Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi

Reaalarvud. Võrrandid (4)

4 HEA
Punktid

Esitatud küsimused

  • Kui palju on talul maad ja mitu hektarit sellest on metsa all?
  • Mitu protsenti tõusis leiva hind kokku?
  • Mitu grammi vett tuleb lisada 72 grammile 40-lisele väävelhappe lahusele et saada 30-line lahus?
  • Mitme protsendiline lahus saadi?
  • Mille niklisisaldus on 10?
  • Mitu krooni saab see õpetaja palgapäeval kätte?
  • Kui a1 x9 ja y25 Kumb leitud arvudest on teisest väiksem ja mitme protsendi võrra?
  • Kumb arv on suurem ja mitme võrra?
  • Kuidas avaldub ruutvõrrandi ax 2 bx c 0 lahendite summa x1 x2 ja lahendite korrutis x1 x2 ?
  • Millise parameetri k väärtuse korral on võrrandil 2 x k 3 - x 2 kaks võrdset lahendit?
  • Milliste parameetri a väärtuste korral on võrrandi 2 x 2 - 5 x a 0 lahendid teineteise pöördarvud?
Reaalarvud-Võrrandid #1 Reaalarvud-Võrrandid #2 Reaalarvud-Võrrandid #3 Reaalarvud-Võrrandid #4 Reaalarvud-Võrrandid #5 Reaalarvud-Võrrandid #6
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 6 lehte Lehekülgede arv dokumendis
Aeg2008-12-21 Kuupäev, millal dokument üles laeti
Allalaadimisi 296 laadimist Kokku alla laetud
Kommentaarid 4 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor maarjake01 Õppematerjali autor

Sarnased õppematerjalid

thumbnail
53
ppt

Reaalarvud ( slaidid )

järjekorras; 3)Liidetakse ja lahutatakse avaldises antud järjekorras. arvud 0, 1, 2, 3, ... N: naturaalarvud negatiivsed arvud -1, -2,... 5 3 Z: täisarvud murrud ;- ;... 6 5 I: Q: ratsionaalarvud irratsionaalarvud 2 ; ;... R: reaalarvud Teeme ülesanded. Arvude aritmeetiline ja geomeetriline keskmine Arvude a1, a2, a3,..., an aritmeetiliseks keskmiseks nimetatakse arvu a1 + a2 + ... + an a= n Positiivsete arvude a1, a2, a3,..., an geomeetriliseks keskmiseks nimetatakse arvu a = n a1 a2 ... an Kahe arvu geomeetrilist keskmist nimetatakse mõnikord ka nende arvude keskmiseks võrdeliseks.

Matemaatika
thumbnail
6
doc

Ruutvõrrandid

Ruutvõrrandid. Ruutvõrrandid esituvad kujul ax2 + bx + c = 0. Ruutvõrrandid jagunevad taandamata ja taandatud ruutvõrranditeks: Taandamata ruutvõrrand Taandatud ruutvõrrand ax2 + bx + c = 0 x2 + px + q = 0 - b ± b 2 - 4ac 2 x1;2 = p p 2a x1;2 = - ± - - q 2 2 Kui ruutvõrrandis ax2 + bx + c = 0 kas b = 0 või c = 0, siis on tegemist mittetäieliku ruutvõrrandiga. Selliseid võrrandeid viisakas inimene ei lahenda eespool toodud lahendivalemiga, sest neid saab lihtsamalt lahendada. Näide 1. Lahendame võrrandid 1) 3x2 + 6x = 0, 2) 0,5x2 ­ 23 = 0, 3) ­3x2 = 0. 1) Võrrandi 3x2 + 6x = 0 lahendamisel toome x sulgude ette, siis saame x(3x + 6) = 0. Kahe arvu korrutis on

Matemaatika
thumbnail
4
doc

Lineaarvõrrandid

Võrrandite lahendamine Lineaarvõrrandid Lineearvõrrandeid saab alati esitada kujul ax + b = 0. Sellel võrrandil võib olla · täpselt üks lahend · lahendid võivad puududa · lõpmata palju lahendeid Näide 1. Lahendame võrrandi 3(2x + 5) = 7­x. Avame sulud 6x + 15 = 7 ­ x, millest 6x + x = 7 ­ 15 ehk 7x = ­8. 8 - Selle võrrandi lahend on x = 7. Näide 2. Lahendame võrrandi 3(2x ­ 1) = 6x ­ 3. Avame sulud, saame 6x ­ 3 = 6x ­ 3 (*), ehk 6x ­ 6x = ­3­3 (**), millest 0x = 0. Viimane võrdus kehtib iga tundmatu x väärtuse korral (0 · x = 0). Kuna võrrandi lahendamisel on kasutatud üksnes võrrandi samaväärsusteisendusi, siis kehtivad iga x väärtuse korral ka

Matemaatika
thumbnail
29
doc

Ruutvõrrand

Ruutvõrrandi abil lahenduvaid ülesandeid Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi. Tekstülesande lahendamine võrrandi abil koosneb kolmest etapist: 1. võrrandi koostamine teksti järgi; 2. koostatud võrrandi lahendamine; 3. võrrandi lahendite kontroll teksti järgi, lõplik lahendite leidmine ja vastuse kirjutamine. Mõningaid näpunäiteid võrrandi koostamiseks. Põhinõue - loe teksti ülima tähelepanuga, sest tekstis on kog

Matemaatika
thumbnail
15
pdf

Võrrandid

Võrrandid Võrrandi mõiste Võrrand on muutujaid sisaldav võrdus, milles üks või mitu muutujat loetakse tundmatuks (otsitavaks). Näited Ruutvõrrand: x2 2x 1 0 Trigonomeetriline võrrand: sin t cos 2t 1 Eksponentvõrrand x suhtes: e 2 x e 2 x 2a 1 lineaarne võrrand a suhtes: Juurvõrrand x ja y suhtes: x y x 2 2 xy Logaritmvõrrand: log u (2u u 2 ) 3 Võrrandi lahend Tundmatu (muutuja, otsitava) väärtust, mille korral võrrand osutub samasuseks, nimetatakse võrrandi lahendiks ehk juureks. Näide Võrrandi 2x 3 0 3 lahendiks on x , 2 kuna, asendades võrrandis sümboli x arvuga ­3/2, saame samasuse : 3 23 2 3 3 3 3 0. 2 2 Võrrandi lahendite arv Võrrandil võib olla üks või mitu lahendit, kuid neid võib olla ka lõpmata palju või mitte ühtegi. Näited Võrrandil

Matemaatika
thumbnail
8
docx

Reaalarvud

2. Korrutame arvu 10; 100; 1000 jne, et koma läheks perioodi lõppu; 3. Siis korrutame arvu 1; 10; 100; 1000 jne, et koma läheks perioodi ette; 4. Lahutame tulemused; 5. Jagame mõlemad pooled läbi x ees oleva arvuga. Lahendus: tähistame x= 1,2(43) 1000x=1243,4343... _ 10x= 12,4343... 990x= 1231 X= 1231 = 1 241 990 990 IRRATSIONAAL- JA REAALARVUD Arvu, mis avaldub lõpmatu mitteperioodilise kümnendmurruna, nimetatakse irratsionaalarvuks. näiteks 2=1,4142135623373... ei ole ratsionaalarv, sest ta pole lõpmatu perioodiline kümnendmurd. See arv on lõpmatu mitteperioodiline kümnendmurd. Järelikult on irratsionaalarv. Irratsionaalarvud on veel 32; 53; -7; jt. Igal irratsionaalarvul on vastandarv. Teineteise vastandarvud paiknevad arvteljel nullpunkti suhtes sümmeetriliselt. Irratsionaalarvude hulka tähistatakse tähega I.

Matemaatika
thumbnail
3
doc

Ruutvõrrand

1.5 RUUTVÕRRAND Ruutvõrrandiks nimetatakse võrrandit kujul ax2 + bx + c = 0, kus a 0. Kordajad a, b ja c on reaalarvud ning x tundmatu (otsitav). Ruutvõrrand on teise astme algebraline võrrand. Ruutvõrrandi liikmeid nimetatakse järgmiselt: ax2 ­ ruutliige, kus a on ruutliikme kordaja; bx ­ lineaarliige, kus b on lineaarliikme kordaja; c ­ vabaliige. Ruutvõrrandi lahendivalem on - b ± b 2 - 4ac x= () 2a Avaldist D = b2 ­ 4ac nimetatakse ruutvõrrandi diskriminandiks. · Kui D > 0, siis ruutvõrrandil on 2 erinevat lahendit.

Matemaatika
thumbnail
816
pdf

Matemaatika - Õhtuõpik

...................................21 Naturaalarvud ...............................................78 Matemaatika muutub ja areneb .....................22 Täisarvud .......................................................82 Mis on matemaatika? ....................................23 Ratsionaalarvud .............................................83 Matemaatika on mitmekülgne ..................... 24 Irratsionaalarvud ja reaalarvud ......................87 miks õppida matemaatikat? ............... 24 Kompleksarvud* .......................................... 89 Matemaatika arendab mõtlemist ..................25 kuulsad arvud: ja e . ........................ 96 Matemaatika õpetab tundma ja .................................................................. 96 ennustama maailma .....................

Matemaatika



Lisainfo

Arvuhulgad; reaalarvude piirkonnad arvteljel; reaalarvu absoluutväärtus; tehted astmete ja juurtega; abivalemid ja tegurdamine; võrrandid; ülesanded

Märksõnad

Mõisted


Meedia

Kommentaarid (4)

mesfits profiilipilt
Kaspar Kuldkepp: Mis kuradi jura see on? Ülesandeid on igas õpikus, mitte ühtegi lahendust ei ole. Täielik soga, kui see oleks pood siis ma nõuaks raha tagasi.
20:22 19-05-2012
bixxol profiilipilt
bixxol: Hea .. aitab !
15:41 16-11-2009
s0lyk5 profiilipilt
s0lyk5: Väga hea
12:04 03-10-2010





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun