järjekorras; 3)Liidetakse ja lahutatakse avaldises antud järjekorras. arvud 0, 1, 2, 3, ... N: naturaalarvud negatiivsed arvud -1, -2,... 5 3 Z: täisarvud murrud ;- ;... 6 5 I: Q: ratsionaalarvud irratsionaalarvud 2 ; ;... R: reaalarvud Teeme ülesanded. Arvude aritmeetiline ja geomeetriline keskmine Arvude a1, a2, a3,..., an aritmeetiliseks keskmiseks nimetatakse arvu a1 + a2 + ... + an a= n Positiivsete arvude a1, a2, a3,..., an geomeetriliseks keskmiseks nimetatakse arvu a = n a1 a2 ... an Kahe arvu geomeetrilist keskmist nimetatakse mõnikord ka nende arvude keskmiseks võrdeliseks.
Ruutvõrrandid. Ruutvõrrandid esituvad kujul ax2 + bx + c = 0. Ruutvõrrandid jagunevad taandamata ja taandatud ruutvõrranditeks: Taandamata ruutvõrrand Taandatud ruutvõrrand ax2 + bx + c = 0 x2 + px + q = 0 - b ± b 2 - 4ac 2 x1;2 = p p 2a x1;2 = - ± - - q 2 2 Kui ruutvõrrandis ax2 + bx + c = 0 kas b = 0 või c = 0, siis on tegemist mittetäieliku ruutvõrrandiga. Selliseid võrrandeid viisakas inimene ei lahenda eespool toodud lahendivalemiga, sest neid saab lihtsamalt lahendada. Näide 1. Lahendame võrrandid 1) 3x2 + 6x = 0, 2) 0,5x2 23 = 0, 3) 3x2 = 0. 1) Võrrandi 3x2 + 6x = 0 lahendamisel toome x sulgude ette, siis saame x(3x + 6) = 0. Kahe arvu korrutis on
Võrrandite lahendamine Lineaarvõrrandid Lineearvõrrandeid saab alati esitada kujul ax + b = 0. Sellel võrrandil võib olla · täpselt üks lahend · lahendid võivad puududa · lõpmata palju lahendeid Näide 1. Lahendame võrrandi 3(2x + 5) = 7x. Avame sulud 6x + 15 = 7 x, millest 6x + x = 7 15 ehk 7x = 8. 8 - Selle võrrandi lahend on x = 7. Näide 2. Lahendame võrrandi 3(2x 1) = 6x 3. Avame sulud, saame 6x 3 = 6x 3 (*), ehk 6x 6x = 33 (**), millest 0x = 0. Viimane võrdus kehtib iga tundmatu x väärtuse korral (0 · x = 0). Kuna võrrandi lahendamisel on kasutatud üksnes võrrandi samaväärsusteisendusi, siis kehtivad iga x väärtuse korral ka
Ruutvõrrandi abil lahenduvaid ülesandeid Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi. Tekstülesande lahendamine võrrandi abil koosneb kolmest etapist: 1. võrrandi koostamine teksti järgi; 2. koostatud võrrandi lahendamine; 3. võrrandi lahendite kontroll teksti järgi, lõplik lahendite leidmine ja vastuse kirjutamine. Mõningaid näpunäiteid võrrandi koostamiseks. Põhinõue - loe teksti ülima tähelepanuga, sest tekstis on kog
Võrrandid Võrrandi mõiste Võrrand on muutujaid sisaldav võrdus, milles üks või mitu muutujat loetakse tundmatuks (otsitavaks). Näited Ruutvõrrand: x2 2x 1 0 Trigonomeetriline võrrand: sin t cos 2t 1 Eksponentvõrrand x suhtes: e 2 x e 2 x 2a 1 lineaarne võrrand a suhtes: Juurvõrrand x ja y suhtes: x y x 2 2 xy Logaritmvõrrand: log u (2u u 2 ) 3 Võrrandi lahend Tundmatu (muutuja, otsitava) väärtust, mille korral võrrand osutub samasuseks, nimetatakse võrrandi lahendiks ehk juureks. Näide Võrrandi 2x 3 0 3 lahendiks on x , 2 kuna, asendades võrrandis sümboli x arvuga 3/2, saame samasuse : 3 23 2 3 3 3 3 0. 2 2 Võrrandi lahendite arv Võrrandil võib olla üks või mitu lahendit, kuid neid võib olla ka lõpmata palju või mitte ühtegi. Näited Võrrandil
2. Korrutame arvu 10; 100; 1000 jne, et koma läheks perioodi lõppu; 3. Siis korrutame arvu 1; 10; 100; 1000 jne, et koma läheks perioodi ette; 4. Lahutame tulemused; 5. Jagame mõlemad pooled läbi x ees oleva arvuga. Lahendus: tähistame x= 1,2(43) 1000x=1243,4343... _ 10x= 12,4343... 990x= 1231 X= 1231 = 1 241 990 990 IRRATSIONAAL- JA REAALARVUD Arvu, mis avaldub lõpmatu mitteperioodilise kümnendmurruna, nimetatakse irratsionaalarvuks. näiteks 2=1,4142135623373... ei ole ratsionaalarv, sest ta pole lõpmatu perioodiline kümnendmurd. See arv on lõpmatu mitteperioodiline kümnendmurd. Järelikult on irratsionaalarv. Irratsionaalarvud on veel 32; 53; -7; jt. Igal irratsionaalarvul on vastandarv. Teineteise vastandarvud paiknevad arvteljel nullpunkti suhtes sümmeetriliselt. Irratsionaalarvude hulka tähistatakse tähega I.
1.5 RUUTVÕRRAND Ruutvõrrandiks nimetatakse võrrandit kujul ax2 + bx + c = 0, kus a 0. Kordajad a, b ja c on reaalarvud ning x tundmatu (otsitav). Ruutvõrrand on teise astme algebraline võrrand. Ruutvõrrandi liikmeid nimetatakse järgmiselt: ax2 ruutliige, kus a on ruutliikme kordaja; bx lineaarliige, kus b on lineaarliikme kordaja; c vabaliige. Ruutvõrrandi lahendivalem on - b ± b 2 - 4ac x= () 2a Avaldist D = b2 4ac nimetatakse ruutvõrrandi diskriminandiks. · Kui D > 0, siis ruutvõrrandil on 2 erinevat lahendit.
...................................21 Naturaalarvud ...............................................78 Matemaatika muutub ja areneb .....................22 Täisarvud .......................................................82 Mis on matemaatika? ....................................23 Ratsionaalarvud .............................................83 Matemaatika on mitmekülgne ..................... 24 Irratsionaalarvud ja reaalarvud ......................87 miks õppida matemaatikat? ............... 24 Kompleksarvud* .......................................... 89 Matemaatika arendab mõtlemist ..................25 kuulsad arvud: ja e . ........................ 96 Matemaatika õpetab tundma ja .................................................................. 96 ennustama maailma .....................
Kõik kommentaarid