Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Reaalarvud teooria - sarnased materjalid

täisarvu, täisarvud, murd, astendaja, kirjutata, astendajad, vastandarvud, murdarvud, kümnendmurd, naturaalarvu, jääk, lõpmatu, ratsionaalsed, astmetega, pöördarv, pöördarvudeks, naturaalarvud, jagub, jagaja, ratsionaalarvud, kirjutatakse, koma, segaarv, mitteperioodilise, reaalarvu, korrutamisel, summaga, nimetaja, standartkuju, arvteljel
thumbnail
8
docx

Reaalarvud

Naturaalarvude hulka tähistatakse sümboliga N. Naturaalarvude hulga saame esitada kujul: N = {1;2;3;...;n-1;n;n+1;...} . 0 1 2 3 4 Naturaalarvude hulga omadusi. · Naturaalarvude hulk N on järjestatud lõpmatu hulk, milles on vähim, kuid pole suurim arvu. · Naturaalarvude hulk N on hulk, milles arvud järgnevad vahetult üksteisele ega kata kogu arvtelge. · Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes. (Kui kaks naturaalarvu liita või korrutada on tulemuseks alati naturaalarv.) · Naturaalarvude hulk ei ole kinnine lahutamise või jagamise suhtes. Naturaalarve, mis jaguvad 2-ga, nimetatakse paarisarvudeks, ülejäänuid paarituteks arvudeks. Ühest suuremat naturaalarvu , mis jagub vaid ühe ja iseendaga nimetatakse algarvuks, kõiki ülejäänud ühest suuremaid arve kordarvudeks. Algarvud on 2, 3, 5, 7, 11, 13, 17, 19 jne. (Hulk on lõpmatu.) Arvud 0 ja 1 ei ole algarvud ega kordarvud.

Matemaatika
91 allalaadimist
thumbnail
5
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b  N korral a  b  b  a . Liitmis kommutatiivsus. 2. Iga a, b  N korral a  b  b  a . Korrutamise kommutatiivsus. 3. Iga a, b, c  N korral a   b  c    a  b   c . Liitmise assotsiatiivsus. 4

Matemaatika
112 allalaadimist
thumbnail
10
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b  N korral a  b  b  a . Liitmis kommutatiivsus. 2. Iga a, b  N korral a  b  b  a . Korrutamise kommutatiivsus. 3. Iga a, b, c  N korral a   b  c    a  b   c . Liitmise assotsiatiivsus. 4

Matemaatika
26 allalaadimist
thumbnail
53
ppt

Reaalarvud ( slaidid )

Naturaalarve saab järjestada 0 1 2 3 4 1. a = b; 2. a > b; 3. a < b Naturaalarvude hulk on lõpmatu Naturaalarvude hulk on kinnine liitmise ja korrutamise tehete suhtes Naturaalarvude hulk ei ole lahutamise ega jagamise tehete suhtes kinnine Naturaalarvud Paaris- ja paaritu arvud ­ arvuga 2 jaguvuse alusel Algarvud ja kordarvud - arvude jaguvuse alusel Algarv ­ ühest suuremat naturaalarvu, mis jagub vaid ühe ja iseendaga Kordarvud ­ kõiki ülejäänud ühest suuremaid naturaalarve NB! Arvud 0 ja 1 ei ole ei algarvud ega kordarvud Arvu a teguriteks nimetatakse kõiki neid naturaalarve, millega arv a jagub. Arvu iga tegur on kas selle arvu algarvuline tegur ehk algtegur või on võrdne arvu algtegurite korrutisega. Antud arvude suurimaks ühisteguriks (SÜT) nimetatakse suurimat arvu, millega jaguvad kõik antud arvud.

Matemaatika
63 allalaadimist
thumbnail
6
doc

8. klassi raudvara 1.osa

kusjuures enne tuleb tegurid sobivalt järjestada ja rühmitada 8.Korrutise astendamine - iga tegur astendatakse = eraldi ja tulemused korrutatakse = 9.Astme astendamine - alus astendatakse astendajate korrutisega = 10.Üksliikmete astendamine - toetume korrutise ( ja astme astendamise reeglitele 11.Astmete jagamine - sama alusega astmete jagamisel lahutatakse esimesest astendajast teine astendaja ja alus astendatakse saadud vahega 12.Üksliikmete jagamine - kordajad jagatakse omavahel, sama alusega astmed omavahel ja selgitus: 4:2=2, a:a=1 seda ei kirjutata saadud tulemused korrutatakse; jagada võib ka vastusesse, b astmete jagamisel tuleb astendajad taandamisvõttega lahutada 3-1=2 13.Jagatise astendamine - astendatakse eraldi jagatav ja jagaja ning jagatakse esimene tulemus teisega (a:b)n=an:bn 14

Matemaatika
73 allalaadimist
thumbnail
6
docx

Arvuhulgad

· Liitmine · Korrutamine · Lahutamine · Jagamine NATURAALARVUDE HULK N 1. On järjestatud lõpmatu hulk,milles on vähim,kuid pole suurimat arvu. 2. On hulk, milles arvud järgnevad vahetult üksteisele ega kata kogu arvtelge. 3. On hulk, mis on kinnine liitmis- ja korrutamistehte suhtes. Ratsionaalarvud Ratsionaalarvuks nimetatakse arvu, mis avaldub jagatisena , kus a Ratsionaalarvud on need reaalarvud, mida saab esitada kahe täisarvu m ja n ( ) jagatisena nii, et kus on täisarvude hulk, on naturaalarvude hulk (v.a. null) ja on ratsionaalarvude hulk. Igal ratsionaalarvul on ka lõpmatu kümnendarendus ja see on alati perioodiline. Näiteks 2¾ = 11/4 = 2,7500000.... või 2,7499999... ja 0 = 0/1 = 0,00000... on ratsionaalarvud. Ratsionaalarvu vastandarvuks nimetatakse ratsionaalarvu ning pöördarvuks ratsionaalarvu .

Matemaatika
49 allalaadimist
thumbnail
12
pdf

Matemaatika eksami teooria 10. klass

Matemaatika eksami teooria Reaalarvud 1.1. Naturaal-, täis- ja ratsionaalarvud · Naturaalarvude hulk N (ainult positiivsed täisarvud) · Naturaalarvu n vastandarv -n defineeritakse selliselt, et n+(-n)=0 · Naturaalarvud koos oma vastandarvudega moodustavad täisarvude hulga Z (jaguneb pos ja neg) · Iga kahe täisarvu vahe on alati täisarv · Kui arv a ei jagu arv b-ga, siis on tegemist murdarvuga. Kõik täisarvud ja positiivsed ning negatiivsed murdarvud moodustavad kokku ratsionaalarvude hulga Q. Ratsionaalarv on arv, mis avaldub jagatisena a/b, kus a Z, b Z ja b 0. · Iga ratsionaalarv avaldub lõpmatu perioodilise kümnendmurruna. 1.2 Irratsionaal- ja reaalarvud · Arv, mis avaldub lõpmatu mitteperioodilise kümnendmurruna, on irratsionaalarv. · Arvutamisel piirdutakse ligikaudsete väärtustega e lähenditega, nt pii=3,14

Matemaatika
79 allalaadimist
thumbnail
19
pdf

Astmed ja juured

Astmed ja juured © T. Lepikult, 2010 Astme mõiste. Definitsioon Ühest suurema naturaalarvu n korral nimetatakse astmeks an korrutist, milles on n võrdset tegurit a, s.t. a n a a ... a. n tegurit Näited 32 3 3 9. 104 10 10 10 10 10000. 3 1 1 1 1 1 . 4 4 4 4 64 1 kilobait = 210 baiti = 2·2·2·2·2·2·2·2·2·2 baiti 1024 baiti. =

Matemaatika
68 allalaadimist
thumbnail
32
ppt

Astmed

Astmed ja juured Astme mõiste. Definitsioon Ühest suurema naturaalarvu n korral nimetatakse astmeks an korrutist, milles on n võrdset tegurit a, s.t. a n  a  a ... a. n tegurit Näited 32  3  3  9; 10 4  10 10 10 10  10000 3  1 1 1 1 1

Matemaatika
11 allalaadimist
thumbnail
4
doc

Reaalarvud

üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki võrrelda, selleks aga tuli nende hulkade elemente loendada. Nii tekkis naturaalarvude hulk N. Esialgu ei kuulunud null arvude hulka. Alles 7. Sajandil sõnastasid india matemaatikud reeglid arvu 0 kasutamiseks. Neli põhitehet naturaalarvudega on liitmine, lahutamine, korrutamine ja jagamine. Naturaalarvud koos oma vastandarvudega moodustavad täisarvude hulga Z. Kõik täisarvud ning positiivsed ja negatiivsed murdarvud kokku moodustavad ratsionaalarvude hulga Q. Murdudega seoses kasutatakse mõisteid harilik murd, liigmurd ja lihtmurd. On ka veel kümnendmurd. Kümnendmurd on murd, mis on kirjutatud koma abil, kus esimene koht pärast koma tähendab kümnendikke, teine sajandikke jne. Iga ratsionaalarvu saab esitada kümnendmurruna, kui jagada lugeja nimetajaga. Siin esineb kaks erinevat olukorda. Ühel juhul tekib lõplik

Matemaatika
28 allalaadimist
thumbnail
5
doc

Arvuhulgad

.3 Naturaalarvude hulk N N = {0; 1; 2; 3; 4; ...}. Väikseim = 0, suurim puudub. Naturaalarvude hulk on järjestatud hulk ja ta on kinnine liitmise ja korrutamise suhtes (tulemus ei välju hulgast). * (N1 = {1; 2; 3...}, see märgib naturaalarve alates ühest.) Negatiivsete täisarvude hulk z ­ Z - = {-1; -2; -3...}. Hulk on kinnine liitmise suhtes. Täisarvude hulk Z Z = {0; ±1; ±2; ±3...} z = z ­ N. Hulk on kinnine liitmise, lahutamise ja korrutamise suhtes. Murdarvude hulk Harilik murd lihtmurd + liitmurd Kümnendmurd lõplik kümnendmurd + lõpmatu (perioodiline) kümnendmurd + lõpmatu mitteperioodiline murd (viimane ei kuulu ratsionaalarvude hulka). 2 Kui periood algab kohe peale koma, on see puhtperioodiline murd, nt. = 0,(2) 9 5

Matemaatika
54 allalaadimist
thumbnail
22
pdf

Arvuhulgad ja arvuhulkade omadused

Matemaatika: Arvuhulgad ja arvuhulkade omadused Mairo Tammepõld 10ü Arvuhulgad ● Arvuhulgad jagunevad reaalarvudeks. ● Reaalarvud on naturaalarvud N=(1;2;3;4;...) täisarvud Z=(...;-4;-3;-2;-1;0;1;2;3;4;...) ratsionaalarvud Q=(...;-12;...;3;...;-4;...;-½;0) irratsionaalarvud J=(...;π;...;erinevad ruutjuured) Arvuhulgad ● Murdudega seoses oleme kasutanud veel järgmisi mõisteid : harilik murd - ½ (a-lugeja, b-nimetaja) lihtmurd - (a naturaalarvu ja lihtmurru summa (2½=2+½) kümnendmurd - murd, mis on kirjutatud koma abil

Matemaatika
35 allalaadimist
thumbnail
4
docx

Matemaatika suulise arvestuse punktid

c) a + (b + c) = (a + b) + c a, b, c liitmise assotsiatiivsus(ühenduvusseadus) d) a (b c) = (a b) c a, b, c korrutamise assotsiatiivsus e) a (b + c) = ab + ac a, b, c korrutamise distributiivsus 2) - hulk on kinnine liitmise ja korrutamise suhtes. 4. Algarvud. 1) Algarvuks nimetatakse 1-st suuremat naturaalarvu, mis jagub ainult iseenda ja 1-ga. 2) Eratosthenese sõel. a) Nimekiri arvudest 2..N. b) Nimekirjast tõmmatakse maha need arvud, mis on mingi algarvu kordsed. 5. Algarvud. 1) Eukleidese teoreem. a) Teoreem : algarvude hulk on lõpmatu. b) Tõestus : Tähistame p1=2, p2=3, p3=5, ... Oletame vastuväiteliselt, et leidub suurim algarv pn.

Matemaatika
6 allalaadimist
thumbnail
9
doc

Põhivara 7. klass

Kahe samamärgilise arvu jagatis on positiivne. Kahe erimärgilise arvu jagatis on negatiivne. Arvu aste: 2³=222=8 a0=1, kui a0 , st iga arv astmes 0 on võrdne ühega (kui see arv ei ole 0). 1³=1 2³=8 3³=27 4³=64 5³=125 6³=216 7³=343 8³=512 9³=729 10³=1000 20=1 21=2 22=24 23=8 24=16 25=32 26=64 27=128 28=256 29=512 210=1024 Tehted astmetega: 1) am an = a m + n Näiteks: 2² 2³ = 22+3 = 25 = 32 Võrdsete alustega astmete korrutamisel võime astendajad liita ning saadud tulemusega astendada antud alust. 2) am : an = a m-n Näiteks: 36 : 34 = 36-4 = 3² = 9 Võrdsete alustega astmete jagamisel võime jagatava astendajast lahutada jagatava astendaja ning saadud tulemusega astendada alust. 3) (a b)n = an bn Näiteks: (2 4)² = 2² 4² = 64 Korrutise astendamisel võime astendada iga teguri eraldi. 4) (am)n = am × n Näiteks: (3²)5 = 3 2 × 5 = 310 = 59049

Matemaatika
277 allalaadimist
thumbnail
9
doc

Mõisted, valemid ja joonised

1. harilik murd Harilik murd näitab, mitmeks võrdseks osaks on tervik jaotatud ja mitu sellist osa on võetud. 2. kümnendmurd Kümnendmurd on komaga arv. N: 23,4 ;14,1 ; 3,8 ; 10,5 3.murru taandamine Hariliku murru taandamiseks nimetatakse murru lugeja ja nimetaja jagamist ühe ja sama nullist erineva arvuga. 4.Astmete korrutamine Ühe ja sama arvu astmete korrutamisel astendajad liidetakse. 32 · 31 = 32 + 1 = 33 = 3 · 3 · 3 = 27 5.Astmete astendamine Astme astendamisel astendajad korrutatakse. 6.Astmete jagamine Ühe ja sama arvu astmete jagamisel astendajad lahutatakse. a m : a n = a m-n 7.Negatiivne astendaja Murd, mille lugejaks on arv 1 nimetajaks sama aste positiivse astendajaga. 1 a -n = n , kus a 0 a 8.Arvu standardkuju Kui arv on esitatud kahe teguri korrutisena, millest üks jääb arvude 1 ja 10 vahele ning teine arvu 10 aste, siis öeldakse, et arv on kirjutatud standardkujul. N: 20000 = 2 *10 4 5000000000 = 5 * 10 9 9

Matemaatika
636 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

.............................................................................. 7 Ratsionaalavaldise lihtsustamine..............................................................................................7 Tegurdamine e. korrutiseks teisendamine............................................................................ 8 Astendamine............................................................................................................................. 8 Naturaalarvuline astendaja................................................................................................... 8 Tehted astmetega.................................................................................................................. 8 Negatiivse täisarvulise astendajaga aste...............................................................................9 Arvu 10 astmed................................................................................................................

Matemaatika
1453 allalaadimist
thumbnail
15
doc

Mõisted matemaatikas

Ülesanne 1 Aksioom (kreeka keeles axima 'see, mis on vääriline') tähendab üldkeeles väidet, mille tõesuses pole kahtlust. Algarvuks nimetatakse ühest suuremat naturaalarvu, mis jagub vaid arvuga 1 ja iseendaga. Algarvude hulk on lõpmatu. Sajast väiksemad algarvud ((100) = 25) on 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 ja 97. Kaksikuteks nimetatakse selliseid algarve, mille vahe on 2, näiteks 101 ja 103 või 1 000 000 007 ja 1 000 000 009. Ei ole teada, kas kaksikuid on lõpmata palju. Aritmeetiliseks keskmiseks nimetatakse arvu, mis saadakse antud arvude summa jagamisel liidetavate arvuga. Näide 1.

Matemaatika
63 allalaadimist
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

..…… 35 3.20 Näited võrratuste ja võrratussüsteemide lahendamisest …………..… 35 3.21 Logaritmid ………………………………………………………..…. 41 3.22 Summa märk ………………………………………………….……. 44 3.23 Ülesanded aritmeetikast ja algebrast …………...………………..….. 46 1 1. ARVUHULGAD Positiivsed täisarvud ehk naturaalarvud tekkisid vajadusest loendada esemeid. Kõik naturaalarvud moodustavad naturaalarvude hulga ℕ = {0; 1; 2; 3; 4; ...} . Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes. Naturaalarvude hulk muutub kinniseks lahutamise suhtes, kui teda täiendada arvude 1, 2, 3, ... vastandarvudega -1, -2, -3, ... . Negatiivsed ja positiivsed täisarvud ning arv 0 moodustavad täisarvude hulga ℤ = {±1; ± 2; ± 3; ...}

Matemaatika
75 allalaadimist
thumbnail
4
txt

Matemaatika mõisted 8. klassile

Misted 8. klassile 1. Milline murd on harilik murd? * Harilik murd nitab, mitmeks vrdseks osaks on tervik jaotatud ja mitu sellist osa on vetud. 2. Milline murd on kmnendmurd? Too nide . * Kmnendmurd on komaga arv . nt : 2,14 ; 76,76 ; 16,36 3. Mida nimetatakse murru taandamiseks? * Hariliku murru taandamiseks nimetatakse murru lugeja ja nimetaja jagamist he ja sama nullist erineva arvuga 4. Astmete korrutamine. Too nide. * he ja sama alusega astmete korrutamisel me liidame astendajad ja siis astendame astme alust. nt : a(astmes n) * a(astmes m) = a (astmes n+m) 3(astmes4)* 3 (ruudus) = 3(astmes 6) = 729 5. Astemete astendamine. Too nide. * Astmete astendamisel antendajad korrutame ja siis astendame. nt: (a astmes n) astmes m = a astmes mn ; (2 astmes -3) astmes 4 = 2 astmes -12 6. Astmete jagamine. * Sama alusega astmete jagamisel me lahutame astendajad ja siis astendame astme alust. 7.Negatiivne astendaja. Too nide .

Matemaatika
104 allalaadimist
thumbnail
4
doc

Matemaatika mõisted

1. Absoluutväärtus ­ reaalarvuga x määratud mittenegatiivne reaalarv 2. Abstsisstelg ­ x ­ telg 3. Aksioom ­ lause, mida loetakse õigeks ilma põhjenduseta. Aksioomid võetakse aluseks teiste väidete põhjendamisel. 4. Algarv ­ Ühest suurem naturaalarv, mis jagub vaid ühe ja iseendaga. 5. Algebraline murd ­ murd, mille lugejaks ja / või nimetajaks on muutujaid sisaldav avaldis. 6. Algebraline ruutjuur ­ arv, mille ruut on antud arv a. 7. Algkoordinaat ­ antud sirge ja ordinaattelje lõikepunkti ordinaat. 8. Algtegur ­ naturaalarvu algarvuline tegur. 9. Algteguriteks lahutamine ­ naturaalarvu esitamine algarvuliste tegurite korrutisena. 10. Alusnurk ­ võrdhaarse kolmnurga või trapetsi aluse ja haara vaheline nurk. 11. Apoteem ­ 1

Matemaatika
146 allalaadimist
thumbnail
8
pdf

Kompleksarvud gümnaasiumiõpikus

-1, nimetama imaginaarühikuks 1 ja tähistama tähega i. Kompleksarvu a + ib vastandarvuks nimetatakse arvu -(a + ib) = -a - ib. Arvu, mille ruut on -1, nimetatakse imaginaarühikuks ja tähistatakse Näide 3. Leiame arvudele 4i - 5 ja 6 - 4i vastandarvud. sümboliga i, s.t. i = -1 . Vastavalt definitsioonile leiame, et esimese arvu vastandarv on Imaginaarühiku abil saab esitada ruutjuuri negatiivsetest arvudest, näiteks -(4i - 5) = -4i + 5 = 5 - 4i ja teise arvu vastandarv on -16 = 16 ( -1) = 16 -1 = 4 -1 = 4i, -(6 - 4i) = -6 + 4i. -10000 = 10000 ( -1) = 100 -1 = 100i

Matemaatika
16 allalaadimist
thumbnail
18
docx

Elementaarmatemaatika 1. teooria

3. Arvuhulga kinnisus tehte suhtes- Arvuhulka nimetatakse kinniseks mingi tehte suhtes, kui selle hulga iga kahe arvu korral kuulub alati samasse hulka ka vaadeldava tehte tulemus 4. Arvuhulga pidevus- Kui arvuhulga igale arvule vastab üks kindel arvtelje punkt ja vastupidi, igale arvtelje punktile vastab üks kindel selle arvuhulga arv, siis öeldakse, et see arvuhulk on pidev 5. Vastandarv- Naturaalarvu n vastandarvuks nimetatakse sellist arvu -n, mis rahuldab võrdust n + ( -n ) = 0. 6. Täisarvude hulk- · Naturaalarvude hulk on täisarvude hulga osahulk · Z = {....-2; -1; 0; 1; 2; ......} · Jaguneb naturaalarvudeks ja negatiivseteks arvudeks a 7. b Murdarvud- Kui täisarv a jagub täisarvuga b, siis on jagatis täisarv, kui aga ei jagu, siis

Elementaarmatemaatika 1
63 allalaadimist
thumbnail
6
doc

Reaalarvud. Võrrandid

Võrrandite koostamine. Lihtsamate tekstülesannete lahendamine. 2. Tarkuseterad 2.1 Arvuhulgad Loendamisel kasutatavad arvud Arv 0 Kas 0N? Naturaalarvud N Järjestatav, vähim arv 1, lõpmatu Liitmine, korrutamine Jäägiga jagamine, algarv, SÜT, VÜK Nat. arvude vastandarvud Täisarvud Z Järjestatav, lõpmatu, punktihulk arvteljel Liitmine, korrutamine, lahutamine Murdarvud Ratsionaalarvud Q Kahe täisarvu jagatis Järjestatav, lõpmatu, tihe Liitmine, korrutamine, lahutamine, jagamine (v.a. nulliga) Irratsionaalarvud

Matemaatika
297 allalaadimist
thumbnail
7
docx

MATEMAATIKA ANALÜÜS 1 KT 1 vastused

Valime h ulgast D kaks suvalist arvu x1 ja x2 nii et kehtib võrratus x1 < x2. Kui funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk ei muutu, st f(x1) < f(x2), siis f on kasvav hulgas D. Kui aga funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk muutub vastupidiseks st f(x1) > f(x2), siis f on kahanev hulgas D. Astmefunktsiooni mõiste (määramispiirkonda ei küsi). kus a on nullist erinev konstantne astendaja. Eksponent- ja trigonomeetriliste funktsioonide määramispiirkonnad, väärtuste hulgad ja graafikud. kus astme alus a on konstantne ja rahuldab võrratust a > 0 ja Antud funktsiooni korral X = R ja Y = (0;1). 4. Üksühese funktsiooni ja pöördfunktsiooni definitsioonid. Kui iga y korral hulgast Y leidub ainult üks x nii, et valitud y on selle x-i kujutiseks, siis öeldakse, et funktsioon f on üksühene

Matemaatika analüüs I
231 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

2. ALGEBRA 2.1 Astmed Astmeks a n nimetatakse korrutist, mille kõik tegurid on võrdsed arvuga a (astme alus) ja tegurite arv on n (astendaja): a n = a14 a2K43 a n , 1, n tegurit kus 1 on naturaalarvude hulk alates arvust 1: 1 = { 1; 2; 3; 4; ...} . Astendaja 0 defineeritakse võrdusega a 0 = 1 , milles a 0 . Negatiivse astendaja korral sisaldab astendamine ka jagamise: 1 a - n = n , kui a 0 ja n või kui a > 0 ja n , a kus on täisarvude hulk ja on ratsionaalarvude hulk: a = { ±1; ± 2; ± 3; ...} , = , kus a , b ja b 0 .

Matemaatika
1099 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

Astmeks a n nimetatakse korrutist, mille kõik tegurid on võrdsed arvuga a (astme alus) ja tegurite arv on n (astendaja): a n  a14  a2K43 a n  ¥ , 1, n tegurit kus ¥ 1 on naturaalarvude hulk alates arvust 1: ¥ 1   1; 2; 3; 4; ... . Astendaja 0 defineeritakse võrdusega a 0  1 , milles a  0 . Negatiivse astendaja korral sisaldab astendamine ka jagamise: 1 a  n  n , kui a  0 ja n  ¢ või kui a  0 ja n  ¤ , a kus ¢ on täisarvude hulk ja ¤ on ratsionaalarvude hulk:  a  ¢   1;  2;  3; ..

Algebra I
60 allalaadimist
thumbnail
4
pdf

Matemaatiline analüüs 1, teooria, spikker, kontrolltöö 1, matan

areafunktsioonide definitsioonid (määramispiirkondi,väärtuste Funktsiooni f nimetatakse pidevaks punktis a, kui Astmefunktsioonid hulki ja graafikuid ei küsi). 9.Funktsiooni piirväärtuse definitsioon ja f on määratud argumendi väärtusel , st aX y= , kus a on nullist erinev konstantne astendaja. Selle geomeetriline sisu. Funktsiooni piirväärtuse eksisteerib lõplik piirväärtus lim () Ilmutatud ja ilmutamata funktsioonid

Algebra ja analüütiline...
69 allalaadimist
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

Determinant Ruutmtxi korral saab def ruutmtx det, st igale ruutmtxle A seab vastavusse üks reaalarv. Seega on det funktsioon, mis igale ruutmtxle A seab vastavusse kindla arvu detA. Teisiti öeldes, funktsiooni det argumentideks on ruutmtxid ja väärtusteks reaalarvud. Det(A)=l a 11 a12..a1n ; an1 an2 .. ann l .Maatriksi A=(a b ; c d) korral nim arvu ad-bc mtx A determindandiks ja tähistatakse det(A) või lAl. Permutatsioon ­ n-järku permutatsionniks nim n esimese naturaalarvu mistahes ümberjärjestust(kus iga arv esineb üks kord). Det omadusi. 1)kui mingi omadus kehtib det ridade kohta, siis kehtib sama omadus ka veergude kohta. 2)det mistahes reast(veerust) võib tuua ühise teguri det märgi ette. Korrutades det mingi arvuga, tuleb selle arvuga korrutada ainult det üks rida(veerg) 3)kui det mingis reas on ainult 0id, siis on det null. 4)Olgu det mingi rea element kahe liidetava summa. Siis avaldub det kahe det summana

Lineaaralgebra
865 allalaadimist
thumbnail
28
docx

ITT0030 Diskreetne matemaatika II - eksamikonspekt

a). ,,Katse-eksimis meetodil" ­ sellisel juhul on mõtekas proovida kuni väärtuseni , kuna järgnevate arvude hulgas tegurit enam tõenäoliselt ei leidu. b). Fermat' väike teoreem- asendadada arvud Fermat' väikesesse teoreemi. c). Miller-Rabini test- ehkki tegu on tõenäosusliku polünomiaalse meetodiga, on tulemus suhteliselt usaldusväärne, kuna eksimisvõimalus on harilikult 0,01% või vähemgi. *Erathosthense sõel- (Antiikne) meetod selekteerimaks n naturaalarvu seast välja algarve. Üles kirjutatakse kõik antud vahemiku naturaalarvud 1,2,3....n ning nende seast hakatakse järjest välja kriipsutama n-1 kordseid arve. Alles jäävad vaid algarvud. [24].Naturaalarvude kanooniline kuju. Suurim ühistegur ja vähim ühiskordne. Iga naturaalarvu n saab esitada kujul n = , ehk sisuliselt teatud (astmesse tõstetud) algarvude korrutisena. Arv n jagub kõigi nende algarvudega p. Iga naturaalarv n on esitatav

Diskreetne matemaatika II
377 allalaadimist
thumbnail
15
docx

Matemaatiline analüüs I kontrolltöö

argumentidele x ja x võrratuse märk ei muutu, siis on f kasvav fulgas D. c.ii. Olgu D funktsiooni f määramispiirkonna alamhulk. Valime hulgast D kaks suvalist arvu x ja x nii, et x< x. Kui funktsiooni f rakendamisel argumentidele x ja x võrratuse märk muutub vastupidiseks, siis on f kahanev hulgas D. d. Astmefunktsioonid y=, kus a on nullist erinev konstantne astendaja. Selle funktsiooni määramispiirkonna väärtuste hulk ja graafik sõltuvad oluliselt astmest a. Määramispiirkond on järgmine: d.i. a=p/q, kus p,q Z ja q on paaritu. (Täisarvuliste astendajatega funktsioon) d.ii. a=p/q, kus p,q Z ja q on paaris või a on irratsionaalne arv. (Paaris juured) e. Eksponent- ja trigonomeetrilised funktsioonid, nende määramispiirkonnad,

Matemaatiline analüüs
51 allalaadimist
thumbnail
9
pdf

Vähendatud programmi (A) ESIMENE teooriatöö

ja * nii, et kehtib võrratus ) < * . Kui funktsiooni ! rakendamisel argumentidele ) ja * võrratuse märk ei muutu, st ! ) < ! * , siis on funktsioon ! kasvav hulgas (. Kui aga funktsiooni ! rakendamisel argumentidele ) ja * võrratuse märk muutub vastupidiseks, st ! ) > ! * , siis on funktsioon ! kahanev hulgas (. Kasvamispiirkonnas funktsiooni graafik tõuseb, kahanemispiirkonnas aga langeb. Astmefunktsioon on funktsioon kujul = + , kus on nullist erinev konstantne astendaja. Selle funktsiooni määramispiirkond, väärtuste hulk ja graafik sõltuvad oluliselt astmest . Eksponentfunktsioon on funktsioon kujul = , , kus astme alus on konstantne ja rahuldab võrratust > 0. Eeldades, et 1, siis = ja = 0, . Kui > 1 on graafik kogu oma määramispiirkonnas kasvav. Kui 0 < < 1 kahaneb graafik kogus määramispiirkonnas. Trigonomeetrilised funktsioonid on =01 , = 230 , =4 1 , = 234 radiaanides antud argumendiga .

Matemaatika analüüs I
93 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

Kui funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk ei muutu, st f(x1) < f(x2), siis on f kasvav hulgas D. Kui aga funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk muutub vastupidiseks, st f(x1) > f(x2), siis on f kahanev hulgas D. Kasvamispiirkonnas funktsiooni graafik tõuseb, kahanemispiirkonnas aga langeb. Astmefunktsioon- funktsioon järgmisel kujul y = x a ,kus a on nullist erinev konstantne astendaja. Selle funktsiooni määramispiirkond, väärtuste hulk ja graafik sõltuvad oluliselt astmest a. Eksponentfunktsioon- Eksponentfunktsioon on funktsioon järgmisel kujul: y = a astmel x , kus astme alus a on konstantne ja rahuldab võrratust a > 0. Lisaks sellele võrratusele eeldame veel, et a ei = 1, sest a = 1 korral saame konstantse funktsiooniy = 1 astmel x = 1. Eksponentfunktsiooni korral X = R ja Y = (0,). Trigonomeetrilised funktsioonid- y = sin x, y = cos x, y = tan x ja y = cot x

Matemaatiline analüüs I
105 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I - I teooria töö

kasvav hulgas D. o Kui aga funktsiooni f rakendamisel argumentidele x1 ja x2 võrratuse märk muutub vastupidiseks, st f(x1) > f(x2), siis on f kahanev hulgas D. o Kasvamispiirkonnas funktsiooni graafik tõuseb, kahanemispiirkonnas aga langeb. · Astmefunktsioon on funktsioon järgmisel kujul y = xa, kus a on nullist erinev konstantne astendaja. Selle funktsiooni määramispiirkond, väärtuste hulk ja graafik sõltuvad oluliselt astmest a. · Eksponentfunktsioon on funktsioon järgmisel kujul: y = ax , kus astme alus a on konstantne ja rahuldab võrratust a > 0. Lisaks sellele võrratusele eeldame veel, et a =1 Eksponentfunktsiooni korral X = R ja Y = (0,). Funktsioon y = ax on kasvav kogu oma määramispiirkonnas, kui a > 1 ja kahanev kogu oma määramispiirkonnas,

Matemaatika analüüs I
487 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun