Teravnurga siinus, koosinus ja tangens a ja b on täisnurkse kolmnurga kaatetid, c on hüpotenuus. Teravnurga vastaskaatet on a ja lähiskaatet on b. a c Teravnurga vastaskaatet on b ja lähiskaatet on a. Teravnurkade ja summa + = 90°. b Teravnurga siinuseks nimetatakse selle nurga vastaskaateti ja hüpotenuusi suhet (jagatist). Nurga siinust tähistatakse sümboliga sin . a b sin = sin = c c Teravnurga koosiniseks nimetatakse selle nurga lähiskaatei ja hüpotenuusi suhet. Nurga koosinust tähistatakse sümboliga cos b a cos = cos = c c Teravnurga tangensiks nimetatakse selle nurga vastaskaateti ja lähiskaatet...
Teravnurga siinus ja koosinus Täisnurkse kolmnurga teravnurga siinuseks nim. selle nurga vastas kaateti ja a vastaskaatet hüpotenuusi suhet ning seda tähistatakse c . sin = hüpotenuus Täisnurkse kolmnurga teravnurga koosinuseks nim. selle nurga lähis kaateti ja b lähiskaatet hüpotenuusi suhet ning seda tähistatakse c . cos = hüpotenuus vastaskaatet hüpotenuus lähiska lähiskaatet Teravnurga tangens Täisnurkse kolmnurga teravnurga tangensiks nim. selle nurga vastas kaateti ja a lähis kaateti suhet ning seda tähistatakse tan . Tan = b tan = vastaskaatet lähiskaatet a b a a Sin = c ; cos = c ; tan = b ...
Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 7. Trigonomeetrilised funktsioonid. Trigonomeetrilised võrrandid Põhiteadmised · Kraadimõõt; · radiaanimõõt; · suvalise nurga (ka negatiivse) trigonomeetrilised funktsioonid; · trigonomeetrilised põhiseosed; · trigonomeetriline avaldis; · taandamisvalemid nurkade 90o , 180 o ja 360 o puhul; · kahe nurga summa ja vahe siinus, koosinus, tangens; · kahekordse ja poolnurga siinus, koosinus, tangens; · siinus- ja koosinusteoreem; · trigonomeetrilised funktsioonid, nende graafikud ja omadused; · trigonomeetrilised põhivõrrandid. Põhioskused · Täis-, terav- ja nürinurksete kolmnurkade lahendamine; · trigonomeetriliste avaldiste teisendamine; · taandamisvalemite kasutamine; · trigonomeetriliste funktsioonide graafikute skitseerimine ja lugemine; · lihtsamate trigo...
Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 7. Trigonomeetrilised funktsioonid. Trigonomeetrilised võrrandid Põhiteadmised · Kraadimõõt; · radiaanimõõt; · suvalise nurga (ka negatiivse) trigonomeetrilised funktsioonid; · trigonomeetrilised põhiseosed; · trigonomeetriline avaldis; · taandamisvalemid nurkade 90o , 180 o ja 360 o puhul; · kahe nurga summa ja vahe siinus, koosinus, tangens; · kahekordse ja poolnurga siinus, koosinus, tangens; · siinus- ja koosinusteoreem; · trigonomeetrilised funktsioonid, nende graafikud ja omadused; · trigonomeetrilised põhivõrrandid. Põhioskused · Täis-, terav- ja nürinurksete kolmnurkade lahendamine; · trigonomeetriliste avaldiste teisendamine; · taandamisvalemite kasutamine; · trigonomeetriliste funktsioonide graafikute skitseerimine ja lugemine; · lihtsamate trigo...
Trigonomeetria valemid Täisnurkse kolmnurga teravnurga siinus, koosinus, tangens ja kootangens: Põhiseosed: Täiendusnurga valemid: Mõningate nurkade trigonomeetriliste funktsioonide väärtused: 0 1 1 0 0 1 - - 1 0 Iga nurk x esitub kujul: Negatiivse nurga trigonomeetrilised funktsioonid: Nurga radiaanmõõt: Kolmnurga pindala: Siinusteoreem: Koosinusteoreem: Kahe nurga summa ja vahe: Kahekordse nurga siinus, koosinus ja tangens:
Phytagorase teoreem.
a2+b2=c2
Siinus.
sin =a/c sin =b/c
Teravnurga siinus on selle nurga vastaskaateti ja hüpotenuusi suhe.
0
Täiendusnurga valemid. sin (90 - ) =cos cos (90 - ) = sin tan (90 - ) = 1/tan = cot cot (90 - ) = 1/cot = tan Negatiivse nurga siinus, koosinus, tangens ja kootangens. sin (- ) = -sin cos (- ) = cos tan (- ) = -tan cot (- ) = -cot Trigonomeetria põhivalemid ja nende järeldused. sin 2 + cos2 = 1 tan =sin /cos cot =cos /sin tan cot =1 1+ tan 2 = 1/cos2 1 + cot2 = 1/sin2 sin 4 + cos4 = 1 - 2 sin2 cos2 sin 6 +cos6 = 1 - 3sin 2 cos2 Kahe nurga summa ja vahe siinus, koosinus, tangens ja kootangens. sin ( + ) =sin cos + cos sin tan ( + ) = tan + tan / (1 - tan tan ) sin ( - ) = sin cos - cos sin tan ( - ) = tan - tan / (1 + tan tan ) cos ( + ) = cos cos - sin sin cot ( + ) = cot cot -1/ (cot + cot ) cos ( - ) = cos cos + sin sin cot ( - ) = cot cot + 1 /( cot - cot ) Kahekordse nurga siinus, koosinus, tangens ja koota...
KORDAMINE 1. Lõpeta lause. Täisnurkse kolmnurga teravnurga siinus on selle nurga... Täisnurkse kolmnurga teravnurga koosinus on selle nurga... Täisnurkse kolmnurga teravnurga tangens on selle nurga... Kolmnurga elemendid on.... Kolmnurga lahendamiseks nimetatakse.... 2. Märgi täisnurk, kirjuta joonisele antud nurga vastaskaatet, lähiskaatet ja hüpotenuus, arvuta selle nurga siinus, koosinus ja tangens. 20 21 β 16 29 12 20 3. Leia α tan 24̊ 17’= cos 37̊ = sin 52̊ 33’= 4. Leia nurk α, kui cos α=0,8645 sin α=0,2574 tan α=0,4284 5. Lahenda täisnurkne kolmnurk, kui (10 punkti) ☺ a=15 m ja α=45̊...
Trigonomeetrilised funktsioonid. Trigonomeetrilised võrrandid Valemid · Trigonomeetriliste funktsioonide väärtuste märgid Funktsioon I veerand II veerand III veerand IV veerand y = sin + + y = cos + + y = tan + + y = cot + + · Trigonomeetriliste funktsioonide väärtusi 0o 30 o 45 o 60 o 90 o 180 o 270 o 1 sin 2 3 0 1 0 1 2 2 2 1 cos 3 2 ...
Trigonomeetriliste avaldiste teisendamine Trigonomeetria põhivalemid sin 2 + cos 2 = 1 sin tan = cos 1 1 + tan = 2 cos 2 cos cot = sin Taandamisvalemid Taandamisvalemite rakendamiseks piisab järgmise reegli teadmisest: nurkade - , + ja 2 - korral teiseneb nende siinus avaldiseks sin , koosinus avaldiseks cos ja tangens avaldiseks tan , mille ees olev märk ("+" või "-") sõltub sellest, milline on vastavalt siinuse, koosinuse või tangensi märk veerandis, kuhu kuulub esialgne nurk - , + ja 2 - Märgi määramisel loetakse nurk teravnurgaks. Kui nurk on kirjutatud kujul / 2 ± või 3 / 2 ± , siis muutub, sin cos tan cot cos sin cot tan. märgi määramise reegel jääb endiseks. Trigonomeetriliste funktsioonide märgid + ...
KORRUTAMISE ABIVALEMID (a+b)(a-b)=a²-b² - ruutude vahe valem (a+b)²=a²+2ab+b² - summa ruudu valem (a-b)²=a²-2ab+b² - vahe ruudu valem a³+b³=(a+b)(a² -ab+b²) - kuupide summa valem a³-b³=(a-b)(a² +ab+b²) - kuupide vahe valem (a+b)³=a³+3a²b+3ab²+b³ - summa kuubi valem (a-b)³=a³-3a²b+3ab²-b³ - vahe kuubi valem RUUTVÕRRAND x2 + px + q = 0 - taandatud ruutvõrand ; lahend ax2 + bx + c = 0 taandamata ruutvõrrand ; lahend x1 + x2 = -p ; x1 · x2 = q - viete valemid. Kus x1 ja x2 on taandatud ruutvõrrandi lahendid. ax2 + bx + c ( ruutkolmliikme lahutamine teguriteks) : ax2 + bx + c = a(x-x1)(x-x2). x1 ja x2 ruutvõrrandi lahendid. DETERMINANDID = a ·d - c·b. = aei + cdh +bfg gec ahf dbi. TRIGONOMEETRIA PÕHISEOSED sin2 + cos2 = 1 1 + cot2 a = tan = tan a cot a =1 1+ tan2 a = TÄIENDUSNURGA VALEMID sin (90 - a) =cos a cos (90 - a) = sin a tan (90 - a) = 1/tan a = cot a cot (90 - a) = 1/cot a = tan a ...
TÄISNURKSE KOLMNURGA TRIGONOMEETRIA Täisnurkse kolmnurga teravnurkade summa on . Pythagorase teoreem: täisnurkses kolmnurgas kaatetite ruutude summa võrdub hüpotenussi ruuduga. Täisnurkse kolmnurga teravnurga siinus on selle nurga vastaskaateti ja hüpotenuusi suhe. Täisnurkse kolmnurga teravnurga koosinus on selle nurga lähiskaateti ja hüpotenuusi suhe. Täisnurkse kolmnurga teravnurga tangens on selle nurga vastaskaateti ja lähiskaateti suhe. Täisnurkse kolmnurga pindala võrdub kaatetite poolkorrutisega või hüpotenuusi ja sellele joonestatud kõrguse poolkorrutisega MIS TAHES KOLMNURGA TRIGONOMEETRIA Kolmnurga sisenurkade summa on . Kolmnurga külgede pikkused on võrdelised vastavate vastasnurkade siinustega. Kolmnurga ühe külje ruut on võrdne ülejäänud külgede ruutude summaga, millest on lahutatud nende külgede ja nendevahelise nurga koosinuse kahekordne korrutis. Mis tahes k...
Arvväärtused: a) 30° 45° 60° b) 0°,360°/90°/180°/270° sin 1/2 ,2/2, 3/2 0/1/0/1 cos 3/2, 2/2, 1/2 1/0/1/0 tan 3/3, 1, 3 0//0/ cot 3, 1, 3/3 /0//0 Põhivalemid: Täisnurkadevalemid: sin²+cos²=1 sin=cos(90°) tan=sin/cos cos=sin(90°) 1+tan²=1/cos² tan=cot(90°) 1+cot²=1/sin² cot=tan(90°) cot=cos/sin tan*cot=1 Taandamisvalmeid: a) sin(n*360°+)=sin b) IIv sin(180°)=sin cos(n*360°+)=cos =cos tan(n*360°+)=tan =tan cot(n*360°+)=cot =cot c)III veerand d)IV veerand e)nega nurk sin(180°+)=sin sin(360°)=sin sin()=sin =cos =cos cos()=cos =tan =tan an()=tan =cot =cot cot()=cot + + + + sin cos + tan/cot + sin=a/c Täisnurkse ga teravnurga siinus on vastaskaateti ja hüpotenuusi suhe. cos=b/c ..koosinus on lähiskaateti ja hüpotenuusi...
Exeli funktsioonid jagunevad rühmadesse: 1) Maatemaatilised(Math ja Tig) 2)Kuupäeva- ja kellaaja funktsioonid(Date ja Time) 3) Otsimise ja viitamise funktsioonid(Lookup ja Reference) 4)Loogikafunktsioonid (Logical) 5) Finantsfunktsioonid (Financial) 6)Tekstifunktsioonid(Text) 7)Statistikafunktsioonid (Statistical) Matemaatilised funktsioonid 1)Liitmisfunktsioon SUM(Liidetav1;Liidetav2) 5 SUM(piirkond) - liidab kokku piirkonnas olevad arvud 5 7 9 40 12 3 4 9 18 2)Aritmeetiline keskmine AVERAGE(piirkond) - see on tegelikult statistiliine funktsioon - annab piirkonnas olevate arvude aritmeetilise keskmine 3 9 10 7.333333 3)Ruutjuur arvust SQRT(arv) ...
trigonomeetria – trigonon – kolmnurk, metreo – mõõdan (16. saj). Trigonomeetria (kr. k. trigōnon “kolmnurk” + metron “mõõtmine”) on matemaatika haru, mis tegeleb kolmnurkade külgede ja nurkade vaheliste seoste uurimisega. Trigonomeetria ajalugu ulatub tagasi nii kaugele kui Vana-Kreeka astronoomi Hipparchuse aega 200 a. e. kr. Suuremad läbimurded toimusid siiski alles 600 aastat hiljem — 5 saj. esimesel poolel. Bartholomeo Pitiscus leiutas sõna trigonomeetria, mida ta kasutab oma 1595. aastal trükitud raamatu pealkirjas. [3] Sõna trigonomeetria tuleneb kreeka keelest, sõnadest trigonon (kolmnurk) ja metreo (mõõdan). [29] Lisaks astronoomiale kirjeldab Pitiscus oma raamatus, kuidas kasutada trigonomeetriat, et lahendada igapäevaseid kolmnurkadega seotud praktilisi probleeme. Pitiscuse töö näitab, et trigonomeetria oli muutunud astronoomia abiosast matemaatika haruks, millel oli palju erinevaid rakendusi. Trigonomeetria oli populaarne sam...
,,Teie ehk ei tea, mis on kodumaa, sest teil ei ole õiget kodumaad. /--/ Teie elate võõral maal, teie elate Saksamaal, mis asub Venemaal, niisugusel võõral maal elate teie. /--/ Aga kus pole kodumaad, kus inimesed elavad võõral maal, seal puudub ka inimsus, tõsine ja õige inimsus. /--/ Tõelise inimese esimene varandus on tema keel ja kodumaa." ,,Armastage emakeelt, siis õpite armastama ka võõraid keeli; sest kuis armastada võõrast, kui ei armasta oma!" (Härra Schulz) Kõik, mis ilmas ilusat ja suurt, on minevikus. Ilus ja suur on surnud. Suured ja ilusad asjad on möödas. /--/ Kõik, mis suur ja ilus, seda peab salaja tegema. (Indrek) Mõnikord näib, et inimesed üldse ei tea, mis on armastus. Naisedki ei tea, meestest rääkimata. Nemad hoolitsevad küll oma naiste eest ja on hirmus armukadedad, aga mis armastus on, seda nad ei tea. Armastus oleks peaaegu nagu kurjus. Seda nägin ma oma õest, sest tema armastas oma meest tõesti. Aga niipea k...
Matemaatika Riiklik õppekava: https://www.riigiteataja.ee/aktilisa/1140/1201/1002/VV2_lisa3.pdf# Gümnaasium matemaatika 1.-5 kursus Õppeaine: Matemaatika (lai kursus) Klass: 10. klass 1. Õppekirjandus: l.Lepmann, T.Lepmann, K.Velsker Matemaatika 10.klassile 2. Õppeaine ajaline maht: 5 kursust (175 tundi) 3. Õppeaine eesmärgid:õpilane 1) saab aru matemaatika keeles esitatud teabest; 2) tõlgendab erinevaid matemaatilise informatsiooni esituse viise; 3) kasutab matemaatikat igapäevaelus esinevates olukordades; 4) väärtustab matemaatikat, tunneb rõõmu matemaatikaga tegelemisest; 5) arendab oma intuitsiooni, arutleb loogiliselt ja loovalt; 6) kasutab matemaatilises tegevuses erinevaid teabeallikaid; 7) kasutab arvutiprogramme matemaatika õppimisel. Õppeaine sisu: Käsitlevad teemad Käsitlevad Õpitul...
Funktsioon Funktsiooni definitsioon Olgu X mingi reaalarvude hulk. Kui muutuja x igale väärtusele hulgas X vastab muutuja y üks kindel väärtus, siis öeldakse, et y on muutuja x funktsioon. Asjaolu, et üks muutuja on teise funktsioon, tähistatakse y = f (x), y = y (x), y = (x) jne. Muutujat x nimetatakse seejuures sõltumatuks muutujaks e. argumendiks. Muutujat y, mille väärtused leitakse vastavalt sõltumatu muutuja väärtustele, nimetatakse sõltuvaks muutujaks. Argumendi x väärtuste hulka, mille puhul saab määrata funktsiooni y väärtusi vastavalt eeskirjale f (x), nimetatakse funktsiooni määramispiirkonnaks. Määramispiirkonnale vastavat funktsiooni väärtuste hulka nim. funktsiooni muutumispiirkonnaks. 2 Funktsiooni esitusviise Funktsiooni esitus tabelina x x1 x2 ....... xn y y1 y2 ...... yn Funktsiooni graafiline esitusviis ...
Aritmeetiline jada-Jada, mille iga liige alates teisest on võrdne eelneva liikme ja selle jada jaoks mingi kindla arvu summaga nimetatakse aritmeetiliseks jadaks. Seda kindlat arvu nimetatakse aritmeetilise arvu jadaks ja tähistatakse tähega d. an=a1+(n-1)d an+1=an+d » an+1-an=d sn= a1+an/2 x n või sn=2a1+(n-1)d/2 Geomeetriline jada- Jada, mille iga liige alates teisest on võrdne eelneva liikme ja antud jada jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks. Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q n-1 n an=a1 x q q=an+1/n sn=a1(q -1)/q-1 Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q Arvu ,,A" nimetatakse jada ,,an" tõkestamatul kasvamisel ja tähistatakse sümboliga liman=A n lim1/n=0 Piirväärtus n (tõkestamatul kasvamisel) ...
Funktsioonid ja nende graafikud © T. Lepikult, 2010 Funktsioon Kui muutuva suuruse x igale väärtusele, mis kuulub tema muutumispiirkonda, vastab teise suuruse y üks kindel väärtus, siis öeldakse, et y on x funktsioon. Asjaolu, et üks muutuja on teise funktsioon, tähistatakse y = f(x). Näited: Kuubi ruumala on tema serva pikkuse funktsioon, suusataja poolt läbitud teepikkus on aja funktsioon, vedru deformatsioon on tõmbejõu funktsioon jne. Funktsiooni argument Muutujat x nimetatakse seejuures sõltumatuks muutujaks e. argumendiks. Argumendi x väärtuste hulka, mille puhul saab määrata funktsiooni y väärtusi vastavalt eeskirjale f(x), nimetatakse funktsiooni määramispiirkonnaks. Määramispiirkonnale vastavat funktsiooni väärtuste hulka nimetatakse funktsiooni muutumispiirkonnaks. Näide Ringi pindala sõltuvust raadiusest kirjeldab funktsioon ...
sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 sin2 cos = sin /tan cos2 1 = - sin2 cot = cos /sin cot =1/tan sin2 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ) sin = vastas kaatet/hüpotenuus cos = sin (90o ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ) tan = vastas kaatet/lähis kaatet cot =tan (90o ) cot = lähis kaatet/vastas kaatet tan = cot (90o ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos ...
1. Reaalarvud ja avaldised a, kui a 0 · Arvu absoluutväärtus a = - a, kui a < 0 · Astme mõiste ja omadused a 0 = 1, kui a 0 a1 = a a n = a a a a, kui n N 2 1 a-k = , kui a 0 ja k Z või ak kui a > 0 ja k Q m n a m , kui a > 0, m Z ja n N a = n 2 0...
Sisestage siia matrikli viimane (a) ja eelviimaneviimane nr (b) number. Valemid annavad c väärtuse ja a funktsioonide numbrid 9 Funktsioonide väärtused a b x y z 3 3,75 -1 1,15330542 1,93690596 y z 1 1 2 2 3 3 4 4 5 5 eelviimane b c y nr z nr 5 4 1 4 Vari...
Andmebaaside struktuur, andmehalduskeskkonnad, tabelid, andmetüübid ja avaldised Andmed tabelina Tabelarvutuses on andmete sisestamine lihtne, haldamine aga andmemahu kasvades keeruline. Puudub kindel programmi poolt kontrollitav andmete struktuur. Andmebaas • Andmebaasi komponente: – Tabel (Table) – Protseduur (Procedure) – Tabelite vaheline seos (Relation) – Sisestusreeglid tabeliväljadele • Tabel ehituselementideks on – Väljad (Field) – Kirjed (Record) – Indeksid (Index) ehk järjestused Andmebaasihaldus- ja rakenduste koostamise keskkond Visual FoxPro Tabelite struktuur, andmetüübid ja avaldised Ülevaade Käsuaken Menüüd Tabelivaade Inforiba Andmehalduse ja -keskkonna kiirülevaade ja seadistamine (andmehaldur) Käsuakna ka andmehalduri saate alati tell...
Tallinna Tehnikaülikool Informaatikainstituut Tõõ Andmed ja valemid Üliõpilane Õppemärkmik Õppejõud Õpperühm Palun täitke tühjad lahtrid Ülesanded Arvvalemid Ruutvõrrandi lahendamine Rakendus "Detail" Detaili kujud Materjalid Värvid Ideaalne inimene Laenuintress Viktoriin Lisad Matemaatikafunktsioonid Tekstifunktsioonid Loogikafunktsioonid Ajafunktsioonid viimane nr eelviimane a b c y nr z nr Funktsioonide väärtused 3 7 0 3 2 Sisestage siia matrikli viimane (a) ja ...
2. Ülesanne: VALEMID Tallinna Tehnikaülikool Informaatikainstituut Töö Exceli töökeskond Üliõpilane Mihkel Sepp Õppemärkmik 082710 Õppejõud Jüri Vilipõld Õpperühm MATB14 Sisestage siia matrikli viimane (a) ja viimane nr eelviimane eelviimane (b) number. Valemid annavad c a b c y nr z nr väärtuse ja funktsioonide numbrid 0 1 1 5 5 Funktsioonide väärtused Variandid a y nr c z nr a b x y z ...
Ülesanne 2. Andmed ja valemid Siia tehke või kopeerige eelmisest tööst "kirjanurk". Kuju võib olla teine, kuid toodud andmed peavad olema Martin Jõgeva Jaan Übi d ja valemid st tööst "kirjanurk". andmed peavad olema 082649 MATB11 Ülesanded Arvvavaldised Ruutvõrrandi lahendamine Rakendus "Detail" Detaili kujud Materjalid Värvid Ideaalne inimene Laenuintress Viktoriin Lisad Matemaatikafunktsioonid Tekstifunktsioonid Loogikafunktsioonid Ajafunktsioonid Sisestage siia matrikli viimane (a) ja viimane nr eelviimane eelviimane (b) number. Valemid annavad c a b c y nr z nr väärtuse ja funktsioonide numbrid 9 4 3...
Matemaatika eksami teooria Reaalarvud 1.1. Naturaal-, täis- ja ratsionaalarvud · Naturaalarvude hulk N (ainult positiivsed täisarvud) · Naturaalarvu n vastandarv -n defineeritakse selliselt, et n+(-n)=0 · Naturaalarvud koos oma vastandarvudega moodustavad täisarvude hulga Z (jaguneb pos ja neg) · Iga kahe täisarvu vahe on alati täisarv · Kui arv a ei jagu arv b-ga, siis on tegemist murdarvuga. Kõik täisarvud ja positiivsed ning negatiivsed murdarvud moodustavad kokku ratsionaalarvude hulga Q. Ratsionaalarv on arv, mis avaldub jagatisena a/b, kus a Z, b Z ja b 0. · Iga ratsionaalarv avaldub lõpmatu perioodilise kümnendmurruna. 1.2 Irratsionaal- ja reaalarvud · Arv, mis avaldub lõpmatu mitteperioodilise kümnendmurruna, on irratsionaalarv. · Arvutamisel piirdutakse ligikaudsete väärtustega e lähenditega, nt pii=3,14 · Kuna iga ratsionaal...
KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ...........................................................................................5 Täisarvude hulk Z......................................................................................
Ülesanne 2. Andmed ja valemid Siia tehke või kopeerige eelmisest tööst "kirjanurk". Kuju võib olla teine, kuid toodud andmed peavad olema Tallinna Tehnikaülikool Informaatikainstituut Töö: Andmed ja valemid Üliõpilane: Õppejõud: Jüri Vilipõld d ja valemid st tööst "kirjanurk". andmed peavad olema ehnikaülikool Õppemärkmik: 83280 Õpperühm: Ülesanded Arvvavaldised Ruutvõrrandi lahendamine Rakendus "Detail" Detaili kujud Materjalid Värvid Ideaalne inimene Laenuintress Viktoriin Lisad Matemaatikafunktsioonid Tekstifunktsioonid Loogikafunktsioonid Ajafunktsioonid Sisestage siia matrikli viimane (a) ja viimane nr eelviimane eelviimane (b) number. Valemid annavad c a ...
Ülesanne 2. Andmed ja valemid Tallinna Tehnikaülikool Informaatikainstituut Töö Exceli töökeskkond Üliõpilane Õppemärkmik Õppejõud Õpperühm d ja valemid ülikool stituut Õppemärkmik XXXX92 Õpperühm Ülesanded Arvavaldised Ruutvõrrandi lahendamine Rakendus "Detail" Detaili kujud Materjalid Värvid Ideaalne inimene Laenuintress Viktoriin Lisad Matemaatikafunktsioonid Tekstifunktsioonid Loogikafunktsioonid Ajafunktsioonid 093892 Sisestage siia matrikli viimane (a) ja viimane nr eelviimane eelviimane (b) number. Valemid annavad c a b c y nr z nr väärtuse ja funktsioonide n...
Ülesanne 2. Andmed ja valemid Siia tehke või kopeerige eelmisest tööst "kirjanurk". Kuju võib olla teine, kuid toodud andmed peavad olema Tallinna Tehnikaülikool Informaatikainstituut Töö Exceli töökeskond Üliõpilane Õppemärkmik Õppejõud Õpperühm valemid est tööst "kirjanurk". andmed peavad ikool tuut eskond Ülesanded Arvavaldised Ruutvõrrandi lahendamine Rakendus "Detail" Detaili kujud Materjalid Värvid Ideaalne inimene Laenuintress Viktoriin Lisad Matemaatikafunktsioonid Tekstifunktsioonid Loogikafunktsioonid Ajafunktsioonid Sisestage siia matrikli viimane (a) ja viimane nr eelviimane eelviimane (b) number. Valemid annavad c väärtuse ja funktsioonide numbrid a b c y nr ...
Tallinna Tehnikaülikool Informaatikainstituut Tõõ Andmed ja valemid Üliõpilane Kitty Saar Õppemärkmik Õppejõud Ahti Lohk Õpperühm Palun täitke tühjad lahtrid 072186 EAEI-13 Ülesanded Arvvalemid Ruutvõrrandi lahendamine Rakendus "Detail" Detaili kujud Materjalid Värvid Ideaalne inimene Laenuintress Viktoriin Lisad Matemaatikafunktsioonid Tekstifunktsioonid Loogikafunktsioonid Ajafunktsioonid viimane nr eelviimane a b c y nr z nr Funktsioonide väärtused 6 8 4 3 4 Sisestage siia matrikli viimane (a) ja ...
Ülesanded Arvvavaldised Ruutvõrrandi lahendamine Rakendus "Detail" Detaili kujud Materjalid Värvid Ideaalne inimene Laenuintress Viktoriin Lisad Matemaatikafunktsioonid Tekstifunktsioonid Loogikafunktsioonid Ajafunktsioonid Sisestage siia matrikli viimane (a) ja viimane nr eelviimane eelviimane (b) number. Valemid annavad c a b c y nr z nr väärtuse ja funktsioonide numbrid 4 7 1 2 5 Funktsioonide väärtused Variandid ...
Tallinna tehnikaül Informaatikainstitu Töö Andmed ja valemid Üliõpilane Andres Vahopski linna tehnikaülikool ormaatikainstituut dmed ja valemid Õppemärkmik 082022 dres Vahopski Õpperühm AAVB11 Ülesanded Arvvavaldised Ruutvõrrandi lahendamine Rakendus "Detail" Detaili kujud Materjalid Värvid Ideaalne inimene Laenuintress Viktoriin Lisad Matemaatikafunktsioonid Tekstifunktsioonid Loogikafunktsioonid Ajafunktsioonid Sisestage siia matrikli viimane (a) ja viimane nr eelviimane eelviimane (b) number. Valemid annavad c a b c y nr z nr väärtuse ja funktsioonide numbrid 2 2 4 4 4 Funktsioonide väärtused ...
1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3 10. klass Viljandi Täiskasvanute Gümnaasium REAALARVUDE PIIRKONNAD Kuna erinevates õpikutes kasutatakse reaalarvude piirkondade märkimiseks erinevaid tähistusi, siis oleks kasulik teada mõlemat varianti. Nimetus ...
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü ...
MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksi...
Elementaarmatemaatika 1. Teooria Mõistete definitsioonid; selgitavad joonised, tekstid 1. Arvuhulga järjestatus- Arvuhulka nimetatakse järjestatuks, kui iga tema kahe arvu a ja b korral kehtib üks kolmest võimalusest, kas a > b , a = b või a
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α alfa Ν ν nüü Β β beeta Ξ ξ ksii Γ γ gamma Ο ο omikron Δ δ delta Π π pii Ε ε epsilon Ρ ρ roo Ζ ζ dzeeta Σ σ sigma Η η eeta Τ τ tau Θ θ teeta Υ υ üpsilon Ι ι ioota Φ φ fii Κ κ kapa Χ χ hii Λ λ lam...
Kordamisküsimusi 1. teema kohta 1. Mis on arvtelg? (lk 2) Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. 2. Defineerida reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Omadused: 1. | − a| = |a| 2. |ab| = |a| |b| 3. |a + b| ≤ |a| + |b| 4. |a − b| ≥ | |a| − |b| | 3. Millist hulka nimetatakse tõkestatuks? (lk 3) Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (c, d) nii, et A ⊂ (c, d). Tõkestatud hulgad on näiteks kõik lõplikud vahemikud (a, b), lõigud [a, b] ja poollõigud [a, b), (a, b] 4. Milline suurus on jääv ja milline suurus on muutuv? Mida nimetatakse muutuva suuruse muutumispiirkonnaks?...
Tallinna Tehnikaülikool Informaatikainstituut Tõõ Andmed ja valemid Üliõpilane Õppemärkmik Õppejõud J. Vilipõld Õpperühm Palun täitke tühjad lahtrid MASB11 Harjutused Andmete tüübid Excelis Valemid ja avaldised Funktsioonid Arvandmed, -avaldised ja -funktsioonid Aadressite ja nimede kasutamine valemites Arvavaldised - tehete prioriteedid, funktsioonid Minirakendus "Detailike" - ülesande püstitus Minirakendus "Detailike" - aadresside kasutamine Minirakendus "Detailike" - nimede kasutamine Pildi hind Loogikaandmed, -avaldised ja funktsioonid Võrdlused ja loogikatehted IF-funktsioon Funktsioonid Palk & Kauba hind Viktoriin_1 Tekstandmed, -avaldised ja funktsioonid Ajaandmed, -avaldised ja -funktsioonid Ülesanded Kolmnurga karakteristikud Prisma silinder Arvvalemid Ruutvõrrand Intressi arvutamine P...
Matemaatiline analüüs 1. Arvtelg sirge, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Öeldu põhjal saab reaalarvud samastada sirge (arvelje) punktidega. Absoluutväärtuse mõiste reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset arvu. Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunktivahelist kaugust arvteljel. Absoluutväärtuste omadused: Reaalarvude ja lõpmatuste ümbrused Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a ; a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-; a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x-a| < . Reaalarvu vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a-], kus >0. Arv x kuulub arvu ...
MEHAANIKA JA MOLEKULAARFÜÜSIKA PÕHIMÕISTED NING SEADUSED Füüsika käsitleb looduse kõige üldisemaid nähtusi ja seaduspärasusi. Need ongi füüsikalised objektid. Objekt on see, millele tegevus on suunatud. Füüsikaline suurus on füüsikalise objekti mõõdetav iseloomustaja (karakteristik). Füüsika objekt (loodusnähtus) on olemas ka ilma inimeseta. Füüsikaline suurus on inimlik vahend objekti kirjeldamiseks. Suuruse mõõtmine on võrdlemine mõõtühikuga. Rahvusvaheline mõõtühikute süsteem SI kasutab 7 füüsikalist suurust põhisuurustena. Nende suuruste mõõtühikud on põhiühikud. Kõik teised suurused ja ühikud on määratud vastavalt põhisuuruste ning põhiühikute kaudu. Põhisuurused on: pikkus, aeg, mass, aine hulk, temperatuur, voolutugevus ja valgustugevus. Nende ühikud on vastavalt: meeter, sekund, kilogramm, mool, kelvin, amper ja kandela. Skalaarne suurus on esitatav vaid ühe mõõtarvuga, millele lisandub mõõtühik. Skalaarsed suurused on il...
MEHAANIKA JA MOLEKULAARFÜÜSIKA PÕHIMÕISTED NING SEADUSED K. Tarkpea Füüsika käsitleb looduse kõige üldisemaid nähtusi ja seaduspärasusi. Need ongi füüsikalised objektid. Objekt on see, millele tegevus on suunatud. Füüsikaline suurus on füüsikalise objekti mõõdetav iseloomustaja (karakteristik). Füüsika objekt (loodusnähtus) on olemas ka ilma inimeseta. Füüsikaline suurus on inimlik vahend objekti kirjeldamiseks. Suuruse mõõtmine on võrdlemine mõõtühikuga. Rahvusvaheline mõõtühikute süsteem SI kasutab 7 füüsikalist suurust põhisuurustena. Nende suuruste mõõtühikud on põhiühikud. Kõik teised suurused ja ühikud on määratud vastavalt põhisuuruste ning põhiühikute kaudu. Põhisuurused on: pikkus, aeg, mass, aine hulk, temperatuur, voolutugevus ja valgustugevus. Nende ühikud on vastavalt: meeter, sekund, kilogramm, mool, kelvin, amper ja kandela. Skalaarne suurus on esitatav vaid ühe mõõtarvuga, millele lisandub mõõtühik. Skalaarse...
Steve Mägi A-08 13.03.2014 PÄRNUMAA KUTSEHARIDUSKESKUS Arvutiteenindus A-08 Steve Mägi Javascript (Objektid, Sisseehitatud objektid, Html dom objektid, sündmused, näited) Juhendaja: Sander Mets Pärnu 2009 1 Steve Mägi A-08 13.03.2014 Sisukord Javascripti keele objektid.....................................................................................................6 Objekt MATH...........................................................................................
MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a 0 -a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a-, a+) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui , st |x - a| < . Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a - , a], kus > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse (a - , a] siis...
Andmed ja valemid Excel'is id Excel'is Andmete tüübid Excelis Valemid ja avaldised Funktsioonid Arvandmed, -avaldised ja -funktsioonid Aadressite ja nimede kasutamine valemites. Harjutus "Kolmnurk" Harjutus "Täisnurkne kolmnurk " Arvavaldised - tehete prioriteedid, funktsioonid Loogikaandmed, -avaldised ja funktsioonid Võrdlused ja loogikatehted Võrdlused ja loogikatehted. Harjutused IF-funktsioon Palk & Kauba hind Funktsioonide tabel Minirakendus "Detail" - ülesande püstitus "Detail" - kasutajaliides "Detail" - materjalid "Detail" - värvid Ajaandmed, -avaldised ja -funktsioonid Tekstandmed, -avaldised ja funktsioonid Lisad Nimede määramine ja kasutamine Valideerimine Matemaatikafunktsioonid Tekstifunktsioonid Loogikafunktsioonid Ajafunktsioonid Otsimine. Funktsioon VLOOKUP Valemiredaktor MS Equation 3.0 ...
MATEMAATILINE ANALÜÜS I KONTROLLTÖÖ 1.Arvtelje mõiste- Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvtelje punktidele seada vastavusse reaalarvud. Reaalarvu absoluutväärtus- |a| = a kui a ≥ 0 −a kui a < 0 Reaalarvu a absoluutväärtust |a| võib tõlgendada kui punkti a ja nullpunkti vahelist kaugust arvteljel. Loetleda absoluutväärtuse omadused- 1. | − a| = |a| 2. |ab| = |a| |b| 3. |a + b| ≤ |a| + |b| 4. |a − b| ≥ | |a| − |b|/ Reaalarvude ja lõpmatuste ümbrused- Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a − ε, a + ε), kus ε > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a−ε, a+ε) siis ja ainult siis, kui selle arvu kaugus arvteljel on arvust a väiksem kui ε, st |x − a| < ε. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a − ε, a], kus ε > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse...
Ainekava eksamiks ,, Matemaatiline analüüs I " 2007 2008 kevadsemester 1. Naturaalarvud, täisarvud, ratsionaalarvud, irratsionaalarvud, reaalarvud. Naturaalarvud arvud, mis saadakse loendamise teel, tähistatakse: IN (1, 2, 3, 4, 5, 6, ..., ) Täisarvud kõik naturaalarvud ja nende vastandarvud ning lisaks 0, tähistatakse Z m Ratsionaalarvud on sellised reaalarvud, mida saab esitada kahe täisarvu m ja n jagatisena nii et n n 0 . Igal ratsionaalarvul on ka lõpmatu kümnendmurdarendus ja see on alati perioodiline, tähistatakse Q Irratsionaalarvud mitteperioodilised lõpmatud kümnendmurrud. Tähistus I Reaalarvud hulk R, koosneb k...