Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Kodutöö S2 variant 28 - sarnased materjalid

toereaktsioonide
thumbnail
52
doc

D’Alembert’i printsiip

Tallinna Tehnikaülikool Mehhatroonikainstituut Jüri Kirs, Kalju Kenk Kodutöö D-2 D'Alembert'i printsiip Tallinn 2007 Kodutöö D-2 D'Alembert'i printsiip Leida mehaanikalise süsteemi sidemereaktsioonid kasutades d'Alembert'i printsiipi ja kinetostaatika meetodit. Kõik vajalikud arvulised andmed on toodud vastava variandi juures. Seda, millised sidemereaktsioonid süsteemi antud asendis tuleb leida, on samuti täpsustatud iga variandi juures. Variantide järel on lahendatud ka rida näiteülesandeid koos põhjalike seletustega. Näiteülesandeid d'Alembert'i printsiibi kohta võib lugeda ka E. Topnik' u õpikus ,,Insenerimehaanika ülesannetest IV. Analüütiline mehaanika", Tallinn 1999, näited 14-17, leheküljed 39-49. Kõikides variantides xy-tasapind on horisontaalne, xz- ja yz-tasapinnad aga on vertikaalsed. Andmetes toodud suurused 0 ja 0 on vastavalt pöördenurga ja

Dünaamika
71 allalaadimist
thumbnail
5
doc

Paine koos väändega kodutöö

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT Paine koos väändega Tallinn 2007 Andmed C f2 A D P =1000 kW d1=0,3m B y T2 T1 1 = 600 d2=0,5 y x F2 f1 2 = 210 0 a=0,3m F1

Masinatehnika
275 allalaadimist
thumbnail
4
doc

Jäiga keha toereaktsioonide leidmine tasapinnalise süsteemi korral

Tallinna Tehnikaülikool Mehhatroonikainstituut trollolloo Kodutöö S-2 Variant nr 11 Jäiga keha toereaktsioonide leidmine tasapinnalise jõusüsteemi korral Tallinn 2011 Variant 11. 1) Lisan x,y teljestiku, avaldan Q . Q= l*lq Q= 0,5*4=2kN Y X I 1) Leian X'i projektsioonide võrrandi. Et on 45 kraadi ning on täisnurk, eeldan, et kui jõule P joonistada täisnurkne kolmnurk nii, et P on hüpotenuusiks tekib nurk : 2, mis on 45 kraadi, sest ka nurk on 45 kraadi.

Staatika kinemaatika
116 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

MATEMAATILINE ANALÜÜS II Kood YMM0012 3,5 AP KORDAMISKÜSIMUSED 1. Mitme muutujaga funktsiooni mõiste m-muutuja funktsiooniks nimetatakse kujutist, mis seab suuruse P igale väärtusele tema muutumispiirkonnast D vastavusse suuruse z ühe kindla väärtuse Mitmemuutuja funktsioon graafik Funktsiooni z=f(x1,x2,...,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahulda

Matemaatiline analüüs 2
511 allalaadimist
thumbnail
4
doc

Spikker

f ( P)dS = f ( A) dS 1. Kahemuutuja funktsiooni integraalsumma mõiste ja f * (P)dS = f * (P)dS + f * (P)dS = f (P)dS m d geomeetriline sisu Vn = f ( P)dS = lim Vn = lim f ( pi , y)dy xi + lim = Kahemõõtmelises hulgas DR2 määratud funktsiooni f(x,y) integraalsummaks antud piirkonnas D nimetatakse summat D D 4. Kahekordse integraali arvutamine ristkoordinaatides

Matemaatiline analüüs
230 allalaadimist
thumbnail
11
docx

Mehaanika eksam

Kui jõusüsteemiga on ekvivalentne üksainus jõud, siis seda jõudu nimetatakse süsteemi resultandiks. 1. Tasakaaluaksioom. Kaks absoluutselt jäigale kehale rakendatud jõudu on tasakaalus siis ja ainult siis, kui nad on samal sirgel ja võrdvastupidised 2. Superpositsiooniaksioom. Tasakaalus olevate jõusüsteemide lisamine või eemaldamine ei mõjuta jäiga keha tasakaalu või liikumist. Järeldus: jäiga keha tasakaal ei muutu, kui kanda jõu rakenduspunkt piki mõjusirget üle keha mistahes teise punkti. 3. Jõurööpküliku aksioom. . Kui keha mingis punktis on rakendatud kaks jõudu, siis neid saab keha seisundit muutmata asendada resultandiga, mis võrdub nende geomeetrilise summaga. Aksioom kehtib ka deformeeruva keha juhul. 4. Mõju ja vastumõju aksioom (Newtoni III seadus ). Kaks keha mõjutavad teineteist võrdvastupidiste jõududega, millel on ühine mõjusirge. 5. Jäigastamise aksioom. . Deformeeruva keha tasakaal ei muutu, kui lugeda

Füüsika ii
76 allalaadimist
thumbnail
3
doc

Jäiga keha toereaktsioonide leidmine ruumilise jõusüsteemi korral

Tallinna Tehnikaülikool Mehhatroonikainstituut Kodutöö S-13 Jäiga keha toereaktsioonide leidmine ruumilise jõusüsteemi korral Tallinn 2011 Variant 11. Horisontaalne kolmnurgakujuline plaat ABD kaaluga 240 N on kinnitatud sfäärilise liigendiga A, silindrilise liigendiga B ja jäiga kerge vardaga KE. Punkti D on rakendatud sihis DB mõjuv jõud F, mille moodul on 150 N. Leida sidemete reaktsioonid punktides A, B ja E, kui AL = LB = l , AD = DB = 2l , KL = l 2 , AE = ED. Sirge KL on vertikaalne. Nurk = 26,565° 1) . , . . , .

Füüsika
7 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

ANALÜÜTILISE GEOMEETRIA VALEMID 1. Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z 1 8. Vektorite kollineaarsus a b,(

Analüütiline geomeetria
140 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

ANALÜÜTILISE GEOMEETRIA VALEMID 1. Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z 1 8. Vektorite kollineaarsus a b,(

Analüütiline geomeetria
39 allalaadimist
thumbnail
3
doc

Jäiga keha toereaktsioonide leidmine ruumilise jõusüsteemi korral

Tallinna Tehnikaülikool Mehhatroonikainstituut jeje Kodutöö S-13 Jäiga keha toereaktsioonide leidmine ruumilise jõusüsteemi korral Tallinn 2011 Variant 11. Horisontaalne kolmnurgakujuline plaat ABD kaaluga 240 N on kinnitatud sfäärilise liigendiga A, silindrilise liigendiga B ja jäiga kerge vardaga KE. Punkti D on rakendatud sihis DB mõjuv jõud F, mille moodul on 150 N. Leida sidemete reaktsioonid punktides A, B ja E, kui AL = LB = l , AD = DB = 2l , KL = l 2 , AE = ED. Sirge KL on vertikaalne. Nurk = 26,565° 1)Märgin jõud ja teljestikud joonisele.

Staatika kinemaatika
123 allalaadimist
thumbnail
14
doc

Varrastele rakendunud sisejõudude määramine

1.Varrastele rakendunud sisejõudude määramine. Koostame arvutusskeemi, mis kujutab endast tasandilist varrate süsteemi. Skeemist selgu, millises varrastes on tõmbe-, millistes survejõud. Koostame tasakaaluvõrrandid X = 0 ; Y = 0 ; M B = 0 : X =0 - FN 3 sin 60 0 + FN 2 sin 30 0 = 0 Y = 0 - FN 3 cos 60 0 - FN 2 cos 30 0 + FN 1 - F = 0 M B = 0 FN 1 l1 - F (l1 + l2 ) = 0 Avaldame kolmandast võrrandist ( M B = 0) : FN 1 l1 = F (l1 + l2 ) 4 FN 1 = 150 (4 +1) FN 1 = 750 / : 4 FN 1 =187,5kN Avaldame esimesest võrrandist ( X = 0) : FN 2 sin 30 0 = FN 3 sin 60 0 sin 600 3 FN 2 = FN 3 0 = FN 3 sin

Tugevusõpetus
298 allalaadimist
thumbnail
23
pdf

Liitkoormatud detailide tugevus

122 Tugevusanalüüsi alused 8. LIITKOORMATUD DETAILIDE TUGEVUS 8. LIITKOORMATUD DETAILIDE TUGEVUS 8.1. Detaili tugevus vildakpaindel 8.1.1. Vildakpainde tugevusanalüüs Vildakpaine = sama ristlõike mõlema peatelje suhtes mõjub paindemoment (My ja Mz) (võivad lisanduda ka põikjõud Qy ja Qz) Sirge ja ühtlane vardakujuline detail on "vildakpaindes" (Joon. 8.1): · põik-koormus F ei mõju kesk-peatelgede sihis, kuid on suunatud pinnakeskmesse (või koormav pöördemoment M ei mõju kumbagi kesk-peatelje suhtes, kuid tema telg läbib pinnakeset -- kui pinnakeskme läbimise nõue ei ole täidetud, tekib vardas lisaks veel väändemoment, kui F ei ole risti teljega, tek

Materjaliõpetus
30 allalaadimist
thumbnail
18
pdf

MASINATEHNIKA MHE0061. EKSAMIKÜSIMUSED vene keeles

MASINATEHNIKA MHE0061. EKSAMIKÜSIMUSED. 1. ? , , . . 2. ? ­ . , : (), . 3. , . ­ , . ­ , . . 1. . n n n Rx = Fix = 0; Ry = Fiy = 0; M = M i = 0 i =1 i =1 i =1 2. , , . n n n M iA = 0; i =1 M iB = 0; i =1 M i =1 iC =0 3. , , , , . n n n M iA = 0; i =1 M iB = 0; i =1 F i =1 ix =0 4. . . . , ,. . . Sergei Ovsjanski

Vene keel
30 allalaadimist
thumbnail
33
doc

Füüsika eksam vene keel

FÜÜSIKA II EKSAM 1. Q1Q2 F: R2 ur Q Q uuur F = k 13 2 R12 R 12 1 k= 4 0 Í ì2 k 9 109 Êë 2 - . . , , : - -- . - . . 2. , - , . . , , , , . ­ . . , . 1 22.09.2013 FÜÜSIKA II EKSAM ur 1 Qq ur F= R 4 0 R 3 ur F 1 Q ur = R q 4 0 R 3 ur F ur =E q ur ur F = qE ur 1 Q ur E= R 4 0 R 3 - . : - , ; - , , , . 1 Q (r ) = 4 0 r 2 22.09.2013 FÜÜSIKA II EKSAM 3. . uur ur ur R2 R2 ur ur 2 1 Rd R 1 dR A= Fd R = qQ 3 = qQ 2 = 1

Vene keel
6 allalaadimist
thumbnail
82
pdf

Mehhaanika süsteemide modelleerimine

rt Ü tt r r rtsr süst r st rt ssts Põõst stt ts rtss s t s s r stst ä ss st rt õ õ õs tt r tsts s õts õsüs tst t t s ttrsst ssst üst s õss üs rts t trst s õts õ õ tt s ts strtss s tts äts tsstst sst t s ttäär s õ tr stst ä õ üs õ rrt tt õ r ät äär sst tr t ss t õ ss õt tst s stts ss õõt tüs õõtt t üss sttt õõt sts st s s st t rs tt õõrõ tss r s s · õäts ts ts ä s · strr r äts õr rts õü · tt r · tts üüs õ tr tt · tst tr rts · rs s P strrs stts stst tt t ss stt s õ t rööü r s tst tõst rts s t t P t st Põü s s ü ü ss õ õ ü Põüt süst süst sttr s ssr õ üü tr s õr ss ttt tr s ssr õ t ts t õ s ss 1 kg rs 1 sm2 tt tt s stst stts rts ts rst s ststs t õõs t õs t õ säärss t ss s ts õs rst s s s stst ä rt õ tss ss t ss õ

Mehhaanika süsteemide...
21 allalaadimist
thumbnail
8
doc

Statika ja kinemaatika teoria, vastused

1. ? . 2. . , , , . , . . 3. ? , . 4. ? , . 5. ? 6. ? ., , . 7. ? ,, ., , . 8. ? , . 9. ? - . 10. ? , , . 10. ? , , . 11. . , . , , , . 12. . . , . 13. . . . 14. ? . ,. . 15. . , . 16. ( ). , . 17. ? - 18. ? , . 19. ? . 20. ? , , . 21. . , . 22. . 0, Fx=0 , 0. Fix=0,Fiy=0,Fiz=0 23. . , , 24. ? r- - 25. ?Mo(F)=/r*F/=rFsin=Fd, - .( ) 26. ? , , 27. ? ( , 28. . Mx(F)=yFz-zFx, My(F)=zFx-xFz , Mz(F)=xFy-yFx *29. , ? ½ m, m=1/2pml 30. ? F=F1-F2, - AC/F2=BC/F1=AB/F -(.) - F1. B -`'-F2 .C-

Staatika kinemaatika
96 allalaadimist
thumbnail
7
doc

Statika ja kinemaatika teooria vastused ( vene keeles )

1. ? . 2. . , , , . , . . 3. ? , . 4. ? , . 5. ? 6. ? ., , . 7. ? ,, ., , . 8. ? , . 9. ? - . 10. ? , , . 10. ? , , . 11. . , . , , , . 12. . . , . 13. . . . 14. ? . ,. . 15. . , . 16. ( ). , . 17. ? - 18. ? , . 19. ? . 20. ? , , . 21. . , . 22. . 0, Fx=0 , 0. Fix=0,Fiy=0,Fiz=0 23. . , , 24. ? r- - 25. ?Mo(F)=/r*F/=rFsin=Fd, - .( ) 26. ? , , 27. ? ( , 28. . Mx(F)=yFz-zFx, My(F)=zFx-xFz , Mz(F)=xFy-yFx *29. , ? ½ m, m=1/2pml 30. ? F=F1-F2, - AC/F2=BC/F1=AB/F -(.) - F1. B -`'-F2 .C-

Vene keel
4 allalaadimist
thumbnail
64
pdf

Kolokvium 1 materjal

TTU¨ Matemaatikainstituut http://www.staff.ttu.ee/math/ Ivar Tammeraid http://www.staff.ttu.ee/itammeraid/ ¨ US MATEMAATILINE ANALU ¨ I Elektrooniline ~oppevahend Tallinn, 2001 Tr¨ ukitud versioon: Ivar Tammeraid, Matemaatiline anal¨ uu ¨ Kirjastus, ¨s I, TTU Tallinn 2001, 227 lk, ISBN 9985-59-289-1 ¨ Raamatukogu Viitenumber http://www.lib.ttu.ee TTU ~opikute osakonnas 517/T-15 c Ivar Tammeraid, 2001 Sisukord 0.1. Eess~ ona K¨aesoleva ~ oppevahendi aluseks on autori poolt viimastel aastatel Tallinna Tehnika¨ ulikoo- lis bakalaureuse~ oppe u ¨li~ opilastele peetud u ¨he muutuja funktsiooni diferentsiaal- ja inte- graalarvutuse loengud nimetuse "Matemaatiline anal¨ uu¨s I" all. Siiski ei ole tegu pelgalt u ¨hel semestril esitatu kirjapanekuga. Lisatud on

Matemaatiline analüüs
65 allalaadimist
thumbnail
17
pdf

Surutud varraste stabiilsus

194 Tugevusanalüüsi alused 13. SURUTUD VARRASTE STABIILSUS 13. SURUTUD VARRASTE STABIILSUS 13.1. Konstruktsiooni tasakaal Tasakaalus konstruktsioon = konstruktsiooni Tasakaaluseisund = süsteem (ja tasakaalutingimused on täidetud (konstruktsioonil on kõik selle osad) seisab paigal (või tasakaaluks piisav tugevus ja jäikus) liigub ühtlaselt sirgjooneliselt) NB! Kõik tasakaaluseisundid ei ole usaldatavad Juhuslik häiring = väike jõud, mis tekitab varda tühise hälbe tasakaaluasendist Lähtvalt süsteemi käitumisest juhusliku häiringu FH toimel eristatakse kolme võimalikku tasakaaluseisundit (Joon. 13.1): Stabiilne seisund =

Materjaliõpetus
56 allalaadimist
thumbnail
9
doc

Lineaarsete algebraliste võrrandite süsteem

MLF 1121 Geofüüsikaline hüdrodünaamika (Matemaatika ülevaade I) Jüri Elken Kursuses vajalik matemaatika Lineaarne algebraliste võrrandite süsteem Olgu n tundmatuga m võrrandist koosnev süsteem a11 x1 + a12 x 2 + ... + a1n x n = f 1 a 21 x1 + a 22 x 2 + ... + a 2 n x n = f 2 ................................... a m1 x1 + a m 2 x 2 + ... + a mn x n = f m maatrikskujul AX = F , a11 a12 ... a1n a a 22 ... a 2 n kus A = 21 , ... ... ... ... a am2 ... a mn m1 x1 f1 x f X=

Matemaatika
74 allalaadimist
thumbnail
3
pdf

Masinamehaanika II Kodutöö

Tallinna Tehnikaülikool Mehaanikateaduskond Mehhatroonikainstituut Masinamehaanika õppetool Masinamehaanika Kodutöö nr. 2 Üliõpilane: Ove Hillep Matriklinumber: 072974 Rühm: MATB Kuupäev: 15. mai 2012 Õppejõud: Merle Randrüüt Leo Teder Ülesanne 1 r = 250 mm l = 900 mm xB = 400 mm yB = 300 mm a) Määrata punkti A koordinaadid xA , yA funktsioonina pöördenurgast . xA = r * cos yA = r * sin b) Määrata punkti C koordinaadid xC , yC funktsioonina pöördenurgast . y B-rsin =arctan x B-rcos x C =rcos +lcos y C =rsin +lsin c) Kirjutada MATLAB-i või Octave'i pro- gramm, mis esitab punkti C liikumise graafiku (joon, mida mööda punkt C l

Masinamehaanika
49 allalaadimist
thumbnail
12
pdf

MÄ Ä R AMA T A I N T EGR A A L

INTEGRAALARVUTUS MÄÄRAMATA INTEGRAAL Def Funktsiooni f(x) algfunktsiooniks nimetatakse niisugust funktsiooni y = F(x), mille tuletis võrdub funktsiooniga f(x): F ( x ) = f ( x ) . Näide: Funktsiooni y = 2 x algfunktsioon on y = x 2 , sest ( x 2 ) = 2 x . Antud funktsioonil on mitu algfunktsiooni, sest kui F ( x ) = f ( x ) , siis [ F ( x ) + C ] = F ( x ) = f ( x ) , kus C on suvaline konstant. Funktsioonil on lõpmata palju algfunktsioone, mis erinevad üksteisest konstantse liidetava poolest. Funktsiooni y = f ( x ) algfunktsiooniks on kõik funktsioonid y = F ( x ) + C . Teoreem: Antud funktsiooni mistahes kaks algfunktsiooni võivad teineteisest erineda ülimalt konstantse liidetava poolest: Tõestus: Olgu y =F 1 ( x ) ja y =F 2 ( x ) suvalised kaks algfunktsiooni funktsioonile y = f ( x ) . Siis algfunktsiooni definitsiooni kohaselt: F1( x ) = f ( x ) ; F2( x ) = f ( x ) F ( x ) - F ( x ) = 0 ehk [ F ( x ) - F ( x ) ] = 0

Matemaatika
15 allalaadimist
thumbnail
11
doc

Määramata integraal

INTEGRAALARVUTUS MÄÄRAMATA INTEGRAAL Def Funktsiooni f(x) algfunktsiooniks nimetatakse niisugust funktsiooni y = F(x), mille tuletis võrdub funktsiooniga f(x): F ( x ) = f ( x ) . Näide: Funktsiooni y = 2 x algfunktsioon on y = x 2 , sest ( x 2 ) = 2 x . Antud funktsioonil on mitu algfunktsiooni, sest kui F ( x ) = f ( x ) , siis [ F ( x ) + C ] = F ( x ) = f ( x ) , kus C on suvaline konstant. Funktsioonil on lõpmata palju algfunktsioone, mis erinevad üksteisest konstantse liidetava poolest. Funktsiooni y = f ( x ) algfunktsiooniks on kõik funktsioonid y = F ( x ) + C . Teoreem: Antud funktsiooni mistahes kaks algfunktsiooni võivad teineteisest erineda ülimalt konstantse liidetava poolest: Tõestus: Olgu y =F 1 ( x ) ja y =F 2 ( x ) suvalised kaks algfunktsiooni funktsioonile y = f ( x ) . Siis algfunktsiooni definitsiooni kohaselt: F1( x ) = f ( x ) ; F2( x ) = f ( x ) F ( x ) - F ( x ) = 0 ehk [ F ( x ) - F ( x ) ] = 0

Kõrgem matemaatika
191 allalaadimist
thumbnail
58
doc

Masinamehaanika täielik loengukonspekt

Loengukonspekt õppeaines MASINAMEHAANIKA Koostanud prof. T.Pappel Mehhatroonikainstituut Tallinn 2006 2 SISUKORD SISSEJUHATUS 1. ptk. MEHHANISMIDE STRUKTUURITEOORIA 1.1. Kinemaatilised paarid, lülid, ahelad 1.1.1. Kinemaatilised paarid 1.1.2. Vabadusastmed ja seondid 1.1.3. Lülid, kinemaatilised ahelad 1.2. Kinemaatilise ahela vabadusaste. Liigseondid. Liigliikuvused 1.2.1. Vabadusaste 1.2.2. Liigseondid. Liigliikuvused. 1.3. Mehhanismide struktuuri sünteesimine 1.3.1. Struktuurigrupid 1.3.2. Kõrgpaaride arvestamine 1.3.3. Kinemaatiline skeem. Struktuuriskeem 2. ptk. MEHHANISMIDE KINEMAATILINE ANALÜÜS 2.1. Eesmärk. Algmõisted 2.2. Mehhanismide kinemaatika analüütilised meetodid

Masinatehnika
509 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs II

1. Kahemuutuja funktsiooni integraalsumma mõiste ja geomeetriline sisu. · Olgu D kinnine tõkestatud piirkond ruumis R2. Olgu z = (x,y) piirkonnas D määratud pidev funktsioon. Jaotame piirkonna D n tükiks S1,S2,...,Sn.Tähistagu Si samaaegselt nii i-ndat tükki kui ka i-nda tüki pindala.Valime igalt tükilt ühe punkti P ja moodustame järgmise summa: Vn= (P1) S1 + (P2) S2+...+ (Pn) Sn Seda summat Vn nim funktsiooni integraalsummaks piirkonnas D · Olgu (x,y) 0. siis saab integraalsummas olevat korrutist (P i) Si tõlgendada kui silindri ruumala, mille põhi on S i ja kõrgus (Pi) Selline silinder tähistatakse Zi-ga. IntegraalsummaVn on järelikult silindrite ühendi Z=Z1 U Z2 U...U Zn ruumala. Silindrite ühend Z on treppkeha, mille ülemine pind on tükiti tasapinnalineomades hüppeid erinevate kõrgustega naaber silindrite liitekohtades. 2. Kahekordse integraali mõiste j

Matemaatiline analüüs
523 allalaadimist
thumbnail
8
pdf

Kompleksarvud gümnaasiumiõpikus

Arvu a nimetatakse kompleksarvu a + ib reaalosaks ja arvu bi selle imaginaarosaks. KOMPLEKSARVUD Kui a = 0, siis on tegemist imaginaararvuga bi, kui b = 0, siis saame arvu a + 0·i, mis on reaalarv a. Kui a = b = 0, siis siis saame tulemuseks arvu 0. KOMPLEKSARVU MÕISTE. TEHTED KOMPLEKSARVUDEGA Kaks kompleksarvu on omavahel võrdsed parajasti siis, kui nende reaalosad ja 1. Kompleksarvu mõiste imaginaarosad on vastavalt võrdsed: a + ib = c + id

Matemaatika
16 allalaadimist
thumbnail
2
pdf

Matemaatika valemid

Hulkliikmete korrutamine Tehted Arvu ruutjuur Funktsioonide graafikud Ring (a+b)2 =a2+2ab+b2 astmetega a, kui a > 0 Võrdeline seos : y=ax d (a-b)2=a2-2ab+b2 (a : b)n=an : bn a>0 d = 2r r= a = a = - a, kui a p 0 2 2 (a-b)(a+b)=a2-b2 (ab)n=an bn 0, kui a = 0 (a+b)(c+d)=ac+ad+bc+bd anam=an

Algebra I
140 allalaadimist
thumbnail
24
docx

Väntmehhanismi kinemaatiline analüüs

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT MHD0030 MASINAMEHAANIKA KODUTÖÖ NR. 2 Väntmehhanismi kinemaatiline analüüs ÜLIÕPILANE: KOOD: Töö esitatud: 18.03.2014 Arvestatud: Parandada: TALLINN 2015 Lähteandmed Mehhanismi vänt OA pöörleb konstantse nurkkiirusega OA 2,4 rad/s. Pikkused: OA 40 cm, AB 110 cm, AC = 45 cm (punkt C – kepsu massikese). Leida: - Mehhanismi vabadusaste; - Punkti A koordinaadid funktsioonina pöördenurgast ; - Punkti B koordinaat xB funktsioonina pöördenurgast ; - Punkti C koordinaadid funktsioonina pöördenurgast ; - Punkti A kiirus ja kiirendus; - Punkti B kiirus funktsioonina pöördenurgast ; - Arvutada kõik ülal nimetatud suurused hetkel, kus  = 130. Punkti B kiirus leida anal

Masinamehaanika
95 allalaadimist
thumbnail
38
xls

Tabelid lahendatud

Tallinna Tehnikaülikool Informaatikainstituut Töö Tabelid Üliõpilane Õppemärkmik Õppejõud J. Vilipõld Õpperühm Palun täitke tühjad lahtrid MASB11 Sisukord Harjutused Suhtaadresside kasutamine 1 Suhtaadresside kasutamine 2 Absoluutaadressid Nimede määramine ja kasutamine 1 Nimede kasutamine. Diagrammide koostamine Palkide müümimne 1 Funktsioonide graafikud Ülesanded Palgid_2 Palgad Funktsioonide graafikud Lisa: valemite kopeerimine Suhtaadressid. Valemite kopeerimine Ruumide pindalad ja ümbermõõdud a b S P Vaadake valemeid tulbas S ja P ! 5,00 4,00 20,0 18,00 Nad on kõikides ridades analoogilised, 7,20 4,80 34,6 24,00 kuid erinevad aadressite poolest: igas reas on aadressi reanumber ühe võrra 6,35 5,12 32,5 22,94 suurem kui eelmises reas. 7,39 6,23

Informaatika
212 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2. Funktsiooni z x2 y 2 graafikuks on pöördparaboloid (vaata allpool olevat joonist) Kahe muutuja funktsiooni f nivoojoonteks nimetatakse jooni f x, y c Näide 3. Tüüpiline näide nivoojoo

Matemaatiline analüüs II
69 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
1099 allalaadimist
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

10.klass a1 b1 c1 1. Reaalarvude piirkonnad kui D = 0; D x = 0; D y = 0, siis = = a 2 b2 c 2 2. Astme mõiste üldistamine a m a n = a m +n c)pole lahendeid a1 b1 c a m : a n = a m -n , kui m > n kui D = 0; D x 0; D y 0, siis = 1 a 2 b2 c 2 ( a b) n = a n b n n 12. Ruutvõrrandi süsteemid a an 13. Kolmerealine determinant = n , kui b 0 b b 14. Kolme tundmatug

Matemaatika
1299 allalaadimist
thumbnail
19
doc

Matemaatika valemid.

1. Reaalarvud ja avaldised a, kui a 0 · Arvu absoluutväärtus ­ a = - a, kui a < 0 · Astme mõiste ja omadused a 0 = 1, kui a 0 a1 = a a n = a a a a, kui n N 2 1 a-k = , kui a 0 ja k Z või ak kui a > 0 ja k Q m n a m , kui a > 0, m Z ja n N a = n 2 0, kui a = 0, m N 1 ja n N1

Matemaatika
807 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun