Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Põhivara 7. klass (7)

4 HEA
Punktid

Esitatud küsimused

  • Mitu puud on 16 ?
  • Mitu puud istutati?

Lõik failist

Põhivara
7. klass

Protsendi
mõiste:

Ühte
sajandikku osa mingist kogumist, tervikust nim. protsendiks (%).
Jagatise väljendamine protsentides:
Tihti
on vaja teada, mitu % moodustab üks arv teisest.
Kahe
arvu jagatise väljendamiseks protsentides leiame selle jagatise esmalt kümnendmurruna ning korrutame siis sajaga.

Näide: Arv 3 arvust 4 moodustab?
3
: 4 = 0,75
0,75
* 100 = 75%
Tekstülesannete
lahendamine % abil:

Metsapäeval
oli kavas istutada 2400 puud. Õpilased ületasid ülesande 16%
võrra. Mitu puud istutati?
Antud
ülesannet saab lahendada kahel viisil.
võimalus: 1% on 2400 : 100 = 24
16%
on 16 * 24 = 384
16%
2400-st on 384
Kuna
plaan ületati 16% võrra, mis vastab 384 puule, siis istutati 2400 +
384 = 2784 puud.
võimalus: Mitu puud on 16% ?
2400
puud on 100%
x
puud on 16%
x
= 2400 * 16/100 = 384
Mitu
puud istutati?
2400
Vasakule Paremale
Põhivara 7-klass #1 Põhivara 7-klass #2 Põhivara 7-klass #3 Põhivara 7-klass #4 Põhivara 7-klass #5 Põhivara 7-klass #6 Põhivara 7-klass #7 Põhivara 7-klass #8 Põhivara 7-klass #9
Punktid 100 punkti Autor soovib selle materjali allalaadimise eest saada 100 punkti.
Leheküljed ~ 9 lehte Lehekülgede arv dokumendis
Aeg2008-11-08 Kuupäev, millal dokument üles laeti
Allalaadimisi 277 laadimist Kokku alla laetud
Kommentaarid 7 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor maarja656 Õppematerjali autor

Sarnased õppematerjalid

thumbnail
40
doc

Keskkooli matemaatika raudvara

KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvu

Matemaatika
thumbnail
28
docx

Põhikooli lõpueksam matemaatikast

Matemaatika eksam 1. Tehted astmetega Sama alusega astmete korrutamiseks tuleb astmed liita. Sama alusega astmete jagamiseks tuleb astmed lahutada. Korrutise astendamiseks tuleb astendada kõik tegurid ja tulemused korrutada. Jagatuse astendamiseks tuleb astendada kõik tegurid ja tulemused jagada. Astme astendamiseks tuleb astmed korrutada. 2. Arvu standardkuju Arvu standardkuju on korrutis, mis koosneb ühe ja kümne vahel olevast tegusrist ja kümne mingist astmest. Näited. 7250 = 7,25 ∙ 10³; arvu tüvi on 7,25 ja arvu järk 10. 4000 = 4 ∙ 10³ 3. Korrutise ja jagatise astendamine, astme astendamine Mis tahes aluse nullis aste on 1. Negatiivse astendajaga aste on võrdne absoluutväärtuselt sama suure positiivse arvu astendajaga astme pöördväärtusega. Astme astendamiseks tuleb astmed korrutada. Sama alusega astmete korrutamiseks tuleb astmed liita. Sama alusega astmete jagamiseks tuleb astmed lahutada. Korrutise astendamiseks

Matemaatika
thumbnail
63
doc

Põhikooli matemaatika kordamine

Ruutfunktsioon Sissejuhatav kordamine 1. Teosta tehted. Vastustes vabane negatiivsetest astendajatest. 3 1 2 3 1 a) 2 a b c 3 Lahendus: ; 1 4 2 s 3 t b) 4 5 3 4 s t Lahendus: . 2. Lihtsusta avaldis. a) xy(x + 3y) + (x + y)(x2 ­ 2xy ­ y2) Lahendus: xy(x + 3y) + (x + y)(x2 ­ 2xy ­ y2) = = x2y + 3xy2 + x3 ­ 2x2y ­ xy2 + x2y ­ 2xy2 ­ y3 = = x 3 ­ y3 = = (x ­ y)(x2 + xy + y2) b) (3a ­ 2)2 + (2 + 3a)(2 ­ 3a) Lahendus: (3a ­ 2)2 + (2 + 3a)(2 ­ 3a) = 9a2 ­ 12a + 4 + 4 ­ 9a2 = = 8 ­ 12a 3. Lahenda võrrand. a) 24x2 + 5x ­ 1 ­ (24x2 ­ 6x ­ 12x + 3) = 111 Lahendus: 24x2 + 5x ­ 1 ­ (24x2 ­ 6x ­ 12x + 3) = 111; 24x2 + 5x ­ 1 ­ 24x2 + 6x

Matemaatika
thumbnail
15
doc

Mõisted matemaatikas

Ülesanne 1 Aksioom (kreeka keeles axima 'see, mis on vääriline') tähendab üldkeeles väidet, mille tõesuses pole kahtlust. Algarvuks nimetatakse ühest suuremat naturaalarvu, mis jagub vaid arvuga 1 ja iseendaga. Algarvude hulk on lõpmatu. Sajast väiksemad algarvud ((100) = 25) on 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 ja 97. Kaksikuteks nimetatakse selliseid algarve, mille vahe on 2, näiteks 101 ja 103 või 1 000 000 007 ja 1 000 000 009. Ei ole teada, kas kaksikuid on lõpmata palju. Aritmeetiliseks keskmiseks nimetatakse arvu, mis saadakse antud arvude summa jagamisel liidetavate arvuga. Näide 1. On antud arvud 3, 4, 5 ja 6. Leiame nende arvude aritmeetilise keskmise. 1) Leiame summa: 3 + 4 + 5 + 6 = 18. 2) Jagame summa liidetavate arvuga 18 : 4 = 4,5. Seega nende arvude aritmeetiline keskmine on 4,5. Lahendamiseks sobib ka avaldis (3 + 4 + 5 + 6) : 4. Arvkiir on kiir, mille alguspunktis on märgitud arv 0. Edasi on vaba

Matemaatika
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD 1. ARVUHULGAD …………………………………………………… 2 2. ARITMEETIKA ……………………………………………….…… 3 2.1 Mõningate arvude kõrgemad astmed ………………………….……. 3 2.2 Hariliku murru põhiomadus ………………………………….…….. 3 2.3 Tehetevahelised seosed ……………………………………….…….. 3 2.4 Tehted harilike murdudega ………………………………….……… 4 2.5 Tehete põhiomadused ……………………………………….……… 5 2.6 Näited tehete kohta positiivsete ja negatiivsete arvudega …….…….. 5 2.7 Näited tehete kohta ratsionaalarvudega ……………………….……. 6 2.8 Protsent ja promill ……………?

Matemaatika
thumbnail
8
docx

Lineaarvõrrandid- ja võrratused

LINEAARVÕRRANDID ja VÕRRATUSED LINEAARVÕRRAND - võrrand, milles tundmatu suurim astendaja (peale lihtsustamisi) on 1 ja kus ei esine tundmatuga jagamist. Iga lineaarvõrrandi saab teisendada kujule ax + b = 0 või ax = b (x on tundmatu; a ja b on arvud) Lineaarvõrrandi lahendamisel kasutatakse võrrandi põhiomadusi ning viiakse võrrand järjest lihtsamale kujule. Soovitatav teisenduste järjekord oleks seejuures: 1. Kui võrrand sisaldab murde, vabanetakse murdudest, korrutades võrrandi pooled läbi nimetajate vähima ühiskordsega. 2. Kui võrrand sisaldab sulge, siis avatakse sulud. 3. Kui võrrand ei sisalda murde ega sulge, viiakse kõik tundmatuga liikmed võrrandi vasakule ning kõik arvud võrrandi paremale poolele. 4. Kui vastavad liikmed on õigele poole viidud, koondatakse võrrandi vasakul ja paremal poolel olevad liikmed (võrrand saab kuju ax = b). 5. Kui võrrand on kujul ax = b, siis jagatakse võrrandi pooled tundmatu ees oleva arvuga (arvuga a). Võrratuse

Matemaatika
thumbnail
4
docx

Võrdeline- ja pöördvõrdeline seos, lineaarfunktisoon.

Raudvara VÕRDELINE JA PÖÖRDVÕRDELINE SEOS. LINEAARFUNKTSIOON 4.1 MIS ON FUNKTSIOON? Teise väärtuse üks kindel väärtus on finktsioon. Funktsioon (y) Muutujat, mille väärtuse järgi leitakse teise muutuja vastavaid väärtusi, nimetatakse argumendiks. Argument (x) Argumendi väärtuste järgi leitud teise muutuja vastavat väärtust nimetatakse finktsiooni väärtuseks. 4.2 VÕRDELINE SEOS. Kui vastavate väärtuste (muutujate) jagatis on jääv suurus, siis kaks muutujat on seoses ehk y = ax, a on väiksem kui null (a = 0), see tähendab et muutuja y on võrdeline muutujaga x (võrdeline seos). A on antud arv ehk võrdeline tegur. A on suurem kui null (a > 0). Ühe muutuja väärtuse suurenemisel (vähenemisel) mingi arv korda suureneb (väheneb) ka teise muutuja väärtus sama arv korda. 4.3 VÕRDELISE SEOSE GRAAFIK. Võrdelise seose graafik läbib alguspunkti 0 punkti. Kui a on suurem kui 0 (a>0), siis graafik asetseb esimeses ja kolman

Matemaatika
thumbnail
18
pdf

8. klassi raudvara: PTK 6

6.ptk Ruutvõrrand 8.klass Õpitulemused Näited 1.Arvu ruut - kahe võrdse teguri korrutis Ül.1262,1263 2 a a=a ; mistahes ratsionaalarvu ruut on Leida arvu ruut taskuarvuti abil. mittenegatiivne 2 2 2 2 15 =225; 28 =784; 41 =1681; 57 =3249 Lihtsustada avaldis ja arvutada. 2 2 2 2 2,4 2 =(2,4 2) =4,8 =23,04 NB ruutjuure pöördtehe; saab kasutada 2 näiteks ruudu ja ringi pindala arvutamisel =3,5 =12,25 2 2 2 2 2 (-4,5) 4 -8 (-1,5) =(-4,5 4) -(-8

Matemaatika




Meedia

Kommentaarid (7)

kirsika84 profiilipilt
kirsika84: hm ma ei saanud seda jälle lahti. äkki on viga minu arvutis.
11:32 20-12-2008
blublu profiilipilt
T D: Väga hästi tehtud!!!!



Soovitan soojalt.
16:05 11-04-2010
kuujapuu profiilipilt
kuujapuu: mm võiks olla ülesandeid aga hea
19:43 22-02-2009



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun