Põhivara aines Füüsika Maailm on kõik see, mis on olemas ning ümbritseb konkreetset inimest (indiviidi). Indiviidi põhiproblee- miks on tunnetada oma suhet maailmaga omada adekvaatset infot maailma kohta ehk maailma- pilti. Selle info mastaabihorisondi rõhutamisel kasutatakse maailmaga samatähenduslikku mõistet Universum. Maailma käsitleva info mitmekesisuse rõhutamisel kasutatakse maailma kohta mõistet loodus. Religioosses käsitluses kasutatakse samatähenduslikku mõistet (Jumala poolt) loodu. Inimene koosneb ümbritseva reaalsuse (mateeria) objektidest (aine ja välja osakestest) ning infost nende objektide paigutuse ning vastastikmõju viiside kohta. Selle info põhiliike nimetatakse religioossetes tekstides hingeks ja vaimuks. Vaatleja on inimene, kes kogub ja töötleb infot maailma kohta. Vaatleja tunnusteks on tahe (valikuvaba- duse olemasolu), aistingute saamine (rea
1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3 10. klass Viljandi Täiskasvanute Gümnaasium REAALARVUDE PIIRKONNAD Kuna erinevates õpikutes kasutatakse reaalarvude piirkondade märkimiseks erinevaid tähistusi, siis oleks kasulik teada mõlemat varianti. Nimetus Tingimus Esimene
Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad ....................
KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvu
Mainori Kõrgkool Matemaatika ja statistika Loengukonspekt Silver Toompalu, MSc 2008/2009 1 Matemaatika ja statistika 2008/2009 Sisukord 1 Mudelid majanduses ............................................................................................................. 4 1.1 Mudeli mõiste ......................................................................................................................... 4 1.2 Matemaatilise mudeli struktuur ja sisu ................................................................................... 4 2 Funktsioonid ja nende algebra............................................................................................... 5 2.1 Funktsionaalne sõltuvus ....................................
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega
1. Absoluutväärtus reaalarvuga x määratud mittenegatiivne reaalarv 2. Abstsisstelg x telg 3. Aksioom lause, mida loetakse õigeks ilma põhjenduseta. Aksioomid võetakse aluseks teiste väidete põhjendamisel. 4. Algarv Ühest suurem naturaalarv, mis jagub vaid ühe ja iseendaga. 5. Algebraline murd murd, mille lugejaks ja / või nimetajaks on muutujaid sisaldav avaldis. 6. Algebraline ruutjuur arv, mille ruut on antud arv a. 7. Algkoordinaat antud sirge ja ordinaattelje lõikepunkti ordinaat. 8. Algtegur naturaalarvu algarvuline tegur. 9. Algteguriteks lahutamine naturaalarvu esitamine algarvuliste tegurite korrutisena. 10. Alusnurk võrdhaarse kolmnurga või trapetsi aluse ja haara vaheline nurk. 11. Apoteem 1. korrapärase hulknurga keskpunktist küljele tõmmatud ristlõik. 12. 2. korrapärase püramiidi tipust külgtahule tõmmatud kõrgus. 13. Aritmeetiline keskmine suuruste summa jagatis nende suuruste arvuga. 14. Aritmeetiline
Matemaatika eksami teooria Reaalarvud 1.1. Naturaal-, täis- ja ratsionaalarvud · Naturaalarvude hulk N (ainult positiivsed täisarvud) · Naturaalarvu n vastandarv -n defineeritakse selliselt, et n+(-n)=0 · Naturaalarvud koos oma vastandarvudega moodustavad täisarvude hulga Z (jaguneb pos ja neg) · Iga kahe täisarvu vahe on alati täisarv · Kui arv a ei jagu arv b-ga, siis on tegemist murdarvuga. Kõik täisarvud ja positiivsed ning negatiivsed murdarvud moodustavad kokku ratsionaalarvude hulga Q. Ratsionaalarv on arv, mis avaldub jagatisena a/b, kus a Z, b Z ja b 0. · Iga ratsionaalarv avaldub lõpmatu perioodilise kümnendmurruna. 1.2 Irratsionaal- ja reaalarvud · Arv, mis avaldub lõpmatu mitteperioodilise kümnendmurruna, on irratsionaalarv. · Arvutamisel piirdutakse ligikaudsete väärtustega e lähenditega, nt pii=3,14 · Kuna iga ratsionaalarv avaldub lõpmatu perioo
Soovitan soojalt.
Kõik kommentaarid