-tugevusmoment - ülesandes nõutav vartteguri väärtus - materjali voolepiir Ristlõike nõtav telg-tugevusmoment [W] = =

Tugevusõpetus
508 allalaadimist
thumbnail
13
docx

Tala tugevusanalüüs

Kodutöö nr 3 õppeaines TUGEVUSÕPETUS (MES0420) Variant Töö nimetus A B Tala tugevusanalüüs Üliõpilane Üliõpilaskood Esitamise kuupäev Õppejõud Konsooliga talaks tuleb kasutada kuumvaltsitud INP-profiiliga ühtlast varrast, mis on valmistatud terasest S235. Tala on koormatud aktiivse punkt- ja joonkoormusega. Tala joonmõõtmed on antud seostega: b = a/2. Punktkoormuse väärtus on F = 10 kN ja ühtlase joonkoormuse intensiivsus tuleb avaldisest p = F/b.

Tugevusõpetus i
199 allalaadimist
thumbnail
13
pdf

Tala tugevusanalüüs kodutöö MES0240 KT3

t Kodutöö nr 3 õppeaines TUGEVUSÕPETUS (MES0420) Variant Töö nimetus A B Tala tugevusanalüüs 7 2 Üliõpilane Üliõpilaskood Esitamise kuupäev Õppejõud Franz Mathias Ints 193527EANB 10.11.2020 Priit Põdra Konsooliga talaks tuleb kasutada kuumvaltsitud INP- profiiliga ühtlast varrast, mis on valmistatud terasest S235. Tala on koormatud aktiivse punkt- ja joonkoormusega. Tala joonmõõtmed on antud

Tugevusõpetus
13 allalaadimist
thumbnail
8
docx

Tala tugevusarvutus paindele

Mehhanosüsteemide komponentide õppetool Kodutöö nr 4 õppeaines TUGEVUSÕPETUS I (MHE0011) Variant Töö nimetus A B Tala tugevusarvutus paindele 3 5 Üliõpilane Üliõpilaskood Esitamise kuupäev Õppejõud P.Põdra Konsooliga talaks tuleb kasutada kuumvaltsitud INP-profiiliga ühtlast varrast, mis on valmistatud terasest S235. Tala on koormatud aktiivse punkt- ja joonkoormusega.

Tugevusõpetus i
157 allalaadimist
thumbnail
12
pdf

Tala tugevusanalüüs

Kodutöö nr ​3​ õppeaines TUGEVUSÕPETUS ​(MES0420) Variant Töö nimetus A B Tala tugevusanalüüs 2 3 Üliõpilane Üliõpilaskood Esitamise kuupäev Õppejõud Uku Luhari 202132 15.11.2020 Priit Põdra Konsooliga talaks tuleb kasutada kuumvaltsitud INP-profiiliga ühtlast varrast, mis on valmistatud terasest S235. Tala on koormatud aktiivse punkt- ja joonkoormusega.

Tugevusõpetus
22 allalaadimist
thumbnail
27
pdf

Detailide tugevus paindel

83 Tugevusanalüüsi alused 6. DETAILIDE TUGEVUS PAINDEL 6. DETAILIDE TUGEVUS PAINDEL 6.1. Varda arvutusskeem paindel Paindeülesannetes käsitletakse koormustena varrast otseselt või teiste detailide kaudu painutavaid pöördemomente, põikkoormusi või muude koormuste põikkomponente (Joon. 6.1). Varda paindumine = varda telje kõverdumine koormuse toimel Arvutusskeemi koostamine paindel Arvutusskeem

Materjaliõpetus
30 allalaadimist
thumbnail
27
pdf

Detailide tugevus paindel

83 Tugevusanalüüsi alused 6. DETAILIDE TUGEVUS PAINDEL 6. DETAILIDE TUGEVUS PAINDEL 6.1. Varda arvutusskeem paindel Paindeülesannetes käsitletakse koormustena varrast otseselt või teiste detailide kaudu painutavaid pöördemomente, põikkoormusi või muude koormuste põikkomponente (Joon. 6.1). Varda paindumine = varda telje kõverdumine koormuse toimel Arvutusskeemi koostamine paindel Arvutusskeem

Materjaliõpetus
35 allalaadimist
thumbnail
23
pdf

Liitkoormatud detailide tugevus

[]Tõmme; []Surve tõmbe- ja survepinge lubatavad väärtused, [Pa]. 8.1.2. Lihtsamate ristlõikekujude vildakpainde tugevustingimused. Näide Mitmete ristlõikekujude suurimate pingete asukohad ja väärtused on alati suhteliselt hõlpsasti määratletavad ilma põhjalikuma analüüsita (Joon. 8.2): · ristkülik-ristlõike puhul (ka kõik teised ristlõiked, mille väliskontuur on ristkülik I- profiil, [-profiil, jt) on ekstreemsed pingeväärtused alati ristlõike nurkades (mis asuvad pinnakeset läbivast null-joonest alati kõige My Mz kaugemal). Paindepinge ekstreemväärtused saab max = min = + ; seega valemiga: Wy Wz

Materjaliõpetus
30 allalaadimist
thumbnail
15
doc

Kodutöö (plokiratas)

[S]- nõutav varutegur (vähemalt 1,5) D- võlli diameeter, 0,017 m Painde pinge tuleb 170Mpa, see on sobiv ,sest 17mm telje diameetri puhul ning 335 Mpa voolavuspiiriga materjali kasutades on telje varutegur [S] paindepingele kahe kordne ja tugevustingimus on täidetud. Kronsteini tugevusarvutused Kronsteini tugevusarvutus paindele Kronsteini külgmiste seinte painde arvutamisel kasutan valemit ühtlase ristkülik-tala painde arvutamiseks võttes sealjuures tala ristlõike pindalaks kronsteini seinte minimaalse ristlõike. Minimaalne ristlõige kronsteinil asub Plokiratta tsentris. (vt. Lisa 1.) Sele 8. On 9 toodud lihtsustatud skeem kronsteini seintele mõjuvatest põikjõududest. Maksimaalne põikjõud F ,mis kronsteinile mõjub on 6286 N. Ning maksimaalne reaktsioon jõud FR=-F FR x C

Konstruktsiooni elemendid
38 allalaadimist
thumbnail
20
pdf

Detailide tugevus väändel

· võlli pöörlemisest tekkinud dünaamilised koormused (tsentrifugaaljõud jms.); · hõõrdumine laagrites. Priit Põdra, 2004 32 Tugevusanalüüsi alused 3. DETAILIDE TUGEVUS VÄÄNDEL 3.2. Väänava koormuse mõju vardale Väänava pöördemomendiga M koormatud sirge varras (Joon. 3.2): · pöördemomendi M toimel ristlõiked pöörduvad üksteise suhtes ümber varda telje (varras väändub); · igale M väärtusele vastab varda parameetritest (materjal ja geomeetria) sõltuv väändedeformatsioon; · väändedeformatsiooni iseloomustavad iga ristlõike väändenurk (raadiuse pöördenurk algasendist) ja varda suhteline väändenurk (varda moodustaja kaldenurk algasendist);

Materjaliõpetus
21 allalaadimist
thumbnail
28
docx

Võlli tugevusarvutus painde ja väände koosmõjule

{ F Bz=0 F y =F B =365,1 N Joonis 3. Võlli ristlõigete keskpeateljed 3. Võlli sisejõudude analüüs 3.1 Väändemoment Väändemomendi epüüri koostan lõikemeetodit kasutades (arvestamata jätan laagrite hõõrdemomendid). TAB=M=21,9 Nm(-) Joonis 4. Väändemomendi epüür 3.2 Paindemoment kesk-peatasandis xy Joonis 5. Varda toereaktsioonid y telje sihis Paindemomendi epüüri koostan lõikemeetodiga. Varda paindemomendid telje z suhtes: Kuna varda otstes pöördemomente ei mõju, siis punktide A ja B pöördemoment võrdub nulliga. M Az=0 M Bz=0 +¿ M Ez=F Ay∗AE=365,1∗0,16 ≈ 58,5 Nm ¿ −¿ M Cz=F B∗CB=365,1∗0,32≈ 116,9 Nm ¿ Joonis 6. Varda paindemomendid z-telje suhtes 3.3 Paindemoment keskpeatasandis zx Joonis 7

Tugevusõpetus ii
283 allalaadimist
thumbnail
8
docx

Võlli tugevusarvutus painde ja väände koosmõjule

y z FCy FBy 150 150 600 y 1375 Mz Nm 235 4 2.1.1 Varda toereaktsioonid telje y sihis M C=0-F Ay AC + F Dy CD-F By CB=0 pöördemomentide summa C suhtes F Ay AC + F By CB 9167 0,15+1568 0,45 F Dy = = =6935,5 6936 N CD 0,3 M D=0 -F Ay AD+ FCy CD-F By DB=0 pöördemomentide summa D suhtes F Ay AD + F By DB 9167 0,45+ 1568 0,15 FCy = = =14534,5 14535 N

Tugevusõpetus ii
165 allalaadimist
thumbnail
127
pdf

Metallkonstruktsioonid

Joon. 1.2 Tüüpilisi terasprofiilide ristlõikeid Teras 1 11 2. Teraskonstruktsioonide projekteerimise alused 2.1 Kasutatavaid tähiseid - fy ; (fyd); fu ; (fud); - tugevused - N; M; V; NEd; NRd; Npl.Rd; Nb.Rd; jne. - sisejõud, kandevõime - gk ; gd ; qk ; qd ; G; Q; jne - koormused - y- ja z-telg (vahel ka y-y või z-z) - ristlõike teljed; - x-telg - varda pikitelg - tw ; tf ; - paksused; - h; b; - kõrgus, laius; -c - vöö väljaulat. laius; -d - plaadi laius -L - sille (ava), pikkus; - l, leff, Leff - nõtkepikkus;

Teraskonstruktsioonid
390 allalaadimist
thumbnail
136
pdf

Raudbetooni konspekt

des tõmbepinged suurima paindemomendiga ristlõikes (kriitilises lõikes) saavutavad betooni tõmbetugevuse, siis tekib selles lõikes pragu, betooni tõmbetsoon langeb tööst välja ja konst- ruktsioon variseb. Seega on betoontala kandevõime määratud betooni tõmbetugevusega, kusjuures betooni suur survetugevus jääb põhiliselt kasutamata. Raudbetoontala töötab kuni esimese prao tekkimiseni analoogiliselt betoontalaga. Prao tekki- mine kriitilises lõikes ei põhjusta aga tala purunemist, vaid viib normaalpingete ümberjaotu- misele praoga ristlõikes: kogu tõmbetsooni sisejõud, mis seni võeti vastu betooniga kantakse nüüd üle tõmbetsoonis olevale pikitõmbearmatuurile. Edasisel koormamisel tekivad praod ka teistes ristlõigetes vastavalt paindemomendi suurenemisele neis. Õigesti projekteeritud raudbetoontala puruneb siis, kui kriitilises lõikes üheaegselt ammendub tala surve- ja tõmbe- tsooni vastupanu, s.o

Raudbetoon
418 allalaadimist
thumbnail
16
pdf

Kõverate varraste tugevus

211 Tugevusanalüüsi alused 14. KÕVERATE VARRASTE TUGEVUS 14. KÕVERATE VARRASTE TUGEVUS 14.1. Konksude tugevus paindel. Näide 14.1.1. Kõvera varda ohtlik ristlõige Ühtlaselt kõver (varda telje kõverusraadius on konstantne R) ühtlane varras (varda ristlõike kuju ja pindala ei muutu) on koormatud painutava jõuga F (Joon. 14.1), sisejõudude analüüsiks kasutatakse lõikemeetodit: · varda koormatud osas tehakse radiaallõige (lõikemeetod); · radiaallõigetes mõjuvad sisejõud: N (pikijõud), Q (põikjõud) ja M (paindemoment);

Materjaliõpetus
12 allalaadimist
thumbnail
47
doc

Kivikonstruktsioonid projekt

........................................................25 9.1 Kuuendal korrusel Sein1, keskmises tsoonis......................................................................28 10. Seina osa (posti) tugevuskontroll.................................................................................................31 10.1 Koondatud jõu mõjumine..................................................................................................31 10.2 Tugevuskontroll (esimese korruse pikisein tala T1 all)....................................................33 10.3 Tugevuskontroll (kuuenda korruse pikisein tala T1 all)...................................................37 11. Kokkuvõte....................................................................................................................................40 12. Kasutatud kirjandus......................................................................................................................41 Koostas N

Kivikonstruktsioonid
234 allalaadimist
thumbnail
2
doc

Tugevusõpetus I

4. Mis on detaili deformatsioon? detaili (tarindi, keha, varda) kuju ja 1.8. Kuidas on omavahel seotud aktiivsed ja reaktiivsed koormused? mõõtmete muutus (koormuste mõjudes) · Aktiivsed koormused (= aktiivsed jõud) koormused, mida detail on ette 2.5. Milles seisneb materjali elastsus? materjali omadus koormuse vähenedes nähtud taluma oma otstarbest lähtuvalt; taastada detaili esialgsed kuju ja mõõtmed · Toereaktsioonid (= reaktiivsed jõud või ­koormused) tugede ja 2.6. Milliseid deformatsioone käsitleb Tugevusõpetus? Vaid elastseid konstruktsiooni vastasmõju, mis määratakse konstruktsiooni tasakaalu- 2.7. Kirjeldage normaaldeformatsiooni! varda telje sihiline deformatsioon (staatikaga määratud süsteem) ja kinemaatilistest (staatikaga määramata 2.8. Millised on pikke tunnused? *varda pikkus muutub *varda telg jääb sirgeks süsteem) tingimustest

Tehniline mehaanika
542 allalaadimist
thumbnail
19
pdf

Detailide tugevus tõmbel ja survel

Tõmmatud varras Sirge varda pike F (+) Deformatsioon l Ristlõiked (-) F F l Joonis 2.2 Priit Põdra, 2004 14 Tugevusanalüüsi alused 2

Materjaliõpetus
24 allalaadimist
thumbnail
15
pdf

LIIDETE TUGEVUS LÕIKEL

F u yx u y Joonis 4.2 Priit Põdra, 2004 53 Tugevusanalüüsi alused 4. LIIDETE TUGEVUS LÕIKEL 4.3. Sisejõud ja pinged lõikel 4.3.1. Põikjõud ja lõikepinge Sirgele lühikesele vardale on rakendatud põiksihiline välisjõud F ning lõikepindadele rakenduvad osakoormused F1 ja F2 (Joon. 4.3): · vardas tekib nihkedeformatsioon (ja ka varda pinnal survedeformatsioon); · piisavalt tugeva koormuse korral varras puruneb (kihtide nihkumisega); · deformatsioone ja purunemist takistavad vardas sisejõud, s.t. jõud, mis

Materjaliõpetus
6 allalaadimist
thumbnail
15
pdf

LIIDETE TUGEVUS LÕIKEL

F u yx u y Joonis 4.2 Priit Põdra, 2004 53 Tugevusanalüüsi alused 4. LIIDETE TUGEVUS LÕIKEL 4.3. Sisejõud ja pinged lõikel 4.3.1. Põikjõud ja lõikepinge Sirgele lühikesele vardale on rakendatud põiksihiline välisjõud F ning lõikepindadele rakenduvad osakoormused F1 ja F2 (Joon. 4.3): · vardas tekib nihkedeformatsioon (ja ka varda pinnal survedeformatsioon); · piisavalt tugeva koormuse korral varras puruneb (kihtide nihkumisega); · deformatsioone ja purunemist takistavad vardas sisejõud, s.t. jõud, mis

Materjaliõpetus
11 allalaadimist
thumbnail
14
pdf

Detailide paindedeformatsioonid

joondeformatsioon (Joon. 11.2): l (pikenemine on "+", lühenemine on "-"); l varda (-lõigu) algpikkus (neutraalkihi pikkus), [m]; l vaadeldava kihi pikkuse muut paindel, [m]; y vaadeldava kihi koordinaat (+/-), [m]; neutraalkihi (varda telje) kõverusraadius, [m]. Ühtlaselt painutatud varras Sirge ühtlane vardalõik Painutatud ühtlane vardalõik y Neutraalkiht Mz (-) Pikenenud kiht M y

Materjaliõpetus
19 allalaadimist
thumbnail
15
docx

Masinatehnika eksam 2010/2011

Iy = Kolmnurgal alusega ühtiva kesktelje suhtes) 12 4 22. Konstruktsioonile mõjuvate väliskoormuste liigitus. 1) Rotoorsed jõud Fm 2) kasuliku koormuse jõud Fk 3) Raskusjõud Fg 4) Deformatsioonijõud Fd 5) keskkonnatakistuse jõud Fkt 1-5 on aktiivsed välisjõud Veel tegelikult inertsjõud Fi Sõltuvad ajast: stabiilne, dünaamiline 23. Kuidas määratakse konstruktsioonielemendis tekkivad sisejõud? Sisejõudusid mingi tarindit läbiva pinna ulatuse määratakse lõikemeetodiga, mis põhineb tõsiasjal, et tasakaalus oleva keha igasugune kujutletava lõikega eraldatud osa on samuti tasakaalus. Lõikega eraldatud osade tasakaalu tõttu saab sisejõud leida tasakaalutingimustest. (osale rakendatud jõudude projektsioonid vabalt valitud telgedele ja momendid nendes telgede suhtes võrduvad nulliga) Sisejõud on alati lõikepinna ulatuses jaotatud ja võivad pinna eriosades mõjuda erineva

Masinatehnika
225 allalaadimist
thumbnail
79
pdf

Teraskonstruktsioonide abimaterjal

Georg Kodi TALLINNA TEHNIKAÜLIKOOL ehitiste projekteerimise instituut SISUKORD 1. TERASRISTLÕIGETE TÄHISED ......................................................................................................................... 3 1.1 Ristlõigete tähistused ja teljed ................................................................................................................ 3 1.2 Ristlõigete koordinaadid ja sisejõud........................................................................................................ 3 2. VARUTEGURID ............................................................................................................................................... 4 2.1 Materjali varutegurid............................................................................................................................... 4 2.2 Koormuste varutegurid ..............................................

Ehitus
186 allalaadimist
thumbnail
7
pdf

Kordamis küsimused 1 ja 2

2.7. Kirjeldage normaaldeformatsiooni! 1.11. Kirjeldage dünaamilist koormust! 2.8. Millised on pikke tunnused? 1.12. Milleks on vaja koormusi taandada? 2.9. Milles seisneb põikdeformatsioon pikkel? 1.13. Milles seisneb Saint-Venant'i printsiip? 2.10. Mis on Poisson'i tegur? 1.14. Mis on materjali tugevus? 2.11. Mis on tahke keha sisejõud? 1.15. Mis on materjali jäikus? 2.12. Miks on vaja analüüsida koormatud varda 1.16. Kuidas määratakse materjalide tugevus- sisejõude? ja jäikusparameetrid? 2.13. Selgitage jõu mõju sõltumatuse printsiipi! 1.17. Milles seisneb Hooke'i seadus? 2.14. Milleks vajatakse lõikemeetodit? 1.18. Selgitage materjali elastsusmooduli 2.15

Tugevusõpetus
511 allalaadimist
thumbnail
252
doc

Rakendusmehaanika

EESTI MEREAKADEEMIA RAKENDUSMEHAANIKA ÕPPETOOL MTA 5298 RAKENDUSMEHAANIKA LOENGUMATERJAL Koostanud: dotsent I. Penkov TALLINN 2010 EESSÕNA Selleks, et aru saada kuidas see või teine masin töötab, peab teadma millistest osadest see koosneb ning kuidas need osad mõjutavad teineteist. Selleks aga, et taolist masinat konstrueerida tuleb arvutada ka iga seesolevat detaili. Masinaelementide arvutusmeetodid põhinevad tugevusõpetuse printsiipides, kus vaadeldakse konstruktsioonide jäikust, tugevust ja stabiilsust. Tuuakse esile arvutamise põhihüpoteesid ning detailide deformatsioonide sõltuvuse väliskoormustest ja elastsusparameetritest. Detailide pinguse analüüs lubab optimeerida konstruktsiooni massi, mõõdu ja ökonoomsuse parameetrite kaudu. Masinate projekteerimisel omab suurt tähtsust detailide materjali õige valik. Masinaehitusel kasutatavate materjalide nomenklatuur täieneb pidevalt, rakendatakse efekti

Materjaliõpetus
142 allalaadimist
thumbnail
36
doc

Kivikonstruktsioonid

1. Kivid ja plokid 8 3.2. Mördid 9 3.3. Armatuur ja betoon 9 4. Müüritise töötamine. Müüritise omadused 10 4.1. Müüritise tugevus 10 4.2. Müüritise töötamine survel, tõmbel, lõikel ja paindel 10 4.3. Müüritise deformatsiooniomadused 11 5. Müüritise tugevdamine armeerimisega 5.1. Müüritise survetugevuse suurendamine 12 5.2. Müüritise pikiarmeerimine 12 6. Müüritise tugevusarvutused 6.1. Arvutuse alused 12 6.2

Hooned
208 allalaadimist
thumbnail
15
doc

Raudbetooni kordamisküsimused

suurima paindemomendiga ristlõikes (kriitilises lõikes) saavutavad betooni tõmbetugevuse, siis tekib selles lõikes pragu, betooni tõmbetsoon langeb tööst välja ja konstruktsioon variseb. Seega on betoontala kandevõime määratud betooni tõmbetugevusega, kusjuures betooni suur survetugevus jääb põhiliselt kasutamata. Raudbetoontala töötab kuni esimese prao tekkimiseni analoogiliselt betoontalaga. Prao tekkimine kriitilises lõikes ei põhjusta aga tala purunemist, vaid viib normaalpingete ümberjaotumisele praoga ristlõikes: kogu tõmbetsooni sisejõud, mis seni võeti vastu betooniga kantakse nüüd üle tõmbetsoonis olevale pikitõmbearmatuurile. Edasisel koormamisel tekivad praod ka teistes ristlõigetes vastavalt paindemomendi suurenemisele neis. Õigesti projekteeritud raudbetoontala puruneb siis, kui kriitilises lõikes üheaegselt ammendub tala surve- ja tõmbetsooni vastupanu, s.o. kui tõmbearmatuuri pinge saavutab terase

Raudbetoon
251 allalaadimist
thumbnail
212
pdf

Puitkonstruktsioonide materjal 2010

............................................................... 90 9.3 Lisamomendid mehhaanilistes liidetes ........................................................................................... 97 10. JÄIKUSSIDEMED............................................................................................................................... 98 10.1 Surutud üksikelemendid................................................................................................................ 98 10.2 Tala või sõrestiksüsteemi jäikussidemed ...................................................................................... 99 10.3 Karkassi sidemete kujundamine.................................................................................................. 101 11. TULEPÜSIVUS................................................................................................................................. 102 11.1 Materjali omaduste arvutussuurused tulekahjus .................................

Ehitus
53 allalaadimist
thumbnail
35
pdf

Kivikonstruktsioonid

See mõiste haarab nii tood ehitus- platsil kui ka konstruktsioonide (detailide) valmistamist väljaspool ehitusplatsi ja nende püstitamist platsil; --kandekonstruktsioon: ühendatud detailidest iseseisev ehitise osa, millel on vajalik tugevus ja jäikus. Selle mõistega osutatakse koonmust kandvale ehitise osale; --ehitise liik näitab tema kasutuse eesmärki, näiteks elumaja, tööstushoone, maanteesild; --konstruktsiooni liik näitab konstruktsioonielemendi tooskeemi, näiteks tala, post, kaar, jätkuvtala; --ehitusmaterjal: materjal, mida kasutatakse ehitamisel, näiteks betoon, teras, puit, kivi, --ehitise (konstruktsiooni) tüüp näitab ehitise (konstruktsiooni) põhimaterjali, näiteks raud- betoonkonstruktsioon, teraskonstruktsioon, puitkonstruktsioon, kiviehitis, --ehitusviis: näiteks kohapealne betoonivalu, ehitamine tööstuslikest detailidest; --konstruktiivne skeem (arvutusskeem): konstruktsiooni või tema osa lihtsustatud arvutus- mudel.

Kivikonstruktsioonid
107 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun